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Abstract

In this paper, we are going to propose the first mathematical model for Multi-
Period Hub Location Problems (MPHLP). We apply this mixed integer program-
ming model on public transport planning and call it Multi-Period Hub Loca-
tion Problem for Public Transport (MPHLPPT). In fact, HLPPT model
proposed earlier by the authors is extended to include more facts and features of
the real-life application. In order to solve instances of this problem where existing
standard solvers fail, a solution approach based on a greedy neighborhood search
is developed. The computational results substantiate the efficiency of our solution
approach to solve instances of MPHLPPT.

Key words: Integer programming, hub location, public transport, multi-period
planning, heuristics

1 Introduction

Hub-and-spoke networks have shown to receive a lot of attention due to their
applications— mainly in transportations, telecommunications. Their specific
structure and functionality made them very attractive for many researchers
who have been dealing with them. The context of Hub Location Problems
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(HLPs) includes all such configurations in different fields for instance, com-
puter networks, postal-delivery, less-than-truck loading and supply chain man-
agement. Applications of HLPs in Public Transport (PT) have received less
attention compared to other fields, like telecommunication.
In a HLP network, a flow originated from an origin i and destined to node
j is not shipped directly. Rather, flows are conducted to their destinations
via some selected intermediate nodes (called hub nodes) and edges (called hub
edges) connecting these hubs. When the hub nodes are selected, the non-hub
nodes (called spoke nodes) which possess the demands of many destinations
will be allocated to them in order to send their flow via hub-level network.
The allocation scheme can be single or multiple based on the permission to
allocate a spoke node just to a single hub node or more than that, respectively.
In the classical HLP models, four main assumptions were always considered:

Ass. a The hub-level network is a complete graph.
Ass. b Using inter-hub connections has a lower price per unit than using spoke

connections. That is, it benefits from a discount factor α, (0 < α < 1).
Ass. c Direct connections between the spoke nodes are not allowed.
Ass. d Costs are proportional to the distance (the triangle inequality holds).

For the first time, [28, 29] paved the way for the future study of hub location
problems. On the discrete hub location problem, the first work again is due
to [30]. He proposed the first mathematical formulation (a quadratic model)
for Single Allocation p-Hub Median Problem (SApHMP).
There are some reviews devoted to HLP on a discrete network. Among these
reviews, we refer the readers to the two latest ones by [8] and [4] and references
therein.
For the single allocation variants, we can refer to [30, 32], [6, 7], [35], [15], [13].
For multiple allocation models we refer to [6, 7], [35], [16] and [37].
For the capacitated and other variants we refer the readers to [31], [6], [37],
[5], [17], [14], [24], [39, 40], [25] and [11].
Beside a variety of exact solution methods proposed in literature, several
heuristics are also developed for the variants of HLPs. Solution procedures
based on simulated annealing are reported in [15, 17] and [2]. Genetic algo-
rithms are considered by [3], [38] and [12]. Several variants of tabu search
algorithms are also proposed in literature. Instances of these algorithms can
be found in [22, 23], [34], [9] and [40]. Greedy Randomized Adaptive Search
Procedure (GRASP) is also proposed in [22, 23]. A hybrid of genetic algorithm
and tabu search is proposed by Abdinnour-Helm [1] for USAHLP. Another hy-
brid algorithm in literature is due to [10] for USAHLP. [36] take the advantage
of the quadratic model of [30] to map on a Hopfield neural network.
There are also some other proposed heuristics which may not be classified
into the well-known categories. Some of these algorithms can be found in
[33], [30, 31], [21], [7], [20], [16] and [14]. [19] proposed a very efficient greedy
neighborhood search algorithm. Their so called greedy∗ algorithm is capable
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of finding optimal solutions for all the instances with known optimal solution.
To the best of our knowledge, [27] have been the first to propose MIP mod-
els for the application of HLPs in urban traffic networks. They proposed two
models which are known as Public Transport (PT) and Generalized
Public Transport (GPT). In their models some of the classical assump-
tions of HLPs are relaxed and the models are customized for the public trans-
port planning.
Another model called Hub Location Problems for Public Transport
(HLPPT) is also proposed in [18]. By relaxing some classical assumptions
and introducing new ones, this model also particularly addresses the public
transport application. They showed that their model is superior to [27] and
also proposed an efficient Benders decomposition approach to tackle instances
of the problem.
The rest of the paper is organized as follows: In the next section after review-
ing HLPPT, we are going to propose MPHLPPT as a general multi-period
model. This model incorporates and represents more realistic aspects of the
real-life application. In Section 3, the computational results upon a set of ran-
domly generated instances for two different variants of the model are reported.
In Section 4, a greedy neighborhood search is proposed to solve instances of
variants of this problem. In Section 5, a large scale instance of MPHLPPT
for each of the variants is tackled by the proposed heuristic giving an impres-
sion of the computational time. Finally, in the last section we will conclude
our work and will propose some further research directions.

2 Mathematical Model

As mentioned earlier, a so called HLPPT model is proposed for the application
of HLPs in public transport planning. Although, in this model they also tried
to consider real-life aspects of the application, however all the decisions are
addressing a single period planning.
Usually, the construction projects are long-lasting, resource-demanding and
finance-demanding projects and during the construction phase some parame-
ters of system change. Very often in reality, decisions are made for a planning
horizon with several periods. One can refer to [26] for a multi-period model in
supply chain models.
In a Multi-Period Hub Location Problem for Public Transport
(MPHLPPT), the public transport network is evolving over the planning
horizon. Decisions about how the network should evolve are not made just in
an improvident way. That is, the configuration of system in each period might
not be optimal for that specific period rather, it drops out the individual pe-
riod optimality in favor of contribution in the optimality over the planning
horizon (overall optimality).
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MPHLPPT is essentially adapted from HLPPT which is depicted in the se-
quel. The variables in HLPPT are defined as follows: xijkl = 1 if the optimal
path from i to j traverses the hub edge (k, l) and 0, otherwise. Also, aijk = 1
if the optimal path from i to j traverses the spoke edge (i, k) while i is not
hub and 0, otherwise and bijk = 1 if the optimal path from i to j traverses the
spoke edge (k, j) while j is not hub and 0, otherwise. In addition, eij = 1 if
the optimal path from i to j traverses (i, j) and either i or j is a hub and 0,
otherwise. For the hub-level variables, ykl = 1, k < l, if the hub edge (k, l) is
established, 0 otherwise and hk = 1 if k is used as a hub node, 0 otherwise.
The transportation cost for a given flow with origin i and destination j

amounts to the sum of (i) the cost of sending the flow from i to the first
hub node, (ii) the cost of traversing one or more hub edges discounted by the
factor α (0 < α < 1) and, (iii) the cost of transition on the last spoke edge.
The proposed mathematical formulation follows:
(HLPPT)

Min
∑

i

∑

j 6=i

∑

k

∑

l 6=k

αWijCklxijkl +
∑

i

∑

j 6=i

∑

k 6=i,j

WijCikaijk +

∑

i

∑

j 6=i

∑

k 6=i,j

WijCkjbijk +
∑

i

∑

j 6=i

WijCijeij +

∑

k

Fkhk +
∑

k

∑

l>k

Iklykl (1)

s.t.
∑

l 6=i

xijil +
∑

l 6=i,j

aijl + eij = 1, ∀i, j 6= i, (2)

∑

l 6=j

xijlj +
∑

l 6=i,j

bijl + eij = 1, ∀i, j 6= i, (3)

∑

l 6=k,i

xijkl + bijk =
∑

l 6=k,j

xijlk + aijk, ∀i, j 6= i, k 6= i, j, (4)

ykl ≤ hk, ykl ≤ hl, ∀k, l > k,(5)

xijkl + xijlk ≤ ykl, ∀i, j 6= i, k, l > k, (6)
∑

l 6=k

xkjkl ≤ hk, ∀j, k 6= j, (7)

∑

k 6=l

xilkl ≤ hl, ∀i, l 6= i, (8)

eij ≤ 2 − (hi + hj), ∀i, j 6= i, (9)

aijk ≤ 1 − hi, ∀i, j 6= i, k 6= i, j,(10)

bijl ≤ 1 − hj , ∀i, j 6= i, l 6= i, j, (11)

aijk +
∑

l 6=j,k

xijlk ≤ hk, ∀i, j 6= i, k 6= i, j,(12)

bijk +
∑

l 6=k,i

xijkl ≤ hk, ∀i, j 6= i, k 6= i, j,(13)

eij + 2xijij +
∑

l 6=j,i

xijil +
∑

l 6=i,j

xijlj ≤ hi + hj , ∀i, j 6= i,(14)
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xijkl, ykl, hk, aijk, bijk, eij ∈ {0, 1}. (15)

In the multi-period model (MPHLPPT), in addition to the existing assump-
tions for the single period problem (i.e. connectivity of hub-level network and
independency from any special cost structure in HLPPT), the following as-
sumptions are additionally considered:

(1) the transport network includes an initial configuration,
(2) at most once, the status of each hub node or hub edge can change:

(a) if a facility exists in the initial configuration it may become closed
afterwards,

(b) if a facility became close at a period in the planning horizon, it re-
mains closed until the end of planning horizon and,

(c) if a facility became open at a period over the planing horizon it will
not be subjected to removal.

(3) a fixed maintenance cost is incurred for using a hub node or hub edge in
each period (that means, an amount of budget is considered periodically
for maintenance. The vehicles, roads and rails, stations, buildings and
many more items are subjected to inspection, control and renewal) and,

(4) a fixed ceasing (removal) cost is incurred in order to degrade a hub node
or hub edge to a spoke one.

Some parameters and variables for MPHLPPT are introduced in the follow-
ing.

2.1 Parameters

In order to extend the model to a more general case, which assumes setup,
maintenance and removal costs for both hub nodes and hub edges in each
period, the following parameters are introduced:

• HMCt
k: The maintenance cost incurred by k-th hub node at the t-th period,

• EMCt
e: The maintenance cost incurred by e-th hub edge at the t-th period,

• HCCt
k: The removal cost incurred by k-th hub at the t-th period and,

• ECCt
e: The hub edge removal cost incurred by e-th hub edge at the t-th

period,

where e ∈ E = {(k, l)|k, l = 1, . . . , n, l > k}.
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2.2 Variables

In order to reflect the requirements of this new model, the definition of vari-
ables should be revised. According to the assumptions of model concerning
the existence of an initial configuration, two sets of facilities are imagined.
Two index sets for facilities are H and E, keeping track of indices of poten-
tial hub nodes and potential hub edges, respectively. Each set is partitioned
into two subsets. The subset composed of indices of facilities which can be
opened (say openable) at any t ∈ T over the planning horizon labeled with a
superscript o, like Ho and Eo; and the sets of those which are active in the ini-
tial configuration or in the other words can be closed later on (say closeable),
labeled by a superscript c, like Hc and Ec. This partitioning implies:

Ec ∩ Eo = ∅, Ec ∪ Eo = E, (16)

Hc ∩ Ho = ∅, Hc ∪ Ho = H. (17)

In addition, we revise the definition of the following variables. For all k ∈ Ho

and t ∈ T ,

ht
k =











1 if hub node k is established at the beginning of the time period t,

0 otherwise.

For all k ∈ Hc and t ∈ T − {T},

ht
k =











1 if hub node k is removed at the end of time period t,

0 otherwise.

For all k ∈ Hc:

hT
k =











1 if hub node remains active until end of planning horizon,

0 otherwise,

where T is the planning horizon length and yt
kl is defined analogously for the

set of edges.

2.3 Multi-Period Model (MPHLPPT)

The generality of the model is the same as single period case (i.e. HLPPT)
and in addition we should have a linkage between periods and also express
HLPPT in terms of newly defined sets and variables ((16) and (17)). Since
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the model becomes involved, therefore we explain the constraints step by step
and make some labels (A, B, . . . ) to reach the final model by bringing these
labels together.

Note 1 Each edge is represented by e ∈ E and corresponds to the edge (k, l).
That means, k is the head and l is the tail node of that edge. Moreover, because
the graph is assumed to be undirected, it is always assumed that l > k.

(A): A closeable facility should either be closed before the last period or the
corresponding variable takes 1 at the last period indicating that it has been
open over the whole planning horizon. In Contrary, an openable facility can
be opened just once. The following constraints are taking care of these facts
for both types of facilities.

∑

t∈T

ht
k = 1, ∀k ∈ Hc,(18)

∑

t∈T

yt
e = 1, ∀e ∈ Ec, (19)

∑

t∈T

ht
k ≤ 1, ∀k ∈ Ho,(20)

∑

t∈T

yt
e ≤ 1, ∀e ∈ Eo.(21)

(B): It is assumed that there exists just a limited amount of resources (budget,
labor and workforce, etc.) which only suffices to establish a limited number of
facilities. For instance, for given q1, q2 ∈ N, q1 hub nodes and q2 hub edges
from among all the openable ones in each time period can be established.

∑

e∈Eo

yt
e ≤ q1, ∀t ∈ T , (22)

∑

k∈ho

ht
k ≤ q2, ∀t ∈ T .(23)

(C): An openable hub edge between two end-points of k and l can have its
end-points belonging to different sets of partitions. For all t ∈ T , l > k,

• if k and l both are openable, an openable edge e can be opened if both
end-point have been opened until now.

yt
e ≤

t
∑

t′=1

ht′

k , ∀e ∈ Eo, k, l ∈ Ho,
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yt
e ≤

t
∑

t′=1

ht′

l , ∀e ∈ Eo, k, l ∈ Ho.

• if k(l) is closeable and l(k) is openable, an openable edge e can be opened
if the closeable endpoint is not closed yet and will not be closed afterwards;
and the openable end-point is opened until beginning of this period.

yt
e ≤ 1 −

T−1
∑

t′=1

ht′

k , ∀e ∈ Eo, k ∈ Hc, l ∈ Ho, (24)

yt
e ≤

t
∑

t′=1

ht′

l , ∀e ∈ Eo, k ∈ Hc, l ∈ Ho, (25)

yt
e ≤

t
∑

t′=1

ht′

k , ∀e ∈ Eo, k ∈ Ho, l ∈ Hc, (26)

yt
e ≤ 1 −

T−1
∑

t′=1

ht′

l , ∀e ∈ Eo, k ∈ Ho, l ∈ Hc. (27)

• if k and l are closeable, an openable edge e can be opened if both end-points
are not closed yet and will not be closed until the end of the (T−1)-th period.

yt
e ≤ 1 −

T−1
∑

t′=1

ht′

k , ∀e ∈ Eo, k, l ∈ Hc,(28)

yt
e ≤ 1 −

T−1
∑

t′=1

ht′

l , ∀e ∈ Eo, k, l ∈ Hc.(29)

• for a closeable edge e ∈ Ec, where in fact both end-points are closeable, e

can remain open as long as both end-points remain open.

yt
e ≥ ht′

k , ∀e ∈ Ec, k, l ∈ Hc,

yt
e ≥ ht′

l , ∀e ∈ Ec, k, l ∈ Hc.

(D): For a given origin i and destination j, the flow from i to j can pass
through the hub edge (k, l):

• if (k, l) is openable, it should have been opened until now,

xt
ijkl + xt

ijlk ≤
t
∑

t′=1

yt′

e , ∀i, j > i, e ∈ Eo, t ∈ T .

• if (k, l) is closeable, it should have not been closed yet.

xt
ijkl + xt

ijlk ≤ 1 −
t−1
∑

t′=1

yt′

e , ∀i, j > i, e ∈ Ec, t ∈ T .
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(E): For a given flow between two nodes when only one of them is a hub:

• if that hub node is openable, it should have been opened in a period since
beginning of the planning horizon,

∑

l 6=k

xt
kjkl ≤

t
∑

t′=1

ht′

k , ∀j, k ∈ Ho, k < j, t ∈ T ,

∑

k 6=l

xt
ilkl ≤

t
∑

t′=1

ht′

l , ∀i, l ∈ Ho, l > i, t ∈ T .

• if that hub node was closeable, it should have not been closed yet.

∑

l 6=k

xt
kjkl ≤ 1 −

t−1
∑

t′=1

ht′

k , ∀j, k ∈ Hc, k < j, t ∈ T ,

∑

l 6=k

xt
ilkl ≤ 1 −

t−1
∑

t′=1

ht′

l , ∀i, l ∈ Hc, l > i, t ∈ T .

(F): The following constraints correspond to those of the single period model
with the same modification as carried out with the other constraints.
For all t ∈ T ,

et
ij ≤

t
∑

t′=1

|ht′

i − ht′

j |, ∀i, j ∈ Ho, j > i,

et
ij ≤ 1 − |

t
∑

t′=1

ht′

i −
t−1
∑

t′=1

ht′

j |, ∀i ∈ Ho, j ∈ Hc, j > i,

et
ij ≤ 1 − |

t−1
∑

t′=1

ht′

i −
t
∑

t′=1

ht′

j |, ∀i ∈ Hc, j ∈ Ho, j > i,

et
ij ≤

t−1
∑

t′=1

|ht′

i − ht′

j |, ∀i, j ∈ Hc, j > i.

However, these constraints are not linear. In order to linearize them, we define
more variables namely, δ+

ij ≥ 0 and δ−ij ≥ 0.
For all t ∈ T ,

t
∑

t′=1

(ht′

i − ht′

j ) = δt+

ij − δt−

ij , ∀i, j ∈ Ho, j > i,

1 −
t
∑

t′=1

ht′

i −
t−1
∑

t′=1

ht′

j = δt+

ij − δt−

ij , ∀i ∈ Ho, j ∈ Hc, j > i,
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1 −
t−1
∑

t′=1

ht′

i −
t
∑

t′=1

ht′

j = δt+

ij − δt−

ij , ∀i ∈ Hc, j ∈ Ho, j > i,

t−1
∑

t′=1

(ht′

i − ht′

j ) = δt+

ij − δt−

ij , ∀i, j ∈ Hc, j > i,

and finally for all t ∈ T , i and j > i we add,

et
ij ≤ δt+

ij + δt−

ij ≤ 1.

(G): By definition, the variable aijk (bijk) is used to indicate whether there
is a flow sent from (to) a spoke origin (destination) to (from) an arbitrary
destination (origin) j (i) via a hub node k.
For all t ∈ T ,

at
ijk ≤ 1 −

t
∑

t′=1

ht′

i , ∀i ∈ Ho, j > i, k 6= i, j,

at
ijk ≤

t−1
∑

t′=1

ht′

i , ∀i ∈ Hc, j > i, k 6= i, j,

bt
ijk ≤ 1 −

t
∑

t′=1

ht′

j , ∀j ∈ Ho, i < j, k 6= i, j,

bt
ijk ≤

t−1
∑

t′=1

ht′

j , ∀j ∈ Hc, i < j, k 6= i, j.

(H): The flow emanating from a node i is received by a node j based on the
status of i and j:
For all t ∈ T ,

at
ijk +

∑

l 6=j,k

xt
ijlk ≤

t
∑

t′=1

ht′

k , ∀i, j > i, k ∈ Ho, k 6= i, j,

at
ijk +

∑

l 6=j,k

xt
ijlk ≤ 1 −

t−1
∑

t′=1

ht′

k , ∀i, j > i, k ∈ Hc, k 6= i, j,

bt
ijk +

∑

l 6=k,i

xt
ijkl ≤

t
∑

t′=1

ht′

k , ∀i, j > i, k ∈ Ho, k 6= i, j,

bt
ijk +

∑

l 6=k,i

xt
ijkl ≤ 1 −

t−1
∑

t′=1

ht′

k , ∀i, j > i, k ∈ Hc, k 6= i, j,

et
ij + 2xt

ijij +
∑

l 6=j,i

(xt
ijil + xt

ijlj) ≤
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





































∑t
t′=1(h

t′

i + ht′

j ), ∀i, j ∈ Ho, j > i,
∑t

t′=1 ht′

i + (1 −
∑t−1

t′=1 ht′

j ) ∀i ∈ Ho, j ∈ Hc, j > i,

(1 −
∑t−1

t′=1 ht′

i ) +
∑t

t′=1 ht′

j , ∀i ∈ Hc, j ∈ Ho, j > i,

2 − (
∑t−1

t′=1 ht′

i +
∑t−1

t′=1 ht′

j ) ∀i, j ∈ Hc, j > i.

Now, we can state MPHLPPT:

(MPHLPPT)

Min
∑

t∈T





∑

i

∑

j>i

∑

k

∑

l 6=k

αt(W t
ij + W t

ji)C
t
klx

t
ijkl +

∑

i

∑

j>i

(W t
ij + W t

ji)C
t
ije

t
ij+

∑

i

∑

j>i

∑
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s.t.
∑
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ijil +

∑

l 6=i,j

at
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ij = 1, ∀t, i, j > i, (31)

∑
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A, C, E, F, G, H,

xt
ijkl, a

t
ijk, b

t
ijk, e

t
ij ∈ (0, 1), yt

kl, h
t
k ∈ {0, 1}.

The objective function sums up to the flow cost plus the setup, maintenance
and closing costs. Obviously, there should not be any closing cost for the last
period.
Constraints (31)-(33) are the flow conservation constraints. The rest of con-
straints take care of routing of the flows in each period by taking into ac-
count the statutory assumptions. (A) ensures that an openable facility will
be opened at most once and a closeable facility will be closed at most once.
However, closing will not happen in the last period and corresponding vari-
ables take 1 stating that it was working over the planning horizon. In (C), it
is ensured that both end-points of a hub edge are hub nodes. Constraints (D)
state that a flow in its path to destination if passes through more than one
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hub node in the hub-level network, these nodes should be connected by hub
edge(s). In (E) it is ensured that only a flow with an origin (a destination)
of hub type is allowed to select a hub edge to depart from the origin (arrive
to the destination). Constraints (F) check the end-points of spoke edges. Any
flow from i to j, if enters to (depart from) a node other than i and j, that
node must be a hub node. This is ensured by (G). Selection of edges on the
path between origin and destination, i and j, depends on the status of i and
j; whether both, none or just one of them is a node. This is checked by (H).
In an uncapacitated environment, as also mentioned in [6], only hub node and
hub edge variables might need to be considered as binary variables.
Obviously, if there would be no constraints on the number of facilities to be
established at each iteration and, benefiting from using the facilities can domi-
nate the cost incurred for setup and maintenance, most of hub facilities which
are going to be opened will preferably be opened at the earlier periods. In
this way, as soon as possible the economy of scale can be exploited. This ten-
dency, is more sensible if the flow mass is homogeneously and monotonically
increasing at each period. That is, at each stage there be more motivation of
establishing hub-level facilities. But, if the flow in an area has very low den-
sity and dramatically increases in last periods, it is less likely for this area to
receives hub facility in the earlier periods.
This issue is tackled in two ways; either by restricting the number of facilities
that can be established at each period (by inclusion of (B) in the set of con-
straints) or by imposing some budget constraints.

3 Computational Results

A set of 10 initial configurations is generated for a randomly generated in-
stance of size n = 10 (R10) so that their spatial layout are homogeneously
distributed and are as scattered as possible with as small as possible of inter-
sections.
In Figure 1 the layout of this instance is depicted. We divided the bounding
area into four quarters and tried to choose the initial configurations as fair
as possible. That is, every node appeared at least once as a hub node in an
initial configuration and also the edges are selected from almost all parts of
the layout.

The flows and costs are also randomly generated. Therefore, the cost as well
as the flow, in general does not follow any structure.
The parameters of these instances are defined as follows,
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Fig. 1. Spatial layout of R10.

Fi = 5000 ∀i,

HCCi = 1000 ∀i,

HMCi = 500 ∀i,

Iij = 200 × Cij ∀i, j > i,

ECCij = 200 × Cij ∀i, j > i,

EMCij = 20 × Cij ∀i, j > i.

3.1 Constraints on the Number of Facilities to be Opened

The restriction on the number of facilities among the potential ones (hub nodes
and hub edges) to be opened at each period can be drawn by the constraint
set (B) ((22)-(23)).

3.1.1 Example

From our experiences, CPLEX is not capable of solving instances of larger than
n = 10 with T = 3 in less than one week of computation before the variable re-
duction (before setting W ′

ij = Wij +Wji and exploiting symmetry in the paths
and halving the number of variables as well as constraints). But afterwards,
although the computational time drastically decreased, however, again it was
not able to solve them in a reasonable amount of time (i.e. less than half a
day for an instance of size 15 and T = 3). Therefore we report our results for
a randomly generated instance of size 10 with 10 distinctly generated initial
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Table 1
Constraints on number of nodes (CN).

CN T1. Cpu(s) Root Node Gap(%)

{1-4} 168.27 2.21

{3-5},{5-8} 55.05 0.39

{1-6},{6-9} 93.24 2.49

{0-4},{4-8} 31.88 1.31

{1-5},{1-8} 66.31 3.47

{3-5},{5-7},{7-8} 70.36 0.45

{2-7},{0-7},{2-9} 161.86 4.68

{0-3},{3-5},{1-5} 47.11 0.62

{1-4},{1-2},{4-9} 116.53 2.10

{1-7},{3-7},{3-9} 95.44 4.56

Avg. 90.61 2.23

configurations. Computational results are reported in Table 1.
The computations are carried out on an Intel(R)Xeo, n(TM)CPU 2.60 GHz
and 1 GB of RAM. Results are chosen from the best output of CPLEX 9.1 and
CPLEX 11.0.

Table 1, states that the root node gaps are small enough and in average the
computational time is less than 2 minutes.
An interesting behavior of this problem is that, although the instances of
size 10 with T = 3 (at least for our initial configurations) are mostly solved
in less than 5 minutes. However, as the problem size grows from 10 to 15
the computational time dramatically increases. This clearly indicates the high
complexity of the problem.

3.1.2 R15

In Figure 2, an optimally solved randomly generated instance of size 15, R15,
is depicted. Here, we let q1 = q2 = 3. The computational time for solving this
instance to the optimality using CPLEX is about 95513.47 seconds (more than
26 hours). The observed root node gap is 17.34% .
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Fig. 2. CN: Solution to the R15.

3.2 Constrained by the Budgets for Activities (CB)

It has been assumed in (22)-(23) that there is a limited number of facilities
that can be established at each period. It may not be only the financial as-
pects to prevent us. However, this can also be due to some other factors (like
resources and machines, geographical or political issues, etc.). However, in our
study only the financial issues are taken into account. Rather than directly
restricting the number of facilities to be established, these constraints can be
expressed in terms of amount of available budget for the activities of project
at each period. This is in fact more realistic.

At each period, there exists a fixed amount of budget that can be invested for
the facility establishment, maintenance and ceasing. Any capital available in
a period but not invested then is subject to an interest rate and the returned
value can be used in subsequent periods. This amount of return from the
preceding period plus the fixed amount of budget considered for the current
period sums up to the whole amount of available budget for this period.
New variables and parameters are defined as follows. For all t ∈ T :

Bt : the amount of initially available budget at the beginning of period t,

ρt : unit return factor on capital not invested in period t (ρt > 1),

ηt : remaining amount of budget at the end of a period t.
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The amount of budget available the for example in the second period would
amount to B2 + ρ1η1.
According to the definition of these new variables, the following constraints
are added to the model.
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3.2.1 Example

Again, we had a similar difficulty for solving instances of larger than 10 even
with T = 3. Therefore we report our results for the same randomly generated
instance with the same initial configurations as CN, Bt = 200000 and ρt = 1.2.
Computational results are reported in Table 2.

In average, instances can be solved around 3 minutes and root node gaps are
in general small.

3.2.2 R15

In Figure 3, R15 is solved for the CB case. Here, we let T = 3 and Bt = 300000
which is not a very tight budget capacity. To solve this instance, 47747.75
seconds (more than 13 hours) computational efforts is needed. The root node
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Table 2
Constraints on number of nodes (CB).

CB T1. Cpu(s) Root Node Gap(%)

{1-4} 801.28 25.46

{3-5},{5-8} 97.66 0.86

{1-6},{6-9} 140.99 1.87

{0-4},{4-8} 119.75 1.77

{1-5},{1-8} 170.49 5.78

{3-5},{5-7},{7-8} 71.09 2.64

{2-7},{0-7},{2-9} 349.91 2.81

{0-3},{3-5},{1-5} 75.69 1.82

{1-4},{1-2},{4-9} 119.85 5.19

{1-7},{3-7},{3-9} 89.00 1.83

Avg. 203.571 5.00

Fig. 3. CB: Solution to the R15.

gap shown to be 8.65%.

4 A Greedy Neighborhood Search for the MPHLPPT

Due to the high complexity of the MPHLPPT, solution of instances of the
problem to optimality even for small size ones in a reasonable amount of time
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is not practically possible. Therefore we have to develop some heuristics which
are capable of finding good solutions in reasonable amount of time. At the same
time according to our experiences on instances of MPHLPPT and HLPPT, any
complexity in the structure of such a heuristic can cause obvious inefficiencies
of heuristic as the problem size grows. That is, our experiences show that
incorporating any sort of short or long-term memories is not effective.

The heuristic algorithm that we are going to propose is a greedy neighborhood
search. The key element of our algorithm is the neighborhood structure which
determines rules to move from one configuration to another one. We adapt
the neighborhood and adopt the idea of the greedy+ algorithm proposed for
HLPPT in [19], to solve instances of MPHLPPT. Again the search process
explores the set of edges and the original neighborhood is proposed upon the
edge features.

Definition 1 (Neighborhood Structure for MPHLPPT) For a given pe-
riod t and a given hub edge i − j, the neighborhood of this configuration will
obey the following rules:

• if hub edge i − j is a closeable hub edge:
· ”Close it from now on”: if the hub edge is active now, then this hub

is open since beginning of planning horizon and maybe after the current
period. Thus, close it at the end of current period,

· ”Keep it open until now”: if the hub edge is closed at this time, then it
would be kept open from the beginning of planning horizon until now and
will be closed at the end of current period until end of planning horizon,

• if the hub edge i − j is an openable hub edge:
· ”Keep it closed until now”: if the hub edge is active now then it should

be kept closed until the end of this period and starts working from the
successive period, if exists,

· ”Open it from now on”: if the hub edge is closed at the current period
then it becomes open from now on until end.

In our idea, the described neighborhood structure is comprehensive enough to
consider all possibilities of the solution space.
Now, we would like to translate our problem into the necessary components
of a greedy algorithm.

• Set of all edges as the set of candidates,
• ∆ = fnew − f cur as the selection function,
• a functionality for checking the connectivity, to act as a feasibility function

and,
• the objective function of MPHLPPT (to count the total cost: the hub-level

network setup cost plus the rest of costs) as the objective function.
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4.1 Algorithm

The proposed basic algorithm for the multi-period problem is drawn in Algo-
rithm 1. We would like to note that two models have been proposed in the
previous section. That is, once the number of facilities to be established in
each period was restricted and another time, in a more realistic form, budget
constraints were imposed. Both models share the same heuristic skeleton, ex-
cept they have different feasibility functions. In the first model, the feasibility
function is in charge of checking the connectivity and bounds on the number of
established facilities and in the latter case, is responsible for avoiding violation
of budget constraints.

Computational Results

It is observed that for the variants of MPHLPPT, problem instances up to
size 10 can be solved to optimality in a reasonable amount of time. For the
instances of size 15, almost all initial configurations that we have employed,
could not reach to at least small gap solutions in less than half a day. In addi-
tion, our heuristic shown to be capable of finding optimal solution of instances
of size n = 5 for almost any given initial configurations that is examined.
In this section we are going to solve instances of MPHLPPT for a variety of
given and distinct initial configurations by our heuristic and compare results
with those of CPLEX. Both variants of restrictions on the number of facilities
to be established (CN ) and the budget constrained (CB) are considered. In-
stances of MPHLPPT for both CN and CB, are solved by CPLEX to solutions
with qualities similar to those of our heuristic solution.

From Table 3, one observes that, first of all the quality of the solutions of
basic heuristic are quite satisfactory. Moreover, for a given solution quality,
our heuristic outperforms CPLEX with respect to the time. This is also indicated
in the last row Table 3. The average gap is 1.88% and in average such gap can
be achieved by our heuristic 59 times faster than CPLEX. This can be visualized
in the Figure 4.

Again, for CB, heuristic was capable of finding good solutions much faster
than what CPLEX needs to find solutions with such qualities. The average gap
is satisfactory and our heuristic was 62 times faster than CPLEX. Figure 5 gives
an imagination of that.

19



Algorithm 1: A simple greedy algorithm for multi period HLPPT

Input: instance and init conf
Output: x∗

x:= xinitcfg;
min := Eval(x);
last min := ∞;
repeated min := 0;
while (repeated min = 0) do

f := Eval(x);
if f ≤ min then

min := f ;
x∗ := x;

end

foreach t = 1 to nrPeriods do

foreach i = 1 to nrLocations ∗ (nrLocations − 1)/2 do
∆f := 0;
x′ := x;
if i ∈ CloseableEdges then

switch x′t
i do

case 0: x′t′

i := 1 ∀t′ ≤ t ;
case 1: x′t′

i := 0 ∀t′ ≥ t;
end

else

switch x′t
i do

case 0 x′t′

i := 1 ∀t′ ≥ t ;
case 1 x′t′

i := 0 ∀t′ ≤ t;
end

end

if is not feasible(x′) then
∆f := ∞;

else

∆f := Eval(x′) − min;
end

if ∆f < 0 then

x∗ := x′ ;
min := Eval(x′);

end

end

end

if min = last min then
repeated min := repeated min + 1;

end

last min := min;
x = x∗;

end

stop.
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Table 3
Constraints on number of nodes (CN ).

CN CPLEX Heuristic

Tc. Cpu(s) T1. Cpu(s) Gap(%)

{1-4} 44.78 1.11 2.3

{3-5},{5-8} 55.52 1.19 0.1

{1-6},{6-9} 93.41 0.95 2.4

{0-4},{4-8} 30.67 1.19 0.7

{1-5},{1-8} 63.99 1.02 1.6

{3-5},{5-7},{7-8} 24.42 1.30 1.1

{2-7},{0-7},{2-9} 133.88 1.19 4

{0-3},{3-5},{1-5} 18.22 1.24 1.4

{1-4},{1-2},{4-9} 114.78 1.09 1.5

{1-7},{3-7},{3-9} 88.39 1.13 3.7

Avg. 66.80 1.14 1.88%

Fig. 4. CN: Heuristic vs. CPLEX

The results of Table 3 and Table 4 indicate that for the best-known solutions of
our heuristic with the reported gaps in the last column, CPLEX finds a solution
with the similar gap in a much higher amount of time. Although, the reported
average gaps are satisfactory, however, they do exist. In the next Subsection
we try to improve our solutions quality.

Local Search

From our observations out of the results of the greedy heuristic and considering
the fact that complexity of the multi-period approach makes the like-hood of
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Table 4
Constraints on number of nodes (CB).

CB CPLEX Heuristic

Tc. Cpu(s) T1. Cpu(s) Gap(%)

{1-4} 303.93 1.34 5.7

{3-5},{5-8} 16.91 1.48 1.4

{1-6},{6-9} 140.55 1.74 0.1

{0-4},{4-8} 23.86 1.30 2

{1-5},{1-8} 112.13 1.31 1.6

{3-5},{5-7},{7-8} 51.44 1.64 1.3

{2-7},{0-7},{2-9} 111.83 1.53 6.7

{0-3},{3-5},{1-5} 71.63 1.81 0.6

{1-4},{1-2},{4-9} 73.41 1.45 4.4

{1-7},{3-7},{3-9} 16.81 1.42 7.4

Avg. 92.25 1.48 3.02

Fig. 5. CB: Heuristic vs. CPLEX

premature convergence to a local optimum in a greedy algorithm very high, we
develop an additional approach in order to get rid of it, as much as possible.

Alternative Hub Edges

Out of visualizing the results, it has been observed that most of the time this
local optimality is caused by inappropriate establishment of some facilities at
periods. That is, though these facilities already exist in the optimal solution
but they are not starting to work in the period appeared in the solution of
greedy heuristic. At the same time, optimal solution is not achievable by a
single move from current configuration based on the neighborhood rules and
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no more improvement is possible (because it can not be achieved by a single
greedy move).

What can be beneficial to be accomplished here is to create trajectories in the
search space to find better solutions. This can be done by closing those hub
edges which are opened once in any period and trying to substitute them with
those that have not been opened so far. That means, we give chance to the
permanently spoke edges to become hub edges and then be subjected to the
original neighborhood search, hoping to find better solutions. This may help
the new configuration to find such a trajectory. A slight difference is that as
soon as the first improvement is visited, the search moves to it rather than
waiting for the best choice.

Procedure

In the sequel (Algorithm 2), the unfreezing process as explained earlier is
displayed.

Algorithm 2: An improvement procedure for MPHLPPT

Input: y
Output: local opt
local opt := y;
min := ∞;
foreach i = 1 to nrLocations − 1, j = i + 1 to nrLocations do

x := y;
if hub edge i − j has been active once in a any period then

xt
ij := 0 ∀t;

foreach p = i + 1 to nrLocations do

xt
ip := 1 ∀t;

x=Neighborhood Search(x);
if Eval(x) ≤ min then

min := Eval(x);
Local Opt := x;
y := x;

end

end

else
continue for the next hub edge;

end

end

return local opt.

After the instance name column, the first two columns in Table 5 and Table
6 are the results of heuristic before improvement. The second two are those
after improvement and the last one is the CPLEX run-time for solutions with
the smaller gaps as reported by heuristic after improvement.
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Table 5
Constraints on number of nodes (CN).

CN T1. Cpu(s) Gap(%) T ′
1. Cpu(s) Gap(%) CPLEX

{1-4} 1.11 2.3 16.78 0.7 151.66

{3-5},{5-8} 1.19 0.1 11.03 0.1 55.52

{1-6},{6-9} 0.95 2.4 8.13 2.4 93.41

{0-4},{4-8} 1.19 0.7 10.95 0.7 30.67

{1-5},{1-8} 1.02 1.6 25.03 0.9 63.99

{3-5},{5-7},{7-8} 1.30 1.1 24.36 0.00 71.55

{2-7},{0-7},{2-9} 1.19 4 25.19 0opt 161.86

{0-3},{3-5},{1-5} 1.24 1.4 27.41 0opt 47.11

{1-4},{1-2},{4-9} 1.09 1.5 12.47 1.4 114.78

{1-7},{3-7},{3-9} 1.13 3.7 12.69 3.7 88.39

Avg. 1.14 1.88 17.40 0.99 87.89

After improvement, as depicted in Table 5, the heuristic found optimal solution
of some instances. In average, the gap is below one percent which is halved.
Figure 6 visualizes the results.

Fig. 6. CN: Heuristic vs. CPLEX after improvement.
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R15

For the R15, our heuristic is capable of achieving a solution of CN with the
gap of 2.00% in less than 120 seconds while CPLEX can not find a solution with
the gap of less than 3.07% in less than 40878.81 seconds (around 340 times
later). According to our results, CPLEX needs 95513.47 seconds (more than 26
hours) of computational efforts to solve this instance to optimality.

Table 6
Constraints on the amount of available budget (CB).

CB T1. Cpu(s) Gap(%) T ′
1. Cpu(s) Gap(%) CPLEX

{1-4} 1.34 5.7 42.14 0opt 801.28

{3-5},{5-8} 1.48 1.4 20.17 1.4 16.91

{1-6},{6-9} 1.74 0.1 24.03 0.1 140.55

{0-4},{4-8} 1.30 2 16.42 2 23.86

{1-5},{1-8} 1.31 1.6 31.72 1.1 132.57

{3-5},{5-7},{7-8} 1.64 1.3 57.28 1.2 58.17

{2-7},{0-7},{2-9} 1.53 6.7 48.72 2.2 137.08

{0-3},{3-5},{1-5} 1.81 0.6 15.80 0.6 71.63

{1-4},{1-2},{4-9} 1.45 4.4 83.22 0.4 113.85

{1-7},{3-7},{3-9} 1.42 7.4 19.44 7.4 16.81

Avg. 1.48 3.02 35.89 1.64 151.27

Fig. 7. CB: Heuristic vs. CPLEX after improvement.

As one can see in the Table 6, one instance reached to the optimality after
improvements and most of them to a very small gap. The average gap reported
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in tables shows to become smaller after improvements (almost halved). In our
experience, the best-known solution of our heuristic strongly depends on the
Hamming distance between the spatial layout vector of the hub-level networks
in the optimal solution and initial configuration of instance. Figure 7 visualizes
the results.

R15

Again, for R15 with budget constraints, by means of our heuristic we could
obtain a solution with the gap of 5.8% after 1104.60 seconds while a solution
with such a gap could not be found earlier than 3383.39 seconds by CPLEX

(3.06 times faster by heuristic).

Improved Algorithm

The improved algorithm is depicted in Algorithm 3.

A Larger Scale Instance

In this section we are going to solve larger instances of MPHLPPT for which
no optimal solution is available. This gives us an impression of the run-time
of our heuristic.
A set of randomly generated instances of size 40 with T = 3, 6, 9 and 12 are
solved by our heuristic. The maintenance and ceasing costs are also considered
in addition to the setup costs. Furthermore, the interest rate is set to α = 1.2
in the budget constrained variant and the maximum number of hub facilities
that can be setup in each period of CN is restricted to 3.

The initial configuration of our random instance of size 40 is depicted in Figure
8.

The run-times reported for this instance for both CN and CB are depicted
in Figure 9

Summary and Conclusions

We proposed the first multi-period hub location problem model for applica-
tion in public transport. In fact, we extended HLPPT [18] which shown to
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Algorithm 3: A simple greedy algorithm for multi period HLPPT

Input: instance and init conf
Output: x∗

x:= xinitcfg ;
min := Eval(x);
last min := ∞;
repeated min := 0;
while (repeated min == 0) do

f := Eval(x);

if f ≤ min then

min := f ;
x∗ = x;

end

foreach t = 1 to nrPeriods do

foreach i = 1 to nrLocations ∗ (nrLocations − 1)/2 do
∆f := 0;
x′ := x;
if i ∈ CloseableEdges then

switch x′t
i

do

case 0: x′t′

i
= 1 ∀t′ ≤ t ;

case 1: x′t′

i
= 0 ∀t′ ≥ t;

end

else

switch x′t
i

do

case 0 x′t′

i
= 1 ∀t′ ≥ t ;

case 1 x′t′

i
= 0 ∀t′ ≤ t;

end

end

if is not feasible(x′) then
∆f := ∞;

else

∆f := Eval(x′) − min;
end

if ∆f < 0 then

x∗ := x′ ;
min := Eval(x′);

end

end

end

if min = last min then
repeated min := repeated min + 1;
if repeated min = 2 then

goto 61;
end

if repeated min = 1 then

x= Alternate(Local Opt);
if Eval(x) ≤ min then

min := Eval(x);
Local Opt := x;
repeated min := 0;

else
min := last min;

end

goto 39;
end

end

last min := min;
x = x∗ ;

end

stop.

be superior to other models for this application with the same assumptions.
Some realistic assumptions, features and properties of real-life application are
incorporated in this model. We have observed that even instances of very small
size like 15 can not be solved in a reasonable amount of time, namely less than
half a day. Therefore, a greedy neighborhood search heuristic equipped with
the improvement methods is proposed. This heuristic shown to be promising
and can reach to satisfactory solutions in much smaller amount of times when
compared to the similar results by a standard solver.
In our future work, we will try to develop some Lagrangian heuristic to pre-
pare some lower bounds for larger size instances. However, other ideas in
the directions of upper bound heuristics will be examined. Incorporation of
stochasticity in the system parameters to have more stable model is another
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Fig. 8. Initial configuration for n=40

Fig. 9. Run-time in relation to the number of time periods.

direction for further studies.
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