Frank Schieck, Fraunhofer IWU

ASME 2015 International Mechanical Engineering Congress & Exposition IMECE2015 November 13-19, 2015, Houston, Texas, USA

Table of contents

- 1. Introduction
- 2. Tailored Tempering
- 3. Intelligent Process Control
- 4. Trimming of Press Hardened Blanks
- 5. Conclusion and Outlook

chivierungsangaben.

Table of contents

1. Introduction

- 2. Tailored Tempering
- 3. Intelligent Process Control
- 4. Trimming of Press Hardened Blanks
- 5. Conclusion and Outlook

Fraunhofer

1. Introduction 2nd Challenge: Shortage of Resources

2014 world wide production – automotive main materials

1 662 Mio. t 53 Mio. t 19 Mio. t 303 Mio. t	steel aluminum copper polymer*	
* at about 4 402 Mio t minera	oil production \rightarrow 7 %	picture source: www.faz.net
Average passenger car m Other 16,20% Non Ferrous Metals 2,32%	Ferrous Metals (steel) 62,24%	2014 share of passenger cars production: 67,5 Mio. average kerb weight per car: 1.37 t → 57,6 Mio. t steel (3,5%) → 6,5 Mio. t aluminum (12,3%) → 0,9 Mio. t copper (4,8%) → 11.3 Mio. t polymer (3.7%)
(copper 1%)		version new set 70 t
Aluminum 7,02%	source: Habermacher	4 725 Mio. t

1. Introduction **3rd Challenge: Growing Individualism**

2013 top 10 car manufacturer at German market

1. Introduction Challenges in Press Hardening Technology

balancing of energy- and material streams

→ detecting of weak points, increasing of energy and material efficiency

increasing of component complexity

- tailored properties with diversity in strength and ductility
- → Target: weight- and cost optimization

increasing of component quality

vision of zero defect manufacturing by intelligent process control

increasing of production flexibility

short retooling cycles and modular production devices

Table of contents

1. Introduction

- 2. Tailored Tempering
- 3. Intelligent Process Control
- 4. Trimming of Press Hardened Blanks
- 5. Conclusion and Outlook

Fraunhofer

2. Tailored Tempering Heat Treatment Strategies

by adaptive quenching:

various temperature zones in heating device

by adaptive heating:

- \rightarrow avoidance of austenitization
 - = avoidance of Martensite

various temperature zones in tool
→ reduction of cooling rate below 27°C/s

- = avoidance of Martensite

2. Tailored Tempering **Adaptive Quenching**

Basic investigations

experimental setup (schematic)

2. Tailored Tempering Adaptive Quenching Application at a sill geometry

design of a testing tool: side sill with two different zones

FE-simulation & estimation of reachable local properties

tool manufacturing & experimental verification of simulation results

2. Tailored Tempering Adaptive Heating

Function principle contact heating and basic investigations

2. Pre-Processing Contact Heating – Fast and Efficient

Testing device at Fraunhofer IWU

Table of contents

- 1. Introduction
- 2. Tailored Tempering
- 3. Intelligent Process Control
- 4. Trimming of Press Hardened Blanks
- 5. Conclusion and Outlook

3. Intelligent Process Control Control loop for a press hardening process

Development of the knowledge base

3. Intelligent Process Control Sensitivity Analysis via FE Simulation

- Simulating the press hardening process with variation of the input variables in a low range considering deviation of series production
- Identification of significant parameters for one part

Aim

- Creation of a process model
- Definition of a process window for producing good parts with defined quality criteria

Example sill geometry

Process parameters

- Initial sheet temperature
- Punch force and velocity
- Sheet thickness
- Tool temperature

Significant influence on

Quality criteria

Thinning after press hardening with evaluation points (LSDyna)

D

- Thinning
- Hardness
- Spring back

Fringe Levels 1.400e+00 _ 1.377e+00

1.354e+00 1.331e+00

1.308e+00 1.285e+00

1.262e+00 1.239e+00

1.216e+00

1.193e+00 _ 1.170e+00

3. Intelligent Process Control **Experiments, Tool and Monitoring Technology**

Fully automated test set up for press hardening of car body parts

Aim

Fully automated test set up at Fraunhofer IWU

- Creation of reproducible test conditions for generating a comprehensive data base
- Experimental verification respectively extension of the FEM generated process model

3. Intelligent Process Control **Experiments, Tool and Monitoring Technology**

Fully automated test set up for press hardening of car body parts

3. Intelligent Process Control Experiments, Tool and Monitoring Technology

Process parameters (input variables)

- Material: 22MnB5, 1.5 mm
- Closure time (quenching): 3 7 s
- Blank holder distance: 0.5 2.0 mm

Experiments

- Central composite circumscribed experimental design
- 10 factor level combinations, 42 experiments

Results

- Database describing the dependencies between process parameters and quality criteria
- E.g.: significant influence of transfer time and Closure time on hardness

- Press force: 1250 1400 kN
- Tool temperature: 70 °C
- Transfer time: 13 20 s

CCC design for 4 factors

3. Intelligent Process Control **Knowledge Base**

Applied models

Model A: Offline Control

- uses knowledge base
- offline (process control)
- e.g. calculation of transfer time to reach a certain hardness

Model H:

Online, Long Term Control

- uses knowledge base
- online, extended process control
- e.g. regulates the tool temperature in case of deviations in part hardness

Model O:

Online, Short Term Control

- uses knowledge base
- online, feedback control
- e.g. regulates closure time considering the current part temperature

IWU

Table of contents

- 1. Introduction
- 2. Tailored Tempering
- 3. Intelligent Process Control
- 4. Trimming of Press Hardened Blanks
- 5. Conclusion and Outlook

:hivierungsangaben

4. Trimming of Press Hardened Blanks **Application of High Speed Impact Cutting (HSCI)**

Function principle

4. Trimming of Press Hardened Blanks Trimming of Press Hardened Blanks by HSCI

ADIA*flex*® testing device

Technical parameters "AdiaFlex"®:

energy level :	 2 x 1,0 kJ and 2 x 2,0 kJ (4 independent punching units) 3 to 10 m/s 	
velocity range:		
table size:	1500 x 800 mm	

power generation by high speed hydraulic

4. Trimming of Press Hardened Blanks Trimming of Press Hardened Blanks by HSCI

Effects for press hardened steel - Cutting quality

Material: 22MnB5, R_m = 1500 MPa, sheet thickness 2,0 mm, die clearance 3%

4. Trimming of Press Hardened Blanks Mechanical vs. Laser Cutting

Balancing of process energy consumption

Table of contents

- 1. Introduction
- 2. Tailored Tempering
- 3. Intelligent Process Control
- 4. Trimming of Press Hardened Blanks
- 5. Conclusion and Outlook

Fraunhofer

5. Conclusion and Outlook Commercial Development of Press Hardening

5. Conclusion and Outlook Green House Potential for Press Hardening Parts

5. Conclusion and Outlook Optimization Potential for Press Hardening Technology

Product optimization

improvement of product properties for more efficiency, safety and performance during car operational phase

- increased strength
- improved elongation at fracture
- increased size and part complexity
- multiple tailored properties
- application at small series cars

- ...

Process optimization

improvement of energy and resources efficiency as well as flexibility during the production phase

- zero defect manufacturing
- degreased scrap value
- alternative scale protection
- optimized heating technologies
- modular production cells
- quantity optimized process chains

- ...

Thank You for Your Kind Attention!

