Fraunhofer ——

Experimentelles
Software Engineering

Introducing the PULSE™ Approach to an Em-
bedded System Population at Testo AG

Authors:
Klaus Schmid
Isabel John
Ronny Kolb
Gerald Meier

Submitted for Publication to
SPLC 2004

IESE-Report No. 015.04/E
Version 1.0
February 2004

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.

The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by

Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Sauerwiesen 6

67661 Kaiserslautern

Abstract

Over the last years product line engineering became a major theme in software
engineering research and increasingly becomes a central topic of software en-
gineering practice in the embedded domain.

Migrating towards a product line approach is not an easy feat. It is even less so,
if this is done under tight technology constraints in an embedded environment.
It becomes even more difficult, if the transition directly aims at integrating two
product families into a single product population. In this paper, we discuss our
experiences where we successfully dealt with these difficulties and achieved a
successful product line transition. In our paper we strongly emphasize the role
of technology transfer as many facet’s of product line know-how had to be
transferred to guarantee. From the experiences of this project many lessons
learned, which can be transferred to different environments, can be deduced.

Keywords: PuLSE

Copyright © Fraunhofer IESE 2004 v

Table of Contents

Copyright © Fraunhofer IESE 2004

1

1.1 PULSE™ Approach

1.2 Testo AG

2 Customizing the PULSE™ Approach
2.1 Processes and Notations

2.1.1 PuLSE-Eco

2.1.2 PuLSE-CDA

2.1.3 PUuLSE-DSSA

2.1.4 PULSE-I

2.15 PULSE-EM

2.2 Other Measures

3 Applying the PULSE™ Approach

3.1 Planning a Product Line Introduction

3.2 Identifying and Managing Variabilities

3.3 Inventing a New Product Line Architecture
3.4 Designing and Implementing Generic Assets
4 Experiences in Consulting a Product Line Effort
4.1 Prestudy and Planning

4.2 Domain Analysis

4.3 Architecture Development

4.4 Design and Implementation

4.5 Product Line Technology Transfer

5 Conclusions

References

Introduction

N — =

oocouviuu b DD

— —
Ut O 0 NN

N = —m .
O WO NIN

21

22

Vii

1

1.1

Introduction

Introduction

PuLSE™1

Product line engineering focuses on the integrated development of a set of
products instead of a single product. This shift in focus enables product line
engineering to produce product suites much more cost-effectively than using
the traditional approach.

While product line development is becoming more and more a common tech-

nology, there are still not many detailed accounts of product line transition. In

particular, this is the case for scientifically monitored transitions that have been
made with externally supplying the necessary technology. In this paper we will
describe such a transition in a systematic manner. This transition has been per-
formed at Testo AG using the PULSE™ approach [2].

Approach

The PULSE™ approach [2] is a systematic approach to product line develop-
ment. It consists of technical components addressing the different phases of
product line development. These components are:

e BC (Baselining and Customization) — This addresses the tailoring of the
generic PULSE™ approach to the specific needs of an organization.

* Eco (Economics) — This component aims at scoping the product line devel-
opment (i.e., identifying the products and required technical components for
building the product line)

e CDA (Customizable Domain Analysis) — This is the flexible approach to
domain analysis that can be applied with arbitrary notations and is custom-
izable to different contexts.

e DSSA (Domain-Specific Software Architectures) — This is a scenario-
based, incremental approach to deriving a product line architecture.

¢ | (Implementation) — This addresses the implementation of generic soft-
ware components.

e EM (Evolution & Management) — This addresses the continuous evolution
of the product line, including the configuration management processes.

1 PULSE stands for Product Line Software Engineering and is a registered trademark of Fraunhofer IESE.

Copyright © Fraunhofer IESE 2004 1

Introduction

In this project, the PuLSE-Eco approach was also used as a means to understand
whether a product line introduction would be worthwhile and to derive a suit-
able introduction plan.

1.2 Testo AG

Figure 1

Testo AG is a dynamically growing enterprise, focusing on professional meas-
urement technology Founded in 1957, it is meanwhile one of the leading sup-
pliers of portable electronic measurement instruments. The company focuses in
particular on measurement instruments for the industry and emission business.
Measuring parameters like temperature, pressure, humidity and gas is the busi-
ness of Testo AG.

The company currently has 23 subsidiaries and about 60 trading organizations
on all five continents. Currently, a total of 1100 employees work for the com-
pany worldwide.

Typical Testo Products

A key contributor to the company’s success was its stringent focus on portable
measurement instruments. Continuously new products are developed, with a
cycle time of about half a year to one-and-a-half year, depending on the overall
complexity of the products. Usually, these products have been redeveloped
completely (including hardware, while only performing opportunistic reuse). So
far, two different product lines have been developed mostly independently in
two different departments. As a result of this, the two departments developed
two reference architectures for their systems. However, these reference archi-
tectures where not made explicit, so it was hardly possible to notice prior to the
transition. Only in the context of some special cooperation projects did joint de-
velopments of the two departments occur. In 1999 a very ambitious project
was started which focused on developing an integrated family of measurement
instruments across the two departments. When the project delivered in 2001, it

Copyright © Fraunhofer IESE 2004

Introduction

had become clear to everyone that there was considerable overlap between the
functionality developed in both departments and among previous products, the
current one, and potential future ones. This was a strong motivator for a sys-
tematic reuse approach.

Copyright © Fraunhofer IESE 2004

Customizing the PULSE™
Approach

2 Custom

2.1 Processes

izing the PULSE™ Approach

Prior to the actual introduction of the PuLSE™ approach in an organization, a
customization of the method to the specific conditions of the environment is

made, using the PULSE-BC component [11]. Usually, a rough customization is
made based on the information which is initially available. This is later refined
with additional information, e.g., from scoping.

In this section, we will discuss the main customizations that were performed for
the context of Testo AG. We subdivide this description into two parts: adapta-
tion of the PULSE™ processes and notations and, second, other adaptation
measures for the introduction approach, which go beyond the PuLSE™ ap-
proach.

and Notations

The PULSE™ method framework prescribes that the method is adapted to its
context of application. We will now give an overview of the main customiza-
tions that were made. More detailed information will be given in the sections
on the different phases.

2.1.1 PulLSE-Eco

PULSE-Eco is usually the first component applied within a product line introduc-
tion. Thus, it typically requires little adaptation. In this case the application of
PuLSE-Eco was rather unusual, as the approach was used as a pure product line
feasibility (and payoff) study. This was actually contracted as an independent
project. In addition, only little information on future product plans and existing
architectures was available. This lead to several adaptations:

e An analysis of future products was performed together with product man-
agement.

e A re-documentation of an existing system architecture (only conceptual
view) was added in order to elicit sufficient system knowledge to judge exist-
ing assets.

e Only little quantitative information on existing assets was available, thus the
corresponding part of the PuLSE-Eco approach [9] was skipped.

Copyright © Fraunhofer IESE 2004

Customizing the PULSE™
Approach

¢ In case the evaluation would be positive, an introduction plan would be
needed, thus additional precautions were taken to elicit the required infor-
mation.

2.1.2 PulLSE-CDA

One of the key decisions for the introduction plan was that wherever successful
techniques (e.g., inspections) where in place, they should remain in place for
the product line introduction. One such successful technique was the usage of
a use-case driven approach to requirements engineering. Thus, it was decided
to stick to this for the introduction. Sticking with the textual use-case based
documentation of requirements demanded a text-based way of handling vari-
ability. The approach we used is described in more detail in [13]. A key charac-
teristic of our approach is that we separate the decision model from the actual
product line or domain model.

2.1.3 PuLSE-DSSA

2.1.4 PulLSE-Il

Copyright © Fraunhofer IESE 2004

The application component of the PULSE™ approach [3]. was in its application
a bit non-typical, in the sense that we neither had a profound documentation
of an existing architecture, nor sufficient (written) domain documentation.
Thus, we started the effort with a re-documentation of the existing systems, in-
stead of a domain analysis.

As previously no architecture documentation was written at Testo AG, it was
clear from the start that most of the architecture work had to be done by
Fraunhofer IESE. The notation that was used to document the architecture was
the Unified Modeling Language (UML), with some stereotype-extensions to de-
scribe variability and architecture-related issues. The variability in the architec-
ture was managed jointly with the variability in the domain descriptions, as de-
scribed in the decision model. We will discuss the application of the PULSE-
DSSA approach in more detail in Section 3.3.

Mostly Testo AG implemented the various components. One reference compo-
nent, however, was implemented by Fraunhofer IESE. As variabilities would
happen on many different levels of granularity and had to be managed with
many different development environments, it become clear very early that they
had to be implemented mainly using conditional compilation as the base lan-
guage was standard C. We will discuss the implementation approach in more
detail in Section 3.4.

Customizing the PULSE™
Approach

2.1.5 PuLSE-EM

While PULSE-EM covers all areas of product line management and evolution, we
had to restrict ourselves during this introduction, mainly for two reasons: ap-
proaches that were working very well were already in place and usually only
two parallel product groups are under development (one per department).
Thus, the existing approaches could still be used.

Thus, we focused on the improvement of the configuration management ap-
proach. We did so by providing a reference frame for the configuration man-
agement repository. This relied mostly on the code view, which was derived
during architecting and extended it by a sub-division into a framework part (for
all products) and a product part (one per product). By adequately applying the
configuration management system, this allowed to provide to each developer a
view where he could access his current project with making explicit application-
specific and generic parts.

2.2 Other Measures

Besides the pure adaptation of the PULSE™ approach, additional measures
must be taken to support a product line introduction. A lot of this has to do
with people management [10].

In the specific case of Testo AG, we also had to deal with the fact that the in-
troduction of the product line technology would lead to a much stronger inte-
gration of the two departments. Thus, we decided to start the whole effort
with a training program: a one-day seminar that should be taken by all mem-
bers of the two departments. This seminar happened in two iterations, where
the participants of each department where mixed from the two departments.
During this seminar, we discussed both the fundamentals of product line devel-
opment, as well as the key adaptations that were foreseen for Testo AG.

Copyright © Fraunhofer IESE 2004

Applying the PULSE™ Approach

3 Applying the PULSE™ Approach

While the previous section discussed our customization of the PuLSE™ ap-
proach, we will now discuss the application of the PULSE™ approach to the
product line stituation.

3.1 Planning a Product Line Introduction

In order to better understand how its initial attempts towards software reuse,
which were based on libraries, could be improved, Testo AG addressed the
Fraunhofer IESE in 2001. This lead to a first analysis based on the scoping tech-
nology PuLSE-Eco [9]. The analysis addressed:

e Existing software and technology
e Future product development plans
e Current reusable assets

e Organizational context

e Business situation

In our experience companies differ widely in terms of these aspects, and actu-
ally with regard to the accessibility of information on these topics. In the spe-
cific case of Testo AG, we found in particular the soft aspects (organizational
and business) highly favorable to product line development. In this case, while
two departments existed, they were willing to cooperate and to share assets.
From a business point of view, the current business was highly profitable, it was
thus possible to spend the required effort on up-front investment in infrastruc-
ture building; moreover, top-management was willing to support this step.

The technical side was less favorable in the sense that existing documentation
was rather poor, architectural documentation was not existing. It was thus
quite hard to ensure that a sufficient degree of commonality regarding the
technical basis would be available. . A first analysis demonstrated what should
become a major theme at least during the early steps of the product line intro-
duction: often very similar solutions are used in both departments; however,
they are named differently, making a common understanding very difficult.

The product situation was also rather positive: due to the strong focus on two

market segments all future products would share major commonalities. Also,
despite the functional differences among the products from the two depart-

Copyright © Fraunhofer IESE 2004 7

Applying the PULSE™ Approach

ments, they still shared a lot of functionality, creating a sound basis for a prod-
uct population.

As a result of the PULSE-Eco analysis we found a high economic potential and a
sound chance for a successful product line transition. The PuLSE-Eco analysis
provided a decomposition of the product line functionality in terms of technical
sub-domains. The benefit and risk level is also identified relative to the individ-
ual sub-domains. This enabled us to derive an incremental transition plan,
where first an overall architecture framework would be developed and then the
individual sub-domains would be transitioned one by one, in the order of their
benefits and potential risks (high benefit, low risk first). In total we derived the
following list of measures as the basis for our incremental product line transi-
tion:

¢ |nitial employee training regarding product line technology

¢ Detailed analysis of the current architecture (also as a basis to gain the nec-
essary domain understanding)

¢ Definition of a reference architecture, able to support the future products
e Development of a concept for configuration management, which supports
consistent version management for all product variants

After this set-up phase for each of the different sub-domains an incremental
transition ought to be performed. The following steps addressed this need (sub-
domains with high benefit and low risk first):

e Perform a detailed domain analysis, in order to understand all commonalities
and all (most) of the future variabilities along with their likelihood

¢ Refine the architecture definition for the corresponding functional area(s)

e Perform a generic implementation for the corresponding sub-domain

e Test the resulting components and reuse them in further product develop-
ment

We will now discuss in a phase-wise manner how we incrementally performed
the product line transition. In particular, we will discuss in Section 5 our experi-
ences with performing a product line transition in a pure consulting mode.

3.2 Identifying and Managing Variabilities
The purpose of PULSE-CDA is to develop a domain or product line model that

captures the requirements of a product line and to enable the instantiation of
this product line model for the product line members. In order to support evo-

8 Copyright © Fraunhofer IESE 2004

Applying the PULSE™ Approach

lution, these requirements do not only have to be identified but must also be
managed adequately.

We introduced the product line approach incrementally, which means that we
analyzed the sub-domains of the product line step by step, not all domain
models had to be done for one release. The prioritization of the domains,
which gave us an ordering for analyzing the sub-domains was given by the in-
cremental transition plan produced during scoping (c.f. section 3.1).

As there was only little documentation available on some of the domains and
some of the domains are technically very sophisticated we decided to capture
the requirements interactively in the form of workshops with the domain ex-
perts from Testo and the IESE support team. The domain models were not too
large, as we could split the product line into manageable sub-domains. Thus,
we decided not to invest in special mechanisms or tools to capture and manage
the variability, like a database supported decision model, but to use the Micro-
soft Word™ and Excel™ for capturing the requirements and the decision
model.

In order to be able to model and manage variability, the existing mechanisms
for writing textual requirements had to be extended into a product line model-
ing approach. Following our approach for variability management [13], only the
mapping of the variability types (alternative, optional, multiple selection, etc.)
onto the target representation, which was in this case text, had to be adapted.
We decided to use textual constructs framed with “<<” “>>", as these are text
fragments which did so far never occur in this domain. Thus, we used the fol-
lowing notation to capture a multiple alternative variability:

<<mult decision-variable /7 value-1 / textl
/ value-2 / text2

Optional and alternative variability and values were expressed in a similar way.

Additionally, a decision model was built that contains all decision variables used
in the textual requirements, their ranges and constraints. Using this description
of a decision variable, we can define a decision model simply as a set of deci-
sion variable definitions (see Figure 2).

The requirements and decision variables were captured interactively in work-

shops of one to two days duration, the existing requirements specifications in
use case form were used as a basis, the additions and changes in these docu-
ments as well as the required variability were jointly integrated by the product
line engineers and the domain experts. Additionally, general requirements like

Copyright © Fraunhofer IESE 2004 9

Applying the PULSE™ Approach

Figure 2

3.3

10

non-functional requirements for the whole sub-domain, project issues and
open issues were recorded.

The product line model consists of a document for each of the sub-domains
and the decision model. The requirements for a product can be identified by in-
stantiating the sub-domain documents with specific values for the decision
variables.

So far, we identified about 50 decision variables during modeling and intro-
duced about 100 variation points into the documentation. The decision model
was also used and extended during architecture development and implementa-
tion. Thus, the decision model evolved throughout the whole domain engineer-
ing process. The final domain models went through inspection and were re-
leased by the development team.

Products are instantiated by giving values to the decision variables in the deci-
sion model. By considering the restrictions and constraints in the decision
model a correct and complete product model can be built. We refrained from
deriving instantiated documents, as the developers accepted the generic prod-
uct line documents and an instantiation would just have led to the duplication
of documentation.

Relevance |Description [Range SelectiConstraints [Binding
Name jon times
Memory [System_MemDoes the TRUE/ 1 Compile time
= TRLUE system have [FALSE
memory?
Memory_ The amount |0, 10,100, 1 Memory = Installation;
Size of memory [1000 TRUE == System
the system Memory_Size |initialisation
has =0
Time_Me How is time [Hardware, |1 Compile time
asureme measurement Software
nt done?

Example of the decision model

Inventing a New Product Line Architecture

One of the key artifacts during product line development is the so-called prod-
uct line or reference architecture. This architecture supports current as well as
future products in a domain by defining common and variable components for
the members of a product family. During the transition to product line devel-
opment at Testo AG, a reference architecture had to be developed that pro-
vides a basis for the development of the various planned products while taking

Copyright © Fraunhofer IESE 2004

Applying the PULSE™ Approach

the special requirements imposed by the underlying hardware and technology
into account.

As a basis for the development of a common reference architecture for the
product line of flue gas and climate measurement devices, the architectures of
existing products rather than domain documentation have been used. How-
ever, as no sufficient documentation of the existing software architectures was
available, we started with a re-documentation of the existing systems. The re-
documentation was done manually by means of a two-day workshop at the
Testo site. As a basis for the re-documentation, a summary of the source code
files, the file-system structure, and a short description of the purpose and pro-
vided functionality of each file has been used..

The architecture resulting from the re-documentation and the newly developed
product line architecture were documented following the view model described
by Hofmeister et al. [5]. Instead of the execution view defined by Hofmeister et
al., however, we used a so-called behavioral view. Further, we extended each
of the four views with respect to product lines and variability. As mentioned in
Section 2.1.3, the architectural views were documented using an extended ver-
sion of the Unified Modeling Language (UML). In total, we used the following
four views for documenting architectures:

e Conceptual View. Depicts a system from an application domain viewpoint
that is independent of solution aspects, like software or hardware tech-
niques. This view captures the application domain by mapping the function-
ality of the system to conceptual components and depicting the relationships
between them.

e Module View. Describes the static structure of a system in terms of layers,
subsystems, and modules, the interfaces provided by them, and the relation-
ships among the various elements.

e Behavioral View. lllustrates using sequence and/or collaboration diagrams
how the architectural elements interact in order to fulfill a certain usage sce-
nario.

e Code View. Shows how the elements from the module view are mapped to
entities of the development environment such as code files, directories, li-
braries, etc.

During the re-documentation, first the code view was created based on infor-
mation about the source files and their structuring. As a next step, the module
view was defined. In retrospective, this approach was very effective. Once the
module view had been captured to a certain level of detail, typical usage sce-
narios were defined and for each of them a behavioral view was created. This
was used to check the module view for consistency and completeness. Finally,
the conceptual view, which had been created during the planning of the prod-

Copyright © Fraunhofer IESE 2004 1 1

Applying the PULSE™ Approach

12

uct line introduction, was checked for completeness and soundness. It was also
refined using the results obtained during the creation of the module and be-
havioral views.

The re-documentation revealed inconsistency and unintentional differences
among the two product development departments. In addition, it helped to get
a better understanding of the products and their architecture and provided a
good starting point for the design of a new, common architecture.

The development of the new reference architecture was performed in joint
workshops of Fraunhofer IESE and Testo AG. Contrary to traditional product
line approaches, the design of the product line architecture was started even
though no complete domain analysis had been performed beforehand. This
was possible since already enough information from the pilot study and the re-
documentation was available and a refinement of the architecture would be
done at a later stage.

As a basis for the first workshop, two sketches of design alternatives were pre-
pared. Both sketches had been developed based on an evaluation of the archi-
tecture resulting of the re-documentation activity and taking into account the
product line requirements. These alternatives provided a basis for the develop-
ment of the reference architecture. However, still additional design work had to
be done. Next, the work focused on the creation of the module and behavior
views. For the latter one, scenarios for the most important usages of a system
were identified and defined. The behavioral view was created to check the con-
sistency of the architecture and to refine the architecture.

In order to fulfill the specified functional and non-functional requirements for
the product line and to address the required variations the following design de-
cisions were made for the architecture:

¢ Layered Architecture. The system was organized in terms of several dis-
tinct layers, each encapsulating a certain subset of the overall system's func-
tionality and placed on top of each other. By default, layers can only access
the layer directly below it. For performance reasons, however, we had to re-
lax this strict layering somewhat.

e Publish-/Subscribe. As the main communication and control mechanism
among modules, the publish-/subscribe pattern was applied. Modules can
register for an event-based notification on data changes or other specific
conditions.

e Repository. Data exchange among modules is done using an active data
repository. Modules making use of data in the repository can register via a
publish/subscribe mechanism to be notified of data changes.

Copyright © Fraunhofer IESE 2004

Applying the PULSE™ Approach

e Model-View-Controller. The user interface was structured according to the
well-known model-view-controller pattern. In our architecture, the data re-
positories represent the model. The controller communicates with the re-
pository and the views via the event mechanism and is independent of the
actual input hardware (e.g. keyboard, touch screen, etc.) used for a particu-
lar product.

Figure 3 shows an example of a behavioral view for the developed architecture.
This view depicts the scenario “Printing measurement data”. Note that the fig-
ure shows only a simplified version of the view.

The resulting product line architecture was evaluated with respect to quality re-
quirements and its suitability as a basis for the development of the envisioned
products of the software product line. In particular, the architecture was evalu-
ated with respect to maintainability (e.g. changing existing functionality, test-
ability), extensibility (e.g. adding new functions, adding support for new input
and output devices), reusability, performance (i.e. time behavior, resource us-
age), and reliability.

Copyright © Fraunhofer IESE 2004 1 3

Applying the PULSE™ Approach

Figure 3.

14

«layer»
Print User Interaction
measurement
data «module»
Ul Controller
j=2)
g T
£
= A 0
User & ¢ I 22
e SEa
«layer» n vEE
Application Services = v
«subsystem»
Printing
i —
«module» 3. Format print data «module»
Printing Controlle «data» Formatting
Print Data
2. GetMeasurementData — «subsystem>»
Measurement
--+— «data»
Measurement data
§ % «layer»
£ ° Hardware Control
o A .E
@ S5
N ©
T T «subsystem» «data» —p
"_é g Output Devices Printer control data Q
< 5
¢ L —|
¢ «subsystem»
Printer
«hardware»
Printer

Example of a behavioral view

The Architecture Tradeoff Analysis Method (ATAM) [4] was used for the evalua-
tion. Rather than using the standard out-of-the-box method, however, we used
a slightly modified version that was tailored to the specific project context. Con-
trary to ATAM, the evlauation scenarios were prioritized regarding their impor-
tance for project success as well as the influence of the scenario on the archi-
tecture. As a result of the architecture evaluation, identified risks were docu-
mented and an overall estimation of the architecture and its quality was pro-
vided in a report. The architecture evaluation showed that the developed
product line architecture provides a sound basis for the development of the
product line and its members. Nevertheless, there was the general judgment
that there might occur problems during implementation that cannot be fore-
seen and depend on how the architecture and its components will be realized
using the specific programming language and implementation technologies.

Copyright © Fraunhofer IESE 2004

Applying the PULSE™ Approach

As mentioned earlier, architecture development did start without a formal, prior
domain analysis. Thus, some information required for defining interfaces and
the behavior of architectural elements was missing. Therefore, the evaluated
architecture was not detailed enough to provide a sound basis for implementa-
tion. Thus, as a last step of the architecture development activity, the architec-
ture was refined as soon as domain models were available as the result of a
domain analysis performed for a sub-domain.

3.4 Designing and Implementing Generic Assets

Once the architecture development was finished, developers of Testo AG
started to implement the various components defined in the architecture. For
one generic component of the architecture, however, Fraunhofer IESE was con-
tracted for the design and implementation according to the defined product
line architecture. The goal of this outsourcing was not only to develop a par-
ticular component, but also to show how a software component can be generi-
cally designed and implemented.

The component selected by Testo AG for this was the printing component. This
is mainly responsible for controlling the different printers that can be connected
to a measurement device as well as for providing users functions for printing
various measurement data and information about the device including its status
and settings.. The generic printing component must provide printer drivers for
three different printers, which are planned for use with the products under de-
velopment. Besides the different printers, variations to be covered by the com-
ponent occur in terms of the provided functions for printing data. In a flue gas
product, for example, additional information regarding the measurement con-
ditions must be printed.

Before starting the implementation of the component, we made a detailed de-
sign for the component. As a starting point we used the product line architec-
ture and the domain analysis document for the printing subsystem. The design
of the component was done using the KobrA approach [1]. According to Ko-
brA, the design of a component consists of two basic parts: the specification,
which describes the externally visible properties of the component, and the re-
alization, which describes how these properties are realized. The specification
consists of three different models which were modeled using the Unified Mod-
eling Language (UML): the structural model, which describes the information
needed to use a component in terms of class and object diagrams, the behav-
ioral model, which describes the externally visible states of the component in
terms of a state chart diagram, and the functional model which describes the
effects of the component's operations in terms of textual pre and post condi-
tions. In case of the printing component, the specification structural model is
equivalent to the architecture.

Copyright © Fraunhofer IESE 2004 1 5

Applying the PULSE™ Approach

16

The realization also consists of three models: the structural model which is a re-
finement of the specification structural model describes all types and structural
information related to how the component works, the interaction model which
describes how instances of the component interact with other component in-
stances in order to realize the component's operations, and the activity model
which describes the algorithms used to implement the operations. The models
of both specification and realization potentially contain variability. Therefore,
we also created a decision model, which is actually a refinement of the decision
model created and maintained as part of the domain analysis and architecture
creation activities. Once the design of the generic printing component was fin-
ished, the implementation work started. The implementation language used by
Testo is standard C. In order to implement the variabilities of the printing com-
ponent, we had to select one or more suitable variability mechanisms. A vari-
ability mechanism [6] is a way of implementing varying characteristics of a
component at the implementation level. As there is actually only very limited
variability for the printing component at the implementation level, we decided
to mainly use conditional compilation for realizing optional and alternative vari-
abilities. This variability mechanism was used for variabilities with a binding time
of build time. Binding time refers to the point in time when decisions are
bound for the variations, after which the behavior of the final software product
is fully specified [8]. In the project context, we had to deal with the following
binding times: static code instantiation time, production time, start-up time,
and runtime. Therefore, we applied also directory naming [8], dynamic settings,
and inclusion polymorphism using function pointers for realizing variability at
the implementation level. The latter was used to implement the support for
multiple printers and the switching of printers at runtime.

The implementation of the generic printing component also included its valida-
tion by means of code inspections and testing. Developers from Testo AG in-
spected the code of the component and Fraunhofer IESE incorporated the
feedback from the inspection into the implementation. As the component is
used in two different products only and has very limited variability, testing was
done just as in traditional single software development. We created instances
of the component for the particular product and performed unit and integra-
tion tests.

Copyright © Fraunhofer IESE 2004

Experiences in Consulting a
Product Line Effort

4 Experiences in Consulting a Product Line Effort

In this section, we will discuss our main experiences and lessons learned from
this effort with a focus on lessons that can be easily transferred to other con-
texts. We will structure our discussion mainly based on the phases of the prod-
uct line effort: prestudy and planning, domain analysis, architecting, implemen-
tation and the overall technology transfer.

4.1 Prestudy and Planning

Prior to the actual introduction of the product line we performed a prestudy
that aimed at analyzing the potential cost savings and development optimiza-
tions that could be gained from a product line effort. As part of this effort the
PULSE-Eco approach was applied with a strong focus on the Product Line Map-
ping and the assessment component [9]. As a result of this a domain charac-
terization of the technical subdomains and a product line introduction plan was
derived.

As a lot of experience in the product domain existed, we decided to identify the
main technical domains by a simplified architecture workshop. This had the
dual purpose of acquainting the stakeholders with architectural concepts. This
proved in our context a successful replacement of a more detailed domain
analysis, however, this can only be done, if a lot of experience exists with the
domain.

We found that we could do this analysis easily with a single person from our
side and that it provided us with a lot of base information that enabled us to
systematically derive an introduction plan. This introduction plan could not only
be much better estimated in terms of effort for both organizations, we could
also identify certain risks and benefits that we could not have identified without
the underlying systematic evaluation approach. Thus it directly informed our in-
troduction plan and should be used also in other introduction efforts. It also
had the additional benefit of acquainting both partners and thus building the
necessary foundation of mutual trust.

4.2 Domain Analysis
The domain analysis focused on developing individual domain specifications for
the different technical domains. This was only done after we derived a basic ar-

chitecture of the system. This proved very successful in our context, however,
we expect this approach (architecting without an overall domain analysis, but

Copyright © Fraunhofer IESE 2004 1 7

Experiences in Consulting a

Product Line Effort

using domain analysis to refine the basic functionality) to work only in settings
where the overall domain is rather mature and the products are not too innova-
tive.

For introducing novel functionality in the domain model, we used the approach
of discussing first whether the functionality would be really relevant and second
whether the relevant functionality would be required in the first two to three
systems. This way we identified a lot of functionality, which might be required
in further products (thus being aware to this in the further refinement of the
architecture) while explicitly excluding it from the components that should be
implemented initially. This two-step characterization went very well and pro-
vided an additional evolution dimension, which was captured in the decision
model. When deriving a basic notation for the domain analysis, we built on the
existing use case notation. We found it very useful to rely on a notation already
in use. Using the approach we developed [13], such an augmentation can al-
ways be performed and can be expected to considerably raise the level of ac-
ceptance by the developers. We found that the documents in their generic
form (i.e., without instantiation) were widely accepted by the developers after
some time and a learning phase. However, the training and the strong integra-
tion of the domain experts in the document development were key in the ac-
ceptance of the notation.

4.3 Architecture Development

18

In our effort we based the architecture development on the analysis of the ex-
isting architecture, instead of basing it on an overall domain analysis as the pro-
totypical approach would be. Here, this was a viable approach, as the previous
recovery of the architecture lead to a good understanding of the domain and
the future systems would not include fundamentally different functionally.

We developed the final architecture in close cooperation, where Fraunhofer
IESE contributed through overall product line and architecture knowledge and
Testo focused on the specific requirements, especially those for potential future
systems. This strong cooperation together with a jointly performed ATAM-
assessment lead to a feeling by Testo employees that the resulting architecture
was really their architecture and not just an architecture imposed on them. It
also lead to a better understanding of the architecture and its implications on
behalf of the developers, although we found the results of the ATAM-
assessment were rather hard to judge from their point of view. From our ex-
perience this kind of pairing and cooperative architecture development can be
recommended in general. We also found in architecture development that it is
better to have a list with design alternatives together with rationales as well as
expected benefits and drawbacks rather than two elaborated architecture al-
ternatives.

Copyright © Fraunhofer IESE 2004

Experiences in Consulting a
Product Line Effort

In our experience we found scenarios to be particularly helpful in achieving an
understanding of the architecture and communicating the architecture, identi-
fying inconsistencies and defining the semantics of modules. Due to the em-
bedded context we found it pretty common that we had to discuss implemen-
tation possibilities and the effect of design choices on non-functional aspects
like performance. While digging into the implementation aspects during archi-
tecting is not a common thing to do, we found it key for a successful embed-
ded systems architecture.

4.4 Design and Implementation

We used the KobrA notation and approach as the basis for design. While this
provides a systematic technology, we found it sometimes too comprehensive
for our purposes and had difficulties fitting it together with the architecture
and the decision model. We also found it useful to start implementation already
while the design was only coarsely defined. The parallel activities lead to a
faster convergence of the results.

In implementation, many different technologies can be used for implementing
variabilities (e.g., conditional compilation, inclusion polymorphism, etc.). Using
the decision model with the different required binding times helped a lot in de-
ciding on the most appropriate technique at any point. A careful selection of
the optimal variability technique was particularly important in our embedded
context, as the wrong decision could easily result in performance problems.

While often condemned, we found conditional compilation as a rather useful
technique for our application. A precondition for its successful application is,
however, that the number of variabilities is not too high and the variabilities are
not too fine-grained. It was also very helpful to use as condition variables the
names given by the decision model (e.g., the decision PGM_MEASUREMENT is
implemented using the expression #ifdef PGM_MEASUREMENT. As this name is
also used in the other documents (e.g., domain models, architecture, etc.) we
achieve traceability of variability basically for free.

Regarding the testing of the generic components we found that for a small
number of instances, testing can be performed as with traditional sys-
tems/components. However, we expect that for a larger number of instances
along with a large number of variabilities optimized test strategies will be nec-
essary.

Additionally to introducing variation points, the printing component was im-
plemented using a generative implementation approach. We identified about
40 different types of printing-blocks (e.g. header, measurement data, mainte-
nance data etc), that can now be instantiated by combining calls to the block-
functions in the concrete printer implementation. This concept was seen as a

Copyright © Fraunhofer IESE 2004 1 9

Experiences in Consulting a
Product Line Effort

large improvement by the developers. The resulting implementation additionally
contained about 20 variation points that can be differently combined for the
three printers realized so far. By using preconditions, the code size and com-
plexity of the resulting implementation stayed the same for the new implemen-
tation.

4.5 Product Line Technology Transfer

Introducing product line concepts from an external position is a very problem-
atic endeavor. We started this effort with a systematic training of the develop-
ment engineers at the customer site. This has to be regarded only as partially
successful as it was just too early in the overall project. The developers focused
very strongly on technical matters (implementation, configuration manage-
ment), while issues like domain analysis and architecting, which are key to
product line development did not (yet) interest them too much. In retrospect
this understandable do to the early time.

However, we did also use the seminar to identify and address their needs and
fears (e.qg., fear of unemployment, due to overall effort reduction). In this re-
gard the seminar was very important. As a result we would recommend to
step-wise integrate (and train) the different engineers on the basis of their
overall work involvement [10].

We used for domain analysis and architecting an approach that was highly in-
teractive: we held meetings that usually involved two persons from Fraunhofer
IESE and 2-8 persons from Testo AG (typically 4). During these meetings we
partially developed the domain analysis documents and architectural documen-
tation. During the meetings typically one person from Fraunhofer IESE focused
on the role of the scribe, while the other person focused on the role of a mod-
erator. We also used two projectors: one typically showing the decision model
(or other key information), the other showing the current artifact under devel-
opment. For introducing product line technologies we recommend this interac-
tive approach, as here it is possible to incrementally introduce concepts and to
directly react on misunderstandings.

Also for design and implementation, we had to introduce a process change.
The developers had to use the architecture and the predefined interfaces in or-
der to keep the product line healthy. So, a much stronger development process
awareness and awareness of the architecture (as opposed to ad-hoc implemen-
tations) had to be fostered.

20 Copyright © Fraunhofer IESE 2004

Conclusions

5 Conclusions

Product line development is an up-and-coming technology with a large poten-

tial to reduce cost and effort and improve quality in product development. This
potential is even increased by addressing a complete product population. In this
paper we discussed our experiences with a product line transition in an embed-
ded environment.

The basis for this transition was provided by a systematic pre-study and it was
actually conducted using the PULSE™ approach. While this project was unusual
in its approach (e.g., applying architecting without systematic domain analysis,
based on reengineering), we discussed the key strengths and weaknesses of
our approach and described under which circumstances a similar approach will
probably be successful.

As a key contribution our paper provides a large number of lessons learned,
which can be transferred (under the described circumstances) to other envi-
ronments. In this way we contribute to the increasing body of knowledge on
product line introduction.

Copyright © Fraunhofer IESE 2004 2 1

References

References

22

[1]

3]

[4]

[5]

[6]

(8]

[9]

[10]

C. Atkinson, J. Bayer, C. Bunse, E.Kamsties, O. Laitenberger, R. Laqua,
D. Muthig, B. Paech, J. Wist, and J. Zettel. Component-based Product
Line Engineering with UML. Component Software Series. Addison-
Wesley, 2001.

J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Wi-
den, and J.-M. DeBaud. PuLSE: A Methodology to Develop Software
Product Lines. Proceedings of the Fifth ACM SIGSOFT Symposium on
Software Reusability (SSR'99), pp. 122-131, 1999.

J. Bayer, O. Flege, and C. Gacek. Creating Product Line Architectures.
Third International Workshop on Software Architectures for Product
Families, Frank van der Linden (ed.), Springer LNCS 1951, pp. 210-216,
2000.

P. Clements, R. Kazman, M. Klein. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley, 2002.

C. Hofmeister, R. Nord, D. Soni. Applied Software Architecture. Addi-
son-Wesley, 1999.

[. Jacobson, M. Griss, P. Jonsson. Software Reuse: Architecture, Process
and Organization for Business Success. Addison-Wesley, 1997.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-
TR-21, Software Engineering Institute, Carnegie Mellon University, No-
vember 1990

C. W. Krueger. Towards a Taxonomy for Software Product Lines. Pro-
ceedings of the Fifth Workshop on Product Family Engineering (PFE-5),
Sienna, Italy, November 2003.

K. Schmid. A Comprehensive Product Line Scoping Approach and Its
Validation. In Proceedings of the 24™ International Conference on Soft-
ware Engineering (ICSE'02), pp. 593-603, May 2002.

K. Schmid. People Management in Institutionalizing Product Lines. In

Proceedings of Netobject.days 2003 (NODe’'03), pp. 175-189, Septem-
ber 2003.

Copyright © Fraunhofer IESE 2004

References

[11] K. Schmid and T. Widen. Customizing the PuLSE Product Line Approach
to the Demands of an Organization. Software Process Technology, 7th
European Workshop, (EWSPT'2000), Reidar Conradi (Ed.), pp. 221-238,
LNCS 1780, Springer, 2000.

[12] K Schmid. An Assessment Approach To Analyzing Benefits and Risks of
Product Lines. The 25th Annual International Computer Software and
Applications Conference (Compsac'01), pp. 525-530, 2001.

[13] K. Schmid and I. John. A Customizable Approach To Full-Life Cycle Vari-
ability Management, Journal of Science of Computer Programming,
2004, to appear.

Copyright © Fraunhofer IESE 2004 2 3

Document Information

Title:

Date:
Report:
Status:

Distribution:

Introducing the PuLSE
Approach to an Embedded
System Population at Testo
AG

February 2004
I[ESE-015.04/E
Final

Public

Copyright 2004, Fraunhofer IESE.

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial

purposes.

	Abstract
	Table of Contents
	Introduction
	Customizing the PuLSE™ Approach
	Applying the PuLSE™ Approach
	Experiences in Consulting a Product Line Effort
	Conclusions
	References

