Herstellung aktiver Strukturbauteile durch Umformung von Al-Doppelblechverbunden mit integrierten Piezomodulen

R. Neugebauer (TU Chemnitz IWP, Fraunhofer IWU)

W.-G. Drossel (Fraunhofer IWU)

M. Nestler (Fraunhofer IWU)

S. Hensel (Fraunhofer IWU)

Inhalt

- Motivation Transregionaler Sonderforschungsbereich PT-PIESA
- Umformung von Piezo-Metall-Verbunden
- Methodik der Simulation
- Ergebnisse einiger Umformversuche
- Funktionsnachweis umgeformter Verbunde
- Validierung des Simulationsmodells
- Zusammenfassung und Ausblick

Motivation - Transregionaler Sonderforschungsbereich PT-PIESA

Großserienfähige Produktionstechnologien für leichtmetallund faserverbundbasierte komponenten mit integrierten Piezosensoren und -aktoren – PT-PIESA

Sprecher: Prof. Reimund Neugebauer

Deutsche Forschungsgemeinschaft

Labor-**Prozesskette heute** bedingungen Herstellung von Sensoren und Piezo-Aktoren Modul **Montage** Struktur-Großserie Bauteilherstellung **Bauteil Prozesskette PT-PIESA** Integration Herstellung adaptiver Strukturen Prozesskette Integration der Funktionalität und Herstellung **PT-Piesa** der Bauteilstruktur in einer Prozesskette Prof. Neugebauer 2

Aktive Strukturbauteile mit integrierten Piezomodulen

Motivation

Adaptronik: Integration von Sensoren und Aktoren auf der Materialebene

- Reduzierung von Schwingungen und Lärm
- Health Monitoring

Ziel: Leichtbau mit einem hohen Maß an integrierter Funktionalität

Charakterisierung von Piezo-Keramik Direkter Effekt Sensor: Kraft → Spannung Indirekter Effekt Aktor: Spannung → Ausdehnung

 PT
 Fraunhofer

 IND PRODUKTIONSPROZESSE

Herangehensweise für die Umformung

Herausforderung

Kombination der plastischen Verformung von Blechen bei einer nur elastischen Verformung der Keramik

Lösungsansatz

Elastische Biegung dünner Fasern erlaubt kleine Biegeradien

Integrationstechnologien für dünne Fasern

Direkte Integration auf Mikroebene

Piezo-Faser

Metall

Isolationsschicht

Direkte Einkopplung

- Hohe Leistungsfähigkeit, durch geringe Verluste infolge von Zwischenschichten
- Geringes Umformvermögen des Verbundes

Modulintegration in ein Doppellagenblech

Piezo-Modul

Piezo-Modul

- Leistungsfähigkeit ist abhängig von der Steifigkeit des ausgehärteten Klebstoffs und der Randschicht der Module
- Umformbarkeit hängt von der Viskosität des Klebstoffes ab

Aktive Strukturbauteile mit integrierten Piezomodulen

Lösungsansatz der "schwimmenden Lagerung"

Schichtaufbau (verformt)

Grundblech mit MFC vor dem Kleben

Aktive Strukturbauteile mit integrierten Piezomodulen

Lösungsansatz der "schwimmenden Lagerung"

Simulation Herausforderung - Homogenisierung

Diskretisierung eines Modells der Umformsimulation in der Größenordnung einer einzelnen Piezofaser ist nicht möglich

Homogenisierte Materialdaten sind f
ür das gesamte Modul notwendig

Simulationsmethodik - Homogenisierung

Ermittlung Materialparameter des Piezo-Moduls durch Einheitszelle des Patches

- Einheitszelle des Moduls → kleinste periodisch wiederkehrende Struktureinheit
- Geometrie durch Schliffbild ermittelt
- 3D-Modell mit Volumenelementen mit Materialkennwerten der Einzelstrukturen

Simulationsmethodik - Homogenisierung

Bestimmung der elastischen Parameter durch Hooke'sches Materialmodell

- Elastische Formänderungsarbeit wird mit dem Hooke'schen Materialmodell beschrieben
- Linear-elastisches Verhalten bei orthotropen Schichten (Verformung ~ Belastung)
- Gesamtenergie wird durch Summation über alle Elemente bestimmt
- Mittels gezielter Kombination von Lastfällen an der Einheitszelle lassen sich homogenisierte Materialdaten des Piezo-Patchs ermitteln

$$W_{elast} = \frac{1}{2} \int (\varepsilon^T Q \varepsilon) dV = \frac{V}{2} (\varepsilon_{11} \quad \varepsilon_{22} \quad \gamma_{66}) \begin{pmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{pmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{66} \end{pmatrix}$$
$$= \sum_{elem} W_{elast,elem} V_{elem}$$

Simulationsmethodik - Homogenisierung

Bestimmung der elastischen Parameter durch Hooke'sches Materialmodell

Homogenisierte Materialdaten Piezo-Patch:

5 737.254 1451 2164 2878 380.509 1094 1807 2521 3234

E₁₁ = 31.01 GPa E₂₂ = 20.37 GPa $G_{12} = 6.74 \text{ GPa}$ $v_{12} = 0.301$

22.841 759.674 1497 2233 2970 391.257 1128 1865 2602 3339

 $\varepsilon_{11} \neq 0 \quad \varepsilon_{22} \neq 0 \quad \longrightarrow Q12$

 $\mathcal{E}_{11} = 0 \quad \mathcal{E}_{22} = 0 \quad \mathcal{E}_{66} \neq 0 \longrightarrow \mathbf{Q66}$

7.156 485.04 962.925 1441 1919 246.098 723.983 1202 1680 2158

Umformung von Piezo-Metall-Verbunden

3-Punkt Biegung

Bleche: 1.0 / 1.5 mm

- Radienvariation: 75 / 40 / 10 mm
- Verschiedene Blechdicken

Streckziehen / Tiefziehen

Erichsen-Prüfmaschine

- Variation der Niederhalterkraft
- Verschiedene Stempelgeometrien
- Verschiedene Blechdicken

Aktive Strukturbauteile mit integrierten Piezomodulen

Umformung von Piezo-Metall-Verbunden

Charakterisierung durch 3-Punkt Biegung hergestellter Proben

IWU

UND PRODUKTIONSPROZESSE

Piezomodulen

Umformung von Piezo-Metall-Verbunden – Test durch Kapazitätsmessung

Kapazitätsmessung direkt im Versuchsaufbau

3-Punkt Biegung

kein Abfall der Kapazität feststellbar
 → Möglichkeit der Biegung bis zu R = 10 mm

3D-Umformung (Tiefziehen)

 Abfall der Kapazität von 22 % feststellbar

Anzeige einer Schädigung

Radien	Kap. vor Umformung	Kap. nach Umformung
[mm]	[pF]	[pF]
R50*	3281	3277
R40*	3561	3535
R10*	3685	3653

*Al6016; 0.8/1.0 mm; M8528P1

Ziehtiefe [mm]	Kap. vor Umformung	Kap. nach Umformung
	[pF]	[pF]
25**	920	720

**Al5182; 0.8/1.0 mm; M2814P1

Aktive Strukturbauteile mit integrierten Piezomodulen

Umformung von Piezo-Metall-Verbunden – Computer Tomographie

CT-Analyse

- Erzeugung eines 3D-Abbildes des Objektes mit Röntgenstrahlung
- Visualisierung und Lokalisierung von Defekten

Biegung mit einem zu lang ausgehärteten Klebstoff

Tiefziehen mit zu kleinem Biegeradius

Umformung von Piezo-Metall-Verbunden – Computer Tomographie

Ergebnis für 3-Punkt Biegung

Keine Defekte feststellbar für Biegeradien bis zu R10

Test der Aktorik

- Nutzung des inversen piezoelektrischen Effekts
- Trapezsignal mit Spannung bis zu 1500 V
- Messung der Auslenkung mittels Lasertriangulation

Versuchsaufbau

Aktive Strukturbauteile mit integrierten Piezomodulen

Ergebisse Test Aktorik

IWU

UND PRODUKTIONSPROZESSE

Piezomodulen

Test der Sensorik

- Nutzung des direkten piezoelektrischen Effekts
- Definierte Auslenkung der Probe mit Schwingungsgenerator

Probe

generator

Messung der elektrischen Spannung

Versuchsaufbau

- max. Spannungsamplitude in Abhängigkeit der Auslenkung und der Frequenz

V. 1

Aktive Strukturbauteile mit integrierten Piezomodulen

Validierung des Simulationsmodells

- Sehr gute Übereinstimmung mit experimentell ermittelten Umformkräften
- Variation der Modellparameter um eine weitere Prozess Optimierung durchzuführen

Aktive Strukturbauteile mit integrierten Piezomodulen

Simulationsmethodik – Lokale Patch-Belastung

Bildung eines lokalen Modells unter Rücktransformation der Belastungen

Dehnungen von globaler Simulation

Globale Umformsimulation mit homogenisiertem Patch-Material

Detailierte lokale Belastungen der Patch-Komponenten
→ Überlagerung von Scher-, Membran- und Biegedehnungen

Simulationsmethodik – Lokale Patch-Belastung

- Globale Belastungen stammen aus der Patchmitte
- Auftreten von **Spannungsüberhöhungen** in Bereichen mit Steifigkeitssprüngen
- Grundbelastung ist beim Streckziehen höher als beim Biegen

Ursache: Entstehung von Membrandehnungen, die aus doppelter Krümmung und einer orthotropen Charakteristik des Patches resultieren

Zusammenfassung

- Die Umformung von Piezokeramik und Blechen in laminaren Strukturen ist möglich
- Die temporär weiche Ankopplung mit angeliertem Klebstoff ermöglicht die Umformung von Piezo-Modulen mit einem reduzierten Transfer von Zug- und Scherspannungen
- Die Simulation des Umformprozesses kann durch homogenisierte Materialparameter der Piezo-Module realisiert werden
- Eine Überwachung des Umformprozesses ist durch die Online-Messung der Kapazität des Piezomoduls möglich
- Defekte der Piezo-Module können durch CT-Bilder festgestellt werden

Ausblick

Technologische Entwicklung

- experimentelle Parameterstudien (Sensitivitätsanalyse)
 - → Verbesserung der Reproduzierbarkeit
 - \rightarrow Verbesserung der aktorischen Performance
- Reduzierung der Dicke der Decklage
- Untersuchungen mit Hydroforming
- Umformung von Bauteilen aus dem Automobilbau

Entwicklung Simulationswerkzeuge

- Entwicklung eines phänomenologischen Simulationsmodells
 - → Charakterisierung der Interaktion zwischen Modul-Platzierung,Umformprozess und Funktionalität
- Ziel: direkte Ermittlung des Funktionsverlustes des Patches mittels Simulation

Vielen Dank für Ihr Interesse !

Danksagung: Diese Arbeit wurde unterstützt durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des SFB/TransRegio 39 PT-Piesa

Anwendungsfelder "intelligenter" Produkte – Zielstellung

- aktive Steuerung des dynamischen Verhaltens
- Reduzierung von Vibrationen
 - z. B. im Maschinenbau ⇒ Verbesserung der Qualität
- Aktive Reduzierung der Lärmemission im Automobilbau oder bei der

Energiegewinnung

- z. B. Windkrafträder
- Health monitoring
- Energiegewinnung
- Einsatz als Sensor
 - z. B. im Automobilbau

http://www.vem-group.com

Aktive Strukturbauteile mit integrierten Piezomodulen