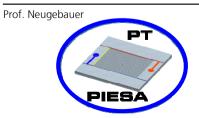
Herstellung aktiver Strukturbauteile durch Umformung von Al-Doppelblechverbunden mit integrierten Piezomodulen

R. Neugebauer (TU Chemnitz IWP, Fraunhofer IWU)

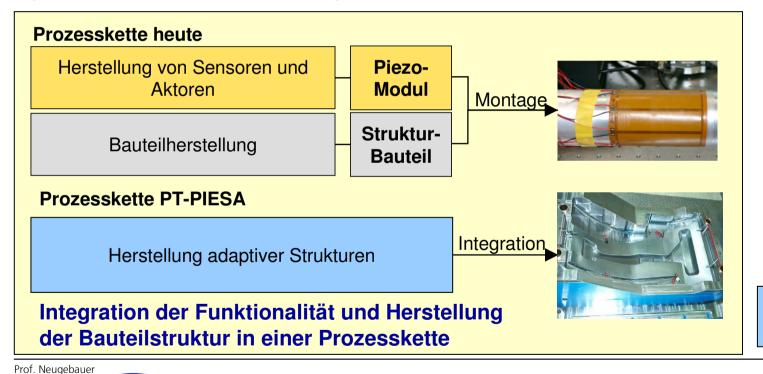
W.-G. Drossel (Fraunhofer IWU)

M. Nestler (Fraunhofer IWU)


S. Hensel (Fraunhofer IWU)

Inhalt

- Motivation Transregionaler Sonderforschungsbereich PT-PIESA
- Umformung von Piezo-Metall-Verbunden
- Methodik der Simulation
- Ergebnisse einiger Umformversuche
- Funktionsnachweis umgeformter Verbunde
- Validierung des Simulationsmodells
- Zusammenfassung und Ausblick

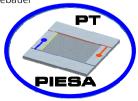


Motivation - Transregionaler Sonderforschungsbereich PT-PIESA

Großserienfähige Produktionstechnologien für leichtmetallund faserverbundbasierte komponenten mit integrierten Piezosensoren und -aktoren - PT-PIESA

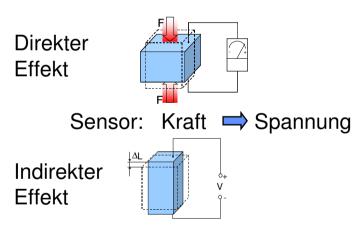
Deutsche Forschungsgemeinschaft DFG

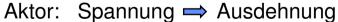
Sprecher: Prof. Reimund Neugebauer



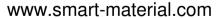
Großserie

Prozesskette PT-Piesa

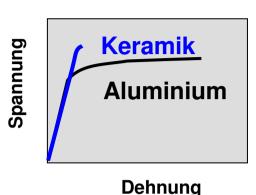

Motivation

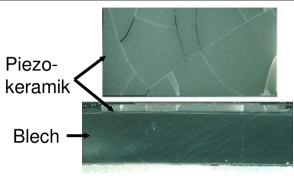

Adaptronik: Integration von Sensoren und Aktoren auf der Materialebene

- Reduzierung von Schwingungen und Lärm
- Health Monitoring


Ziel: Leichtbau mit einem hohen Maß an integrierter Funktionalität

Charakterisierung von Piezo-Keramik




Aktive Strukturbauteile mit integrierten Piezomodulen

4

Herangehensweise für die Umformung

Piezokeramik nach der Umformung Eines Piezo-Blech-Verbundes

Herausforderung

Kombination der plastischen Verformung von Blechen bei einer nur elastischen Verformung der Keramik

Lösungsansatz

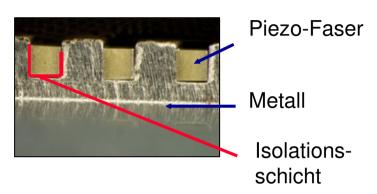
Elastische Biegung dünner Fasern erlaubt kleine Biegeradien

$$\varepsilon_{\text{max}} = \frac{R}{2 \rho}$$

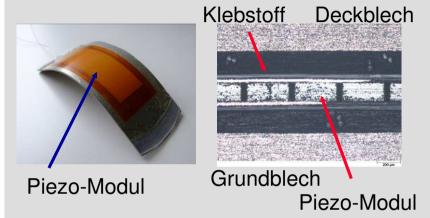
Biegeradius
$$\epsilon_{max} = 1 \%$$
 \Rightarrow R = 50 mm $\rho = 100 \ \mu m$

$$\rho = 100 \mu m$$

Plastische Verformung des Verbunds ist möglich



Integrationstechnologien für dünne Fasern

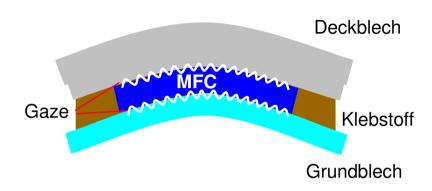

Direkte Integration auf Mikroebene

Direkte Einkopplung

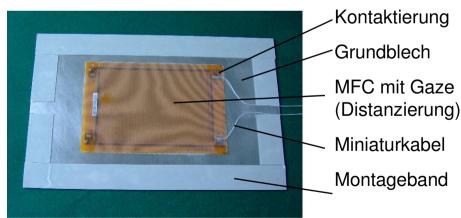
- Hohe Leistungsfähigkeit, durch geringe Verluste infolge von Zwischenschichten
- Geringes Umformvermögen des Verbundes

Modulintegration in ein Doppellagenblech

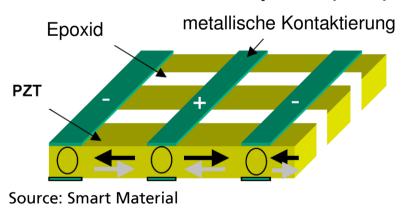
- Leistungsfähigkeit ist abhängig von der Steifigkeit des ausgehärteten Klebstoffs und der Randschicht der Module
- Umformbarkeit hängt von der Viskosität des Klebstoffes ab



Lösungsansatz der "schwimmenden Lagerung"


Schichtaufbau (nicht verformt)

S_{MFC-nF} neutrale Faser Almerc


Schichtaufbau (verformt)

Grundblech mit MFC vor dem Kleben

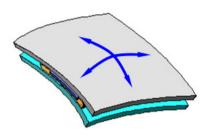
Aufbau Macro Fiber Composite (MFC)

Prof. Neugebauer

Aktive Strukturbauteile mit integrierten Piezomodulen

7

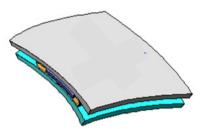
Lösungsansatz der "schwimmenden Lagerung"


Vor Umformung - niedrige Viskosität

Klebstoffeigenschaften

 $\eta = 5...10 \text{ Pa s}$ T = 22 °C

Während Umformung - mittlere Viskosität



Klebstoffeigenschaften

 $\eta = 200...500 \text{ Pa s}$ T = 22 °C

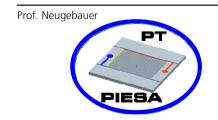
Nach Umformung

- ausgehärtet

Klebstoffeigenschaften

voll ausgehärtet hohe Steifigkeit E-Modul = 3770 N/mm²

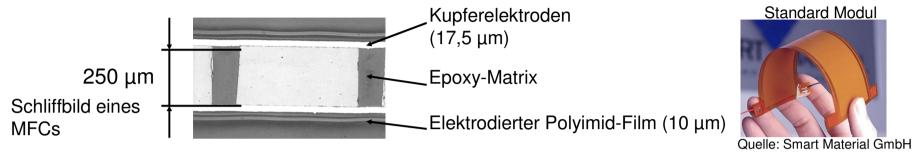
Angelierung

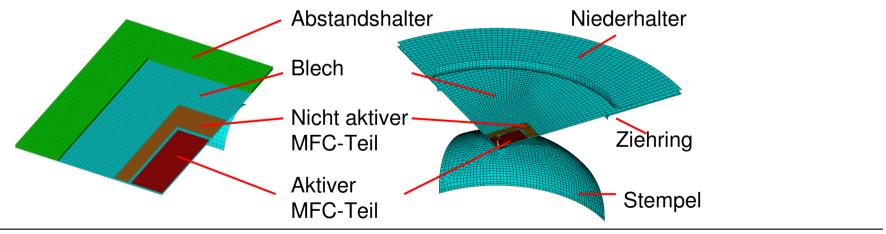

Zeitbedarf 90...120 min (22 °C) Zeitbedarf 30...35 min (45 °C)

Aushärtung

Aushärtedauer 8 h (22 ℃)

Hohe Steifigkeit der Einkopplung (gute Sensor-/Aktor-Funktionalität)

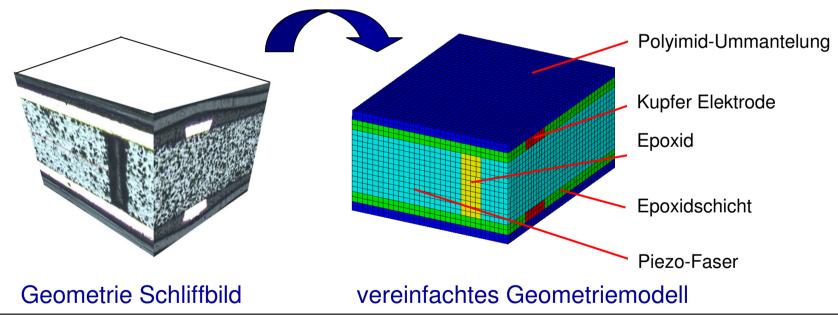



Simulation Herausforderung - Homogenisierung

Größenverhältnisse eines Piezomoduls

Diskretisierung eines Modells der Umformsimulation in der Größenordnung einer einzelnen Piezofaser ist nicht möglich

Homogenisierte Materialdaten sind für das gesamte Modul notwendig


Aktive Strukturbauteile mit integrierten Piezomodulen

9

Simulationsmethodik - Homogenisierung

Ermittlung Materialparameter des Piezo-Moduls durch Einheitszelle des Patches

- Einheitszelle des Moduls → kleinste periodisch wiederkehrende Struktureinheit
- Geometrie durch Schliffbild ermittelt
- 3D-Modell mit Volumenelementen mit Materialkennwerten der Einzelstrukturen.

Prof. Neugebauer

PT

PIESA

Aktive Strukturbauteile mit integrierten Piezomodulen

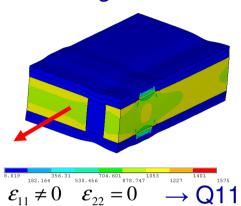
10

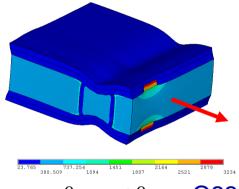
Simulationsmethodik - Homogenisierung

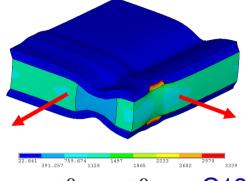
Bestimmung der elastischen Parameter durch Hooke'sches Materialmodell

- Elastische Formänderungsarbeit wird mit dem Hooke'schen Materialmodell beschrieben
- Linear-elastisches Verhalten bei orthotropen Schichten (Verformung ~ Belastung)
- Gesamtenergie wird durch Summation über alle Elemente bestimmt
- Mittels gezielter Kombination von Lastfällen an der Einheitszelle lassen sich homogenisierte Materialdaten des Piezo-Patchs ermitteln

$$W_{elast} = \frac{1}{2} \int (\boldsymbol{\varepsilon}^T Q \boldsymbol{\varepsilon}) dV = \frac{V}{2} \begin{pmatrix} \boldsymbol{\varepsilon}_{11} & \boldsymbol{\varepsilon}_{22} & \boldsymbol{\gamma}_{66} \end{pmatrix} \begin{pmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{pmatrix} \begin{pmatrix} \boldsymbol{\varepsilon}_{11} \\ \boldsymbol{\varepsilon}_{22} \\ \boldsymbol{\gamma}_{66} \end{pmatrix}$$
$$= \sum_{elem} W_{elast,elem} V_{elem}$$

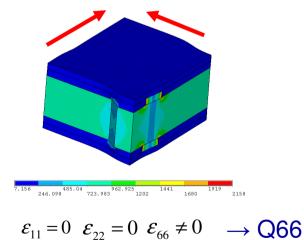






Simulationsmethodik - Homogenisierung

Bestimmung der elastischen Parameter durch Hooke'sches Materialmodell



$$\mathcal{E}_{11}$$

$$\varepsilon_{11} = 0 \quad \varepsilon_{22} \neq 0 \quad \longrightarrow \mathbf{Q22}$$

$$\varepsilon_{11} \neq 0 \quad \varepsilon_{22} \neq 0 \quad \rightarrow Q12$$

Homogenisierte Materialdaten Piezo-Patch:

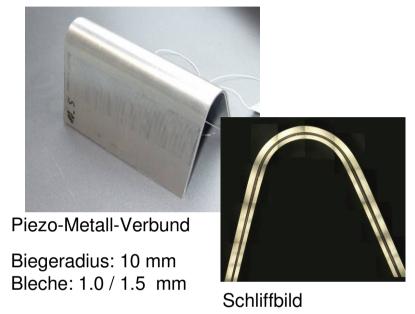
$$E_{11} = 31.01 \text{ GPa}$$

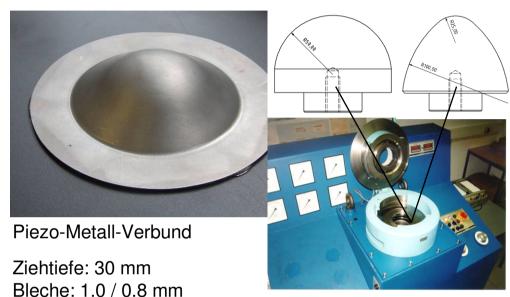
$$E_{22} = 20.37 \text{ GPa}$$

$$G_{12} = 6.74 \text{ GPa}$$

$$v_{12} = 0.301$$

Prof. Neugebauer




Umformung von Piezo-Metall-Verbunden

3-Punkt Biegung

- Radienvariation: 75 / 40 / 10 mm
- Verschiedene Blechdicken

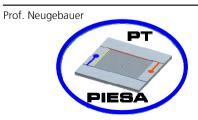
Streckziehen / Tiefziehen

Erichsen-Prüfmaschine

- Variation der Niederhalterkraft
- Verschiedene Stempelgeometrien
- Verschiedene Blechdicken

Umformung von Piezo-Metall-Verbunden

Charakterisierung durch **3-Punkt Biegung** hergestellter Proben



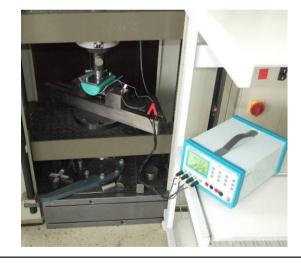
Materialien AA5182 (AIMg4.5Mn0.4), AA6016 (AISi1.2Mg0.4)

■ Blechdickenkombinationen 0.8/1.0 mm; 1.0/0.8mm; 1.0/1.5 mm

MFC-Typen M8557P1, M8528P1, M8557F1

Biegeradien R75, R50, R40, R10

Umformung von Piezo-Metall-Verbunden – Test durch Kapazitätsmessung


Kapazitätsmessung direkt im Versuchsaufbau

3-Punkt Biegung

kein Abfall der Kapazität feststellbar
 → Möglichkeit der Biegung bis zu R = 10 mm

3D-Umformung (Tiefziehen)

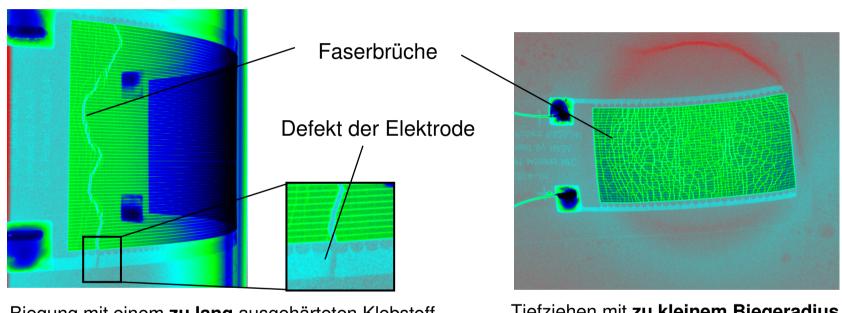
- Abfall der Kapazität von 22 % feststellbar
- Anzeige einer Schädigung

Radien	Kap. vor Umformung	Kap. nach Umformung
[mm]	[pF]	[pF]
R50*	3281	3277
R40*	3561	3535
R10*	3685	3653

*Al6016; 0.8/1.0 mm; M8528P1

Ziehtiefe [mm]	Kap. vor Umformung	Kap. nach Umformung
. ,	[pF]	[pF]
25**	920	720

**Al5182; 0.8/1.0 mm; M2814P1



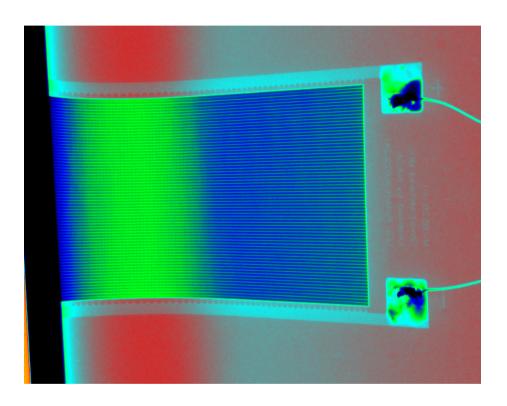
Umformung von Piezo-Metall-Verbunden – Computer Tomographie

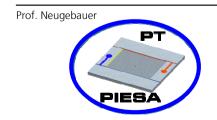
CT-Analyse

- Erzeugung eines 3D-Abbildes des Objektes mit Röntgenstrahlung
- Visualisierung und Lokalisierung von Defekten

Biegung mit einem zu lang ausgehärteten Klebstoff

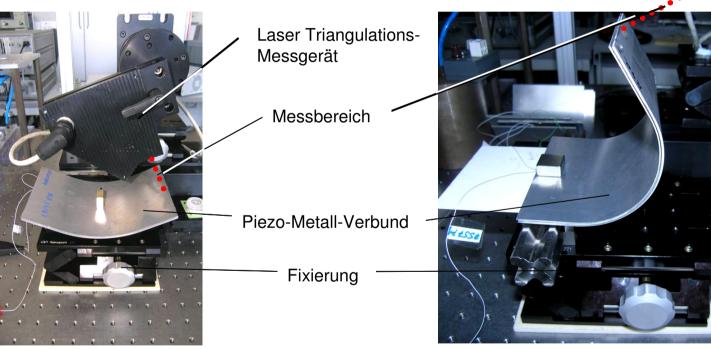
Tiefziehen mit zu kleinem Biegeradius




Umformung von Piezo-Metall-Verbunden – Computer Tomographie

Ergebnis für 3-Punkt Biegung

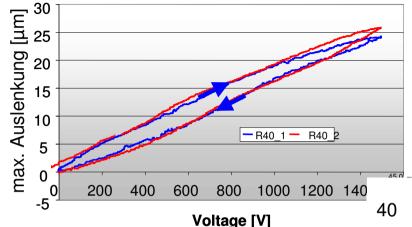
Keine Defekte feststellbar für Biegeradien bis zu R10



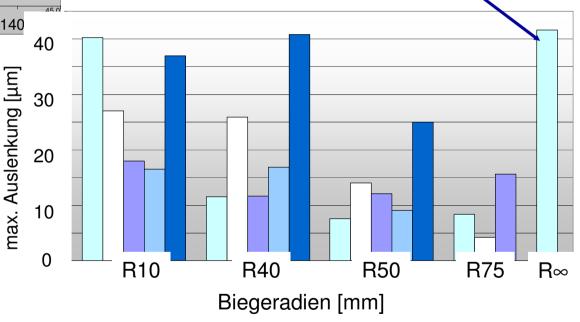
Test der Aktorik

- Nutzung des inversen piezoelektrischen Effekts
- Trapezsignal mit Spannung bis zu 1500 V
- Messung der Auslenkung mittels Lasertriangulation

Versuchsaufbau



Ergebisse Test Aktorik

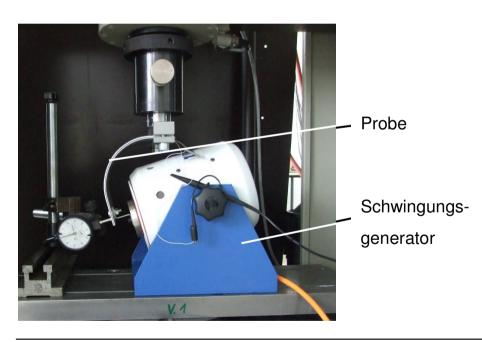

Auslenkungsunterschiede durch:

- Schwankungen der Klebstoffschicht (Herstellungstoleranzen)
- unterschiedl. Performance der MFCs

Max. Auslenkung ist laut Simulation nicht vom Biegeradius abhängig.

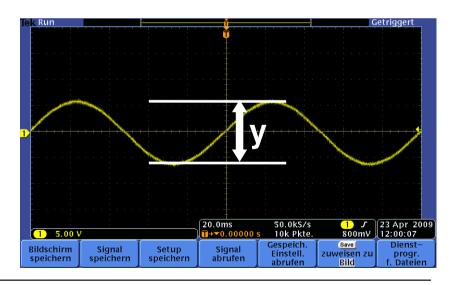
Beispiele für aktorische Performance

- Hysterese der Piezo-Module
- Max. Spannung 1500 V


Aktive Strukturbauteile mit integrierten Piezomodulen

Referenz

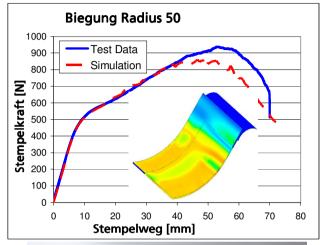
Test der Sensorik

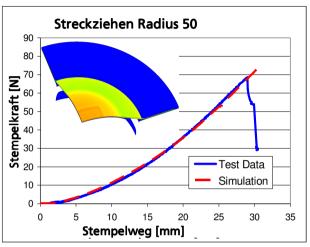

- Nutzung des direkten piezoelektrischen Effekts
- Definierte Auslenkung der Probe mit Schwingungsgenerator
- Messung der elektrischen Spannung

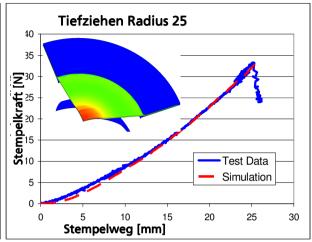
Versuchsaufbau

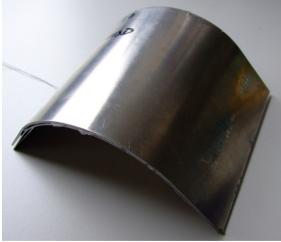
Ergebnis

 max. Spannungsamplitude in Abhängigkeit der Auslenkung und der Frequenz

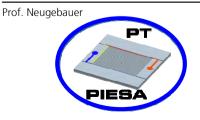




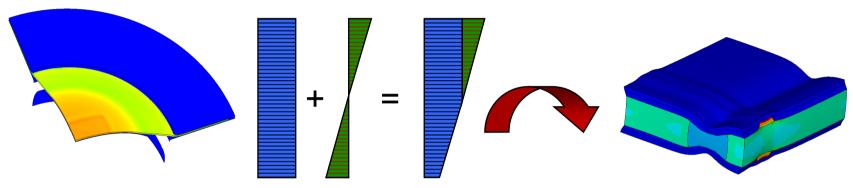




Validierung des Simulationsmodells

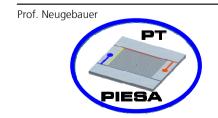


- Sehr gute Übereinstimmung mit experimentell ermittelten Umformkräften
- Variation der Modellparameter um eine weitere
 Prozess Optimierung durchzuführen


Aktive Strukturbauteile mit integrierten Piezomodulen

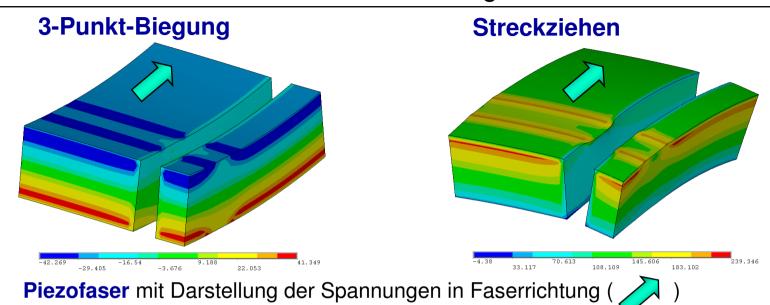
21

Simulationsmethodik – Lokale Patch-Belastung


Bildung eines lokalen Modells unter Rücktransformation der Belastungen

Dehnungen von globaler Simulation

Globale Umformsimulation mit homogenisiertem Patch-Material


Detailierte lokale Belastungen der Patch-Komponenten → Überlagerung von Scher-, Membran- und Biegedehnungen

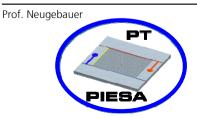
Simulationsmethodik – Lokale Patch-Belastung

- Globale Belastungen stammen aus der Patchmitte
- Auftreten von Spannungsüberhöhungen in Bereichen mit Steifigkeitssprüngen
- Grundbelastung ist beim Streckziehen h\u00f6her als beim Biegen

Ursache: Entstehung von Membrandehnungen, die aus doppelter Krümmung und einer orthotropen Charakteristik des Patches resultieren

Zusammenfassung

- Die Umformung von Piezokeramik und Blechen in laminaren Strukturen ist möglich
- Die temporär weiche Ankopplung mit angeliertem Klebstoff ermöglicht die Umformung von Piezo-Modulen mit einem reduzierten Transfer von Zug- und Scherspannungen
- Die Simulation des Umformprozesses kann durch homogenisierte Materialparameter der Piezo-Module realisiert werden
- Eine Überwachung des Umformprozesses ist durch die Online-Messung der Kapazität des Piezomoduls möglich
- Defekte der Piezo-Module können durch CT-Bilder festgestellt werden


Ausblick

Technologische Entwicklung

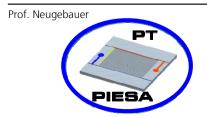
- experimentelle Parameterstudien (Sensitivitätsanalyse)
 - → Verbesserung der Reproduzierbarkeit
 - → Verbesserung der aktorischen Performance
- Reduzierung der Dicke der Decklage
- Untersuchungen mit Hydroforming
- Umformung von Bauteilen aus dem Automobilbau

Entwicklung Simulationswerkzeuge

- Entwicklung eines phänomenologischen Simulationsmodells
 - → Charakterisierung der Interaktion zwischen Modul-Platzierung,Umformprozess und Funktionalität
- Ziel: direkte Ermittlung des Funktionsverlustes des Patches mittels Simulation

Vielen Dank für Ihr Interesse!

<u>Danksagung:</u> Diese Arbeit wurde unterstützt durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des SFB/TransRegio 39 PT-Piesa



Anwendungsfelder "intelligenter" Produkte – Zielstellung

- aktive Steuerung des dynamischen Verhaltens
- Reduzierung von Vibrationen
 - z. B. im Maschinenbau ⇒ Verbesserung der Qualität
- Aktive Reduzierung der Lärmemission im Automobilbau oder bei der
 - Energiegewinnung
 - z. B. Windkrafträder
- Health monitoring
- Energiegewinnung
- Einsatz als Sensor
 - z. B. im Automobilbau

http://www.vem-group.com

