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Abstract

Non-Smooth Contact Dynamics provide an increasingly popular simulation framework for granular material. In contrast
to classical Discrete Element Methods, these methods are stable for arbitrary time steps. They produce visually believable
results in a very short calculation time. Yet, when it comes to the prediction of draft forces they are not accurate enough.
We propose to combine the method with an Interior Point algorithm for higher accuracy. Our algorithm is based on
Jordan algebras. It exploits their relation to symmetric cones to tackle the conical constraints that are intrinsic to
frictional contact problems. In every Interior Point Iteration a linear system has to be solved. We analyzed how the
Interior Point Method behaves when it is combined with Krylov subspace solvers and incomplete factorizations. We
showed that efficient preconditioners and efficient linear solvers are essential for the method to be applicable to large
scale problems. Using BiCGstab as a linear solver and Incomplete Cholesky factorizations, we managed to substantially
improve the accuracy in comparison to the Projected Gauß–Jacobi solver.

Keywords: Non-Smooth Dynamical Systems, Granular Material, Cone Complementarity Problem, Symmetric Cones,
Interior Point Method, Jordan Algebra

1. Introduction

Granular material appears in numerous areas of engi-
neering and there is an increasing demand for realistic
computer simulations. Predicting the behavior of powders
are of interest for toner production. Process engineering
benefits from the simulation of silo discharges. The mining
industry is interested in optimizing hoppers and conveyor
belts, for instance. For the product design of excavators,
draft forces acting on the machine from the interaction
with soil is of great importance. The prediction of re-
alistic draft forces demands the highest standards from
simulation methods for granular matter. Currently, two
methods are mainly used in the community, the classical
Discrete Element Method (DEM) and Non-Smooth Con-
tact Dynamics (NSCD) methods. The DEM has shown
its potential to deliver draft forces that are in agreement
with experimental data (Obermayr et al., 2011). But a
simulation of a few seconds can take up days to weeks of
calculation time. NSCD provide a class of methods that
are a lot faster and more stable, but due to their low ac-
curacy they fail to reproduce realistic draft forces. To
improve the accuracy of NSCD, we propose to combine it
with a specialized Interior Point Method (IPM). While be-
ing computationally more expensive than standard NSCD
solvers, it does not suffer from instabilities as DEM does
and it gives direct control over the trade–off between cal-
culation time and accuracy.

In the DEM (Cundall and Strack, 1979), contact be-

tween two particles is modeled locally as a stiff spring that
pushes them apart. Particles are allowed to slightly pen-
etrate each other and a reaction force proportional to the
overlap is calculated. This, together with frequent changes
in contact states, limits the maximum time step size to
maintain a stable simulation. Thus, the classical DEM is
computationally very expensive. One way to interpret the
DEM is by saying small penetrations emulate microscopic
deformations. In this sense, DEM resolves the problem
at much smaller time scales than those of interest. From
the perspective of larger space and time scales, the granu-
lar particles seem perfectly rigid and collisions seem to be
resolved instantaneously. One way of eliminating uninter-
esting time scales from the model is by using a non–smooth
formulation for the dynamics.

In NSCD (Moreau, 1988; Moreau and Panagiotopoulos,
1990; Stewart, 2000; Acary and Brogliato, 2008), contacts
and collisions between particles are modeled by inequal-
ity constraints, e.g. by demanding that the distance be-
tween two particles shall always be greater than or equal to
zero. Satisfying these equations leads to absolutely contin-
uous trajectories that need not be differentiable at every
point in time. This yields a velocity and impulse based
scheme, since forces no longer exist as classical functions
in time. The non–smooth formulation combined with a
time–stepping scheme, where the times of collision are not
resolved exactly, yields a numerical method that is stable
for arbitrary time step sizes.

Satisfying the inequality constraints boils down to solv-
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ing a variational inequality, i.e. a complementarity prob-
lem1, at every time step of the simulation. In many appli-
cations, specifically in soil mechanical simulations, a fric-
tion model is indispensable and therefore a large Cone
Complementarity Problem (CCP) has to be solved per
time step (Anitescu and Potra, 1997; Anitescu and Tasora,
2008; Tasora and Anitescu, 2011).

A popular iterative solver for large scale CCPs is the
Projected Gauß–Jacobi (PGJ) method, since it is easily
parallelizable, it can be implemented in a matrix–free fash-
ion and one iteration is very cheap (Tasora and Anitescu,
2011; Balzer et al., 2013). Figure 1 shows a snapshot from
a simulation with one million particles, calculated using
PGJ on 48 compute nodes. Its main drawback is that,
after good initial convergence, its convergence rate stalls
quickly if the problems are large or if large mass ratios are
present. Stopping the iteration prematurely leads to arti-
ficial compliance in the granular material, incorrect angles
of repose and incorrect forces (Kleinert et al., 2013). In
practice, a combination of NSCD and PGJ is not neces-
sarily more efficient than classical DEM, as a lot of PGJ
iterations are necessary. Sometimes PGJ completely fails
to meet the desired accuracy requirements.

A natural next step is to study second–order methods
for CCPs to improve the convergence. Noteworthy contri-
butions in this direction are (Daviet et al., 2011), where
the authors employ a semi–smooth Newton method to
the Fischer–Burmeister Function associated with a CCP;
(Krabbenhoft et al., 2012) where the authors consider
Quadratic Programming solvers and Interior Point Meth-
ods for Linear Complementarity Problems; (Heyn et al.,
2013), where Krylov subspace methods are generalized
for the solution of variational inequalities; and finally,
the Ph.D. thesis (Heyn, 2013), which compares active–
set strategies, accelerated gradient–descent methods and
IPMs.

In this paper we consider a specialized IPM based on the
Jordan–algebraic structure of R3. IPMs are very promis-
ing due to their good theoretical complexity bound. In
practice, the required number of iterations to reach a cer-
tain accuracy stays bounded even for very large problems.
Symmetric cones play an important role in Jordan alge-
bras and hence, exploiting their structure is one way to
tackle the conical constraints resulting from the Coulomb
friction law.

In each iteration, a linear system of equations has to be
solved. In most publications on this topic it is assumed
that this system is solved directly using matrix factoriza-
tions. In large granular assemblies it is impractical to use
a direct solver due to the dimension of the linear system.
We favor the idea presented in (Gondzio, 2012) of using
an iterative method to obtain inexact search directions in
every IPM iteration, while taking precautions to maintain

1The complementarity problem results from the Karush–Kuhn–
Tucker first order optimality conditions of an energy principle subject
to inequality constraints.

good numerical properties of the linear systems.
We give a self–contained description of the Interior Point

Method for NSCD. We numerically test different precon-
ditioners and Krylov methods to solve the linear systems.
We show that preconditioning is essential to make this
method applicable to large scale problems. Of the tested
techniques, we found that regularizing the linear systems,
preconditioning with Incomplete Cholesky factorizations
and solving them with the Bi–Conjugate Gradient method
to be the most efficient. We show that the IPM solves the
CCP to a higher accuracy than PGJ, even as the problem
size increases.

In the following section, we outline the physical model
and the equations of motion for the non–smooth dynami-
cal system subject to unilateral contact and friction. Some
elementary properties of symmetric cones are outlined in
Section 3. The IPM is explained in detail in Section 4.
Section 5 delivers numerical tests and some concluding re-
marks are given in Section 6.

2. Non–Smooth Dynamical Systems

This section is structured as follows. In Section 2.1 the
equations of motion for a system of rigid bodies with non–
smooth trajectories are stated. Section 2.2 introduces a
simple frictionless contact model and Coulomb Friction is
explained in Section 2.3. Section 2.4 provides the equa-
tions of motion in discrete time.

2.1. Equations of Motion

In NSCD, collisions between particles are resolved in-
stantaneously, and thus the trajectories are not necessarily
differentiable everywhere. Nevertheless, if q(t) ∈ R6m is
the concatenated vector containing the positions and ori-
entations of all m particles at time t, it is an absolutely
continuous function in time and hence we can write it as
the anti–derivative of a velocity v(t) ∈ R6m,

q(t) = q(t0) +

∫ t

t0

v(s)ds.

The velocity can have jumps and therefore is not the anti–
derivate of a classical function in time. However, we can
associate it to a differential measure dv(t) that can be
identified with the weak derivative in the distributional
sense,

v(t) = v(t0) +

∫ t

t0

dv(s).

The equations of motion must formally be written as a set
of measure differential equations

Mdv(t) = dp(t), (1)

where M ∈ R6m×6m is the block–diagonal mass matrix
and dp(t) is the vector measure associated to the momen-
tum of the system. If the system is only subjected to ab-
solutely continuous external forces fext(t) ∈ R6m, we can
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Figure 1: Snapshot from a simulation, where a rectangular blade is moved through a trench filled with one million particles. The color of the
particles indicates the magnitude of their velocity.

write
Mdv(t) = dp(t) = fext(t)dt.

Due to the Lebesgue decomposition theorem (Halmos,
1950), the measure dv(t) can be split into a part that
has a density a(t) with respect to the measure dt, a dis-
crete measure η(t), that captures velocity jumps, and a
negligible Cantor part ζ(t),

dv(t) = a(t)dt+ η(t) + ζ(t) ≈ a(t)dt+ η(t).

In this sense, (1) can be understood as a weak version of
Newton’s second law of motion (Stewart, 2000; Acary and
Brogliato, 2008).

2.2. Unilateral Frictionless Contact

Unilateral contact means that a contact law only exerts
forces in one direction to keep particles separated. Each
potential contact i between two particles within the gran-
ular material is represented by an inequality constraint

ui : R6m → R, ui(q(t)) ≥ 0.

Under the assumption that ui(q(t)) is differentiable in a
neighborhood of ui(q(t)) = 0, the constraint can be rewrit-
ten on the velocity level as

ui(q(t)) = 0 ⇒ u̇i(q(t)) = ∇ui(q(t))v(t) ≥ 0.

To each constraint we associate a reaction impulse

λi(t) =

∫ t

t0

dλi(s)

via the complementarity condition

0 ≤ λi(t) ⊥ ui(t) ≥ 0 (2)

λi(t)

φ̇i(q(t))

A

B

φi(q(t))

Figure 2: The Signorini Contact Condition: Either the particles are
separating or a reaction impulse must be invoked.

meaning that at least one of the two non–negative values
must be zero. Equation (1) turns into

Mdv(t) = fext(t)dt+
∑

contacts i

∇ui(q(t))Tdλi(t). (3)

Just as for the measure dv(t) associated with the velocity,
the measure dλi(t) can be split into a continuous part αi(t)
with respect to the Lebesgue measure dt and a discrete
part ξi(t),

dλi = αi(t)dt+ ξi(t).

The discrete part resolves collisions and percussions, while
the continuous part captures reaction forces from smooth
parts of the motion, such as persistent contact in static
assemblies of granular materials.

Consider a contact with index i associated to two par-
ticles in the system indexed by A and B. Let φi(q(t)) be
the signed distance between the two particles. If φi(q(t))
is zero and λi is the reaction impulse in normal direction of
the contact, the complementarity condition (2) on velocity
level amounts to

0 ≤ ui(q(t)) = φ̇i(q(t)) ⊥ λi ≥ 0, (4)
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see Figure 2. Either two particles are separating and no
reaction impulse is needed, or a reaction impulse must be
enforced that keeps them from penetrating. This formula-
tion corresponds to a completely inelastic collision.

Let ni(t) ∈ R3 be the contact normal pointing from
body A to body B and let rA(t) and rB(t) ∈ R3 be the
vectors pointing from the centers of mass to the contact
points on bodies A and B respectively. With

v(t) =

 v1(t)
...

vm(t)

 ∈ R6m, vk(t) =

[
νk(t)
ωk(t),

]
∈ R6

where νk(t) is the translational velocity of the k–th parti-
cle and ωk(t) its angular velocity, it holds

Din(t) := ∇ui(q(t))T =



0
...
0

−ni(t)
−rA(t)× ni(t)

0
...
0

ni(t)
rB(t)× ni(t)

0
...
0


.

Let there be n contacts at time t. By writing

D(t) := [D1n(t), ..., Dnn(t)] ∈ R6m×n

and

λ :=

 λ1

...
λn

 ∈ Rn, u :=

 u1

...
un

 ∈ Rn

the equations of motion (3) together with the complemen-
tarity condition (4) are given by

q(t) = q(t0) +

∫ t

t0

v(s)ds,

v(t) = v(t0) +

∫ t

t0

dv(s),

Mdv(t) = fext(t)dt+D(t)dλ(t)

0 ≤ u ⊥ λ ≥ 0,

where the inequality has to be understood componentwise.

2.3. Coulomb Friction

The Coulomb friction model relates the tangential re-
action impulse λit ∈ R2 of a contact in the granular sys-
tem to the normal reaction impulse λin via the restric-
tion ‖λit‖ ≤ µiλin, where µi is the frictional coefficient.
The maximum dissipation principle reformulates this con-
cept as an optimization problem (Stewart, 2000). It states
that λit and the relative tangential velocity vit,rel in the

contact are anti–parallel, and friction maximizes the en-
ergy dissipation from the system subject to the constraint
‖λit‖ ≤ µiλin.

In accordance with (DeSaxcé and Feng, 1998), we cast
the complementarity condition (4) for the normal reaction
impulse together with the maximum dissipation principle
into a Cone Complementarity Problem (CCP) of the form

Kµi 3 λi =

[
λin
λit

]
⊥ ui =

[
uin
uit

]
∈ K∗µi (5)

where

ui =

[
φ̇i(q(t)) + µi‖vit,rel‖

vit,rel

]
∈ R3. (6)

Figure 3 depicts an example of the CCP associated to a
brick sliding down an inclined slope. The cone

Kµi :=

{[
λn
λt

]
∈ R× R2 | µiλn ≥ ‖λt‖

}
is called the Coulomb Friction Cone and its dual cone is
given by

K∗µi :=
{

u ∈ R3
∣∣ uTλ ≥ 0 for all λ ∈ Kµi

}
=

{[
un
ut

]
∈ R× R2 | un ≥ µi‖ut‖

}
.

For the contact with index i, let ti1(t) and ti2(t) span
the contact plane and let

Di(t) =
[
Din(t) Dit(t)

]
∈ R6m×3

be the constraint Jacobian as described in (Anitescu et al.,
1995; Tasora and Anitescu, 2011), where Dit(t) ∈ R6m×2

is given by

Dit(t) :=



0
...
0

0
...
0

−ti1(t) −ti2(t)
−rA(t)× ti1(t) −rA(t)× ti2(t)

0
...
0

0
...
0

ti1(t) ti2(t)
rB(t)× ti1(t) rB(t)× ti2(t)

0
...
0

0
...
0


.

Then we can write (6) as

ui = Di(t)
Tv(t) + µi

 ‖Dit(t)
Tv(t)‖

0
0

 ∈ R3. (7)

With
D(t) := [D1(t), ..., Dn(t)] ∈ R6m×3n

and

λ :=

 λ1

...
λn

 ∈ R3n, u :=

 u1

...
un

 ∈ R3n
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n

Kµ K∗
µ

atan(µ)

atan( 1
µ

)

λ

λt

λn
u

vt,rel

un

n

λ

u

vt,rel

λt

Figure 3: The Cone Complementarity Problem of a contact in sliding mode: Both λ and u are non–zero, and thus they have to be on the
boundary of their respective cones to fulfill the complementarity condition.

the equations of motion (3) together with the complemen-
tarity condition (5) are given by

q(t) = q(t0) +

∫ t

t0

v(s)ds,

v(t) = v(t0) +

∫ t

t0

dv(s),

Mdv(t) = fext(t)dt+D(t)dλ(t) (8)

K∗µ 3 u ⊥ λ ∈ Kµ,

where
Kµ := Kµ1

× ...×Kµn

and
K∗µ = K∗µ1

× ...×K∗µn .

2.4. Time Discretization

In the application of simulating granular material, first
order integration methods suffice. In contrast to the clas-
sical DEM, we do not require higher order methods to
maintain a stable simulation. Due to the non-smoothness
of the trajectories, one can only expect first order accu-
racy in time steps that contain a non–smooth event such
as an impact. Thus, given positions q(tj), velocities v(tj)
and external forces fext(tj) at a time step tj , we calculate
positions at tj+1 = tj+∆t using an implicit Euler scheme,

q(tj+1) = q(tj) + ∆tv(tj+1).

Under the assumption that D(t) and fext(t) are approx-
imately constant within one time step [tj , tj+1], we can
discretize equation (8) via

v(tj+1) = v(tj) + ∆tM−1fext(tj) +M−1Dλ, (9)

where D = D(tj).
In the spirit of time–stepping schemes, we want to sat-

isfy the inequality constraints ui(q(t)) ≥ 0, i = 1, ..., n

only at the boundaries of the intervals [tj , tj+1]. We do
not resolve the exact times of impacts and the reaction
impulse

λ =

∫ tj+1

tj

dλ

captures all smooth and non–smooth interactions within
the time step [tj , tj+1].

One way of satisfying the constraint φi(q(tj+1)) ≥ 0 on
the velocity level is by demanding

φ̇i(q(tj+1)) ≥ 0

for all body pairs with φi(q(tj)) ≤ 0. This is numerically
not stable, as initial penetrations increase with time. A
better choice is to check for potential contacts in the time
interval [tj , tj+1] at time tj and requiring

φ̇i(q(tj+1)) = ∇φi(q(tj+1))Tv(tj+1) ≥ −φi(q(tj))

∆t
,

i.e. the relative normal velocity has to be larger than the
negative constant velocity needed to close the gap between
the particles by the time tj+1. This is equivalent to the
constraint

φi(q(tj+1)) = φi(q(tj) + ∆tv(tj+1))

≈ φi(q(tj)) + ∆t∇φi(q(tj+1))Tv(tj+1) ≥ 0.

With this stabilization and (9), Equation (7) becomes

ui = DT
i v(tj+1) +

 φi(q(tj))
∆t
0
0

+ µi

 ‖DT
itv(tj+1)‖

0
0


= DT

i M
−1Dλ+ r̄i + r̃i(λ).

where

r̄i = DT
i

(
v(tj) + ∆tM−1fext(tj)

)
+

 φi(q(tj))
∆t
0
0

 (10)

5



and

r̃i(λ) = µi

 ‖DT
itv(tj+1)‖

0
0


=

 µi‖DT
itM

−1Dλ+DT
it

(
v(tj) + ∆tM−1fext(tj)

)
‖

0
0

 .
Finally, by writing

N̄ = DTM−1D ∈ R3n×3n, (11)

r̄ :=

 r̄1

...
r̄n

 , r̃(λ) :=

 r̃1(λ)
...

r̃n(λ)

 ∈ R3n

we obtain
u = F̄ (λ) = N̄λ+ r̄ + r̃(λ)

with a positive semi–define matrix N̄ .
The equations that have to be satisfied in every time

step of a simulation are

q(tj+1) = q(tj) + ∆tv(tj+1),

v(tj+1) = v(tj) + ∆tM−1fext(tj) +M−1Dλ,

Kµ 3 λ ⊥ u = F̄ (λ) ∈ K∗µ. (12)

Almost the entire computational effort for a time step
is spent on solving (12). Note, that without the term
r̃(λ), F̄ would be a linear function in λ and (12) would be
equivalent to a quadratic minimization problem subject to
conical constraints. The term r̃(λ) complicates numerical
methods that make use of the gradient of F̄ (λ), because F̄
is not differentiable if the relative contact velocity is zero.
Thus we have to make use of the generalized Jacobian

∂F̄ (λ) = N̄ + ∂r̃(λ) (13)

= N̄ +

 ∂r̃1(λ)
...

r̃n(λ)


with

∂r̃i(λ) =

 µi
‖DTitv(tj+1)‖v(tj+1)TDitD

T
itM

−1D

0
0

 ∈ R3×3n

if DT
itv(tj+1) 6= 0; and

∂r̃i(λ) =


 µi
‖ξi‖

ξTi D
T
itM

−1D

0
0

 ∈ R3×3n
∣∣ ξi ∈ R2


if DT

itv(tj+1) = 0. The gradient ∇F̄ (λ) would be constant
if it wasn’t for the term r̃(λ) and would not need to be re–
evaluated whenever λ changes. In addition, ∇F̄ (λ) would
be symmetric.

Fortunately, µi and DT
itv(t) are usually fairly small in

the context of granular material, and ignoring r̃(λ) is a
valid approximation in a wide range of applications (An-
itescu, 2005).

3. Symmetric Cones

The Interior Point Method for the solution of (12) pro-
posed in this paper makes use of the Jordan–algebraic
structure defined on RN , which is directly related to a
self–dual cone C = C∗. This section gives a definition of
cones and dual cones and we revise the most important
properties of Jordan algebras and symmetric cones needed
in Section 4.

A proper cone K ∈ RN is a closed, non–empty set, such
that

• it is closed with respect to positive linear combina-
tions, i.e. for x,y ∈ K and α, β ≥ 0 it holds

αx + βy ∈ K,

• it does not contain a linear space, i.e.

x ∈ K and − x ∈ K ⇒ x = 0.

For a proper cone K we define the dual cone as

K∗ :=
{

y ∈ RN
∣∣ xTy ≥ 0 for all x ∈ K

}
.

K∗ is also a proper cone.
A real Jordan algebra is a vector space A with a vector

product (or Jordan product)

◦ : A×A→ A

satisfying the properties

x ◦ y = y ◦ x (commutativity)
(x ◦ x) ◦ (x ◦ y) = x ◦ (x ◦ (x ◦ y)) (power associativity)

for all x,y ∈ A. The symmetric cone C in A is the set of
squares with respect to the Jordan product,

C := { x ◦ x | x ∈ A} .

There are several examples of Jordan algebras and the
Interior Point algorithm presented here can be seen as
a generic solver for any Cone Complementarity Problem
with a symmetric cone2. In this paper however, we are
concerned specifically with the space A = RN for some
N ≥ 1 together with the Jordan Product

x ◦ y =
1√
2

[
xTy

xnyt + ynxt

]
∈ R× RN−1

for all

x =

[
xn
xt

]
,y =

[
yn
yt

]
∈ R× RN−1.

2Important examples of symmetric cones are the cone of positive
semi–definite matrices or the positive orthant RN+ .

6



The symmetric cone in (RN , ◦) is

C := { x ◦ x | x ∈ A}

=

{[
xn
xt

]
∈ R× RN−1 | xn ≥ ‖xt‖

}
. (14)

In the following, we revise the essential properties of the
Jordan algebra (RN , ◦) needed to derive the IPM. The re-
sults from this section are taken from (Faraut and Korányi,
1994; Faybusovich, 2002; Fukushima et al., 2002; Alizadeh
and Goldfarb, 2003; Bai et al., 2004; Hayashi, 2004).

(a) C is self–dual, i.e. C = C∗ and thus xTy ≥ 0 for all
x,y ∈ C.

(b) The unit element

e =

[ √
2
0

]
∈ R× RN−1

satisfies x ◦ e = x for all x ∈ RN .

(c) Every x ∈ RN can be written as

x = λ1q1 + λ2q2

with spectral values

λ1 :=
1√
2

(xn − ‖xt‖) and λ2 :=
1√
2

(xn + ‖xt‖)

and spectral vectors

q1 :=
1√
2

[
1

− xt

‖xt‖

]
and q2 :=

1√
2

[
1

+ xt

‖xt‖

]
.

The spectral vectors are an orthonormal coordinate
system of the plane spanned by e and x. If xt is zero,
the term xt/‖xt‖ in the definition of q1 and q2 can
be replaced with any vector of unit length in RN−1.

It holds q1 + q2 = e; x ∈ C if and only if λ1, λ2 ≥ 0;
and x ∈ intC, if and only if λ1, λ2 > 0.

(d) The trace of a vector x ∈ RN is defined by

tr(x) := λ1 + λ2 =
√

2xn

and the determinant is

det(x) := λ1 · λ2 =
1

2

(
x2
n − ‖xt‖2

)
.

(e) J =
[

1 0
0 −IN−1

]
∈ RN×N is called the reflection matrix,

where IN−1 denotes the unit matrix in RN−1. A vector
x ∈ RN is said to be invertible, if det(x) 6= 0 and its
inverse is given by

x−1 =
1

det(x)
Jx.

It holds x−1 ◦ x = e for all invertible x ∈ RN .

(f) For any function ψ : R→ R we define

ψ(x) := ψ(λ1)q1 + ψ(λ2)q2

for x ∈ RN . More specifically, for any α ∈ R we can
define

xα = λα1q1 + λα2q2,

if λα1 , λ
α
2 exist.

(g) For x,y ∈ RN , the function g(x,y) = x ◦ y is bilinear
and it holds

x ◦ y = L(x) · y

where L(x) is the arrowhead matrix

L(x) = ∇yg(x,y) =
1√
2

[
xn xTt
xt IN−1xn

]
.

The eigenvalues of L(x) are

λ1 =
1√
2

(xn − ‖xt‖),

λ2 =
1√
2

(xn + ‖xt‖),

λk =
√

2xn for k = 3, ..., N.

(h) The matrix

P (x) := 2L(x)2 − L(x2).

is called the quadratic representation of x ∈ RN . It
has the following properties.

• P (x) = xxT − det(x)J ,

• P (x) is symmetric and positive definite,

• P (x) and L(x) commute and thus share a set of
eigenvectors,

• P (x)e = x2,

• P (x)α = P (xα), if xα exists,

• P (x−1)y−1 = (P (x)y)−1 if x and y are invert-
ible,

• P (P (x)y) = P (x)P (y)P (x) and

• P (x)C = C and P (x)intC = intC if x is invert-
ible.

The eigenvalues of P (x) are

λ1 = λ1(x)2 =
1

2
(xn − ‖xt‖)2,

λ2 = λ2(x)2 =
1

2
(xn + ‖xt‖)2,

λk = det(x) =
1

2
(x2

n − ‖xt‖2) for k = 3, ..., N.
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(i) For x,y ∈ RN , let v = P (x)
1
2y. It holds

det(v) = det(x) · det(y),

tr(v) = xTy.

It follows, that the spectral values of v are

λ1(v) =
xTy

2
−

√[
xTy

2

]2

− det(x) det(y),

λ2(v) =
xTy

2
+

√[
xTy

2

]2

− det(x) det(y).

(j) There exists a unique automorphism W = W (x,y)
such that for x,y ∈ intC it holds Wx = W−1y. The
automorphism is given by

W (x,y) = P (w
1
2 )

with

w = P (x−
1
2 )
(
P (x

1
2 )y
) 1

2

.

The vector w ∈ RN is called the scaling point for
x,y ∈ C. It holds w ∈ intC and thus

W intC = W−1intC = intC.

(k) The direct product of n symmetric cones

C = C × ...× C ∈ RN ·n

is a symmetric cone and
(
RN ·n, �

)
is a Jordan algebra

with Jordan product

x � y =

 x1 ◦ y1

...
xn ◦ yn

 .
All the properties of

(
RN , ◦

)
hold for

(
RN ·n, �

)
and

have to be understood componentwise.

To avoid overloading the notation, we use the same
names in RN × ...× RN as in RN in the remainder of
this paper. E.g., both the unit element in RN×...×RN
and the unit element in RN are denoted by e and the
respective Jordan Product of x and y is written as
x ◦ y. We only comment on the dimension if it is not
clear from the context.

4. The Interior Point Algorithm

In this section, we illustrate our Interior Point algo-
rithm to solve the CCP (12). The goal is to formulate
the IPM analogously to the algorithms presented in (Ko-
jima et al., 1991) for Linear Complementarity Problems3.

3A Linear Complementarity Problem is a Cone Complementarity
Problem where the Jordan product is the componentwise product
and the symmetric cone is the positive orthant C = Rn+.

This is done in six steps: In Section 4.1 we interpret the
Cone Complementarity Problem as a minimization of a
potential function. The central path is defined and the
idea behind path–following is stated in Section 4.2. One
way of constructing a feasible starting point for the Inte-
rior Point Method is explained in Section 4.3. We discuss
the maximum stepping length in Section 4.4. One way of
improving the convergence rate, the Nesterov–Todd scal-
ing, is introduced in Section 4.5. Inexact search directions
are discussed in Section 4.6. We conclude this section with
a pseudo–code of the Interior Point Method.

4.1. The Potential Function

To make use of the algebraic structure presented in Sec-
tion 3, the cones Kµ and K∗µ must first be transformed to
a symmetric cone C = C∗. Using the transformations

x = Tx · λ =

 T xµ1

. . .

T xµn

 · λ,

y = Ty · u =

 T yµ1

. . .

T yµn

 · u
with

T xµi :=

 µi
1

1

 and T yµi :=

 1
µi

µi


and

F (x) = Ty · F̄ (T −1
x · x) for all x ∈ R3n

we can rewrite the CCP (12) as

C 3 x ⊥ y = F (x) ∈ C (15)

in terms of the cone C = C × ....× C with

C =

{[
xn
xt

]
∈ R× R2 | xn ≥ ‖xt‖

}
.

In the remainder of this paper we are concerned with the
CCP (15).

Proposition 1.

xTy = 0, x,y ∈ C ⇔ x ◦ y = 0, x,y ∈ C

In (Fukushima et al., 2002) a proof of Proposition 1 is
given for the cone C, which can easily be extended for the
cone C = C × ...×C by using the fact that for xi,yi ∈ C
it holds xTi yi ≥ 0 and thus

xTy = 0 ⇔ xTi yi = 0, for i = 1, ..., n.

Let

S++ :=
{

(x,y) ∈ R3n × R3n | x,y ∈ int C, y = F (x)
}

8



n

C

xi
yi

−C

Figure 4: A point (x,y) ∈ S++ requires xi,yi ∈ intC for all i =
1, ..., n; while det(xi),det(yi) ≥ 0 only implies xi,yi ∈ C ∪ (−C).

denote the set of interior points. We can interpret (15) as
the minimization problem

min xTy subject to (x,y) ∈ S++. (16)

It is convenient for the definition of the central path to
minimize a potential function with a logarithmic barrier
for the set

C ∪ (−C)

=

x =

 x1

...
xn

 ∈ R3n | det(xi) ≥ 0 ∀ i = 1, ..., n



rather than using a logarithmic barrier for C, see Figure
4. This gives rise to the minimization of the potential
function

f(x,y) =(2n+ ρ) logxTy − 2n log n

−
n∑
i=1

log (2 det(xi))−
n∑
i=1

log (2 det(yi))

where ρ > 0 is an arbitrary positive constant. The first two
terms are a scaled version of the cost function in (16). The
last two terms act as a logarithmic potential that drives
xi and yi away from the manifold defined by det(xi) =
0 ,det(yi) = 0 , i = 1, ..., n, i.e. the boundary of the double
cone C ∪ (−C). We split the potential function into two

parts via

f(x,y) =ρ logxTy + fcen(x,y),

fcen(x,y) :=2n logxTy − 2n log n

−
n∑
i=1

log (2 det(xi))−
n∑
i=1

log (2 det(yi))

=2n log

(
xTy

n

)
− 2n log

(
n∏
i=1

[4 det(xi) det(yi)]
1/2n

)

=2n log
xTy/n∏n

i=1

[
2
√

det(xi) det(yi)
]1/n . (17)

Lemma 1. Let x =

[
xn
xt

]
∈ intC and det(y) ≥ 0.

(a) 2
√

det(x) · det(y) ≤ |xTy|.

(b) 2
√

det(x) · det(y) = |xTy| ⇔ x ◦ y = αe
for some α ∈ R.

Proof.

(a) Let v = P (x)
1
2y. Then, because of Section 3(i), the

left–hand side in (a) is twice the geometric mean of the
spectral values λ1, λ2 of v, and the right–hand side is
twice their arithmetic mean:√

det(x) · det(y) =
√

det(v) =
√
λ1 · λ2

xTy

2
=

tr(v)

2
=

1

2
(λ1 + λ2) .

x is invertible because of x ∈ intC. It follows, that
x

1
2 is invertible:

0 6= det(x) = det(x
1
2 )2.

With det(y) ≥ 0 we have y ∈ C ∪ (−C). We distin-
guish two cases.

• y ∈ C
With (h) from section 3 it follows v = P (x)

1
2y ∈

C. Thus, the spectral values

λ1 =
1√
2

(vn − ‖vt‖) and

λ2 =
1√
2

(vn + ‖vt‖)

are non–negative and the arithmetic mean of two
non–negative values is always greater or equal to
their geometric mean.

9



• y ∈ −C
Just as in the first case we can use 3(h) to obtain

−v = P (x)
1
2 (−y) ∈ C ⇔ v ∈ −C.

and thus

0 ≥ λ1 =
1√
2

(vn − ‖vt‖) and

0 ≥ λ2 =
1√
2

(vn + ‖vt‖) .

Let λ̃1 = −λ1 and λ̃2 = −λ2. Analogously to the
first case, we conclude√

λ̃1λ̃1 =
√
λ1λ2 =

√
det(x) det(y)

≤1

2
(λ̃1 + λ̃2) = −1

2
(λ1 + λ2) = −xTy

2

=
1

2
|xTy|.

(b) Without loss of generality, let y ∈ C. If y ∈ −C we
follow the same steps using λ̃1 = −λ1 and λ̃2 = −λ2

just as in the first part of the proof.

It holds
√

det(x) · det(y) = xTy
2 , if the arithmetic

mean of λ1(v) and λ2(v) is equal to the geometric
mean, i.e. if and only if

λ1 =
1√
2

(vn − ‖vt‖)

=λ2 =
1√
2

(vn + ‖vt‖) .

Therefore it needs to be shown, that

vt = 0 ⇔ x ◦ y = αe α ∈ R.

Since x is invertible, P (x
1
2 ) = P (x)

1
2 is invertible and

using 3(h) we know that

x−1 = P (x−
1
2 )e.

In addition, it holds L(x−1) = L(x)−1 because of

x = L(x)e = L(x−1)x

⇔ x = L(x)e = L(x)L(x−1)x

⇔ L(x)L(x−1) = Id

for all invertible x. Therefore,

vt = 0 ⇔ v = P (x
1
2 )y = αe, α ∈ R

⇔ y = αP (x−
1
2 )e

⇔ y = αx−1 = αL(x−1)e

⇔ L(x)y = αe

⇔ x ◦ y = αe

Theorem 1. Let (x,y) ∈ S++.

(a) fcen(x,y) ≥ 0

(b) fcen(x,y) = 0 ⇔ x ◦ y = αe for some α > 0.

Proof.

(a) From Lemma 1(a) follows

xTi yi ≥ 2
√

det(xi) det(yi) for all i = 1, ..., n. (18)

Since the terms on the left and right hand side of the
equation are both non–negative, we can take the prod-
uct over all i on both sides and apply the n–th root to
obtain(

n∏
i=1

xTi yi

) 1
n

≥

(
n∏
i=1

2
√

det(xi) det(yi)

) 1
n

. (19)

The result follows from the fact that the arithmetic
mean of a set of positive numbers is always larger or
equal to its geometric mean,

1

n
xTy ≥

(
n∏
i=1

xTi yi

) 1
n

≥

(
n∏
i=1

2
√

det(xi) det(yi)

) 1
n

.

(20)
Therefore the term in the logarithm in equation (17)
is larger than one and we have

fcen(x,y) ≥ 0.

(b) With Lemma 1(b) we know, that the inequalities in
(18) and (19) hold with equality, if and only if xi◦yi =
αie for all i = 1, ..., n and some αi ≥ 0.

The first inequality in (20) holds with equality, if and
only if

0 ≤ xTi yi = xTj yj for all i, j ∈ {1, ..., n}.

Nominator and denominator in (17) are equal if and
only if αi = αj for all i, j ∈ {1, ..., n} and therefore it
must hold for some α ≥ 0

xi ◦ yi = αe for all i = 1, ..., n

and the claim is proofed.

Because of Theorem 1(a) we know that

f(x,y) ≥ ρ logxTy

for any ρ ≥ 0, and we can regard each (x,y) ∈ S++ with a
small f(x,y) as an approximate solution to the CCP (15).
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• (x∗,y∗)

x ◦ y = αe

•S++

Figure 5: A sequence (x(k),y(k)) approaching the optimum (x∗,y∗)
in a small neighborhood of the central path.

4.2. The Central Path

The logarithmic barrier fcen penalizes values close to the
boundary, since the denominator in the logarithm in equa-
tion (17) tends towards zero as (x,y) ∈ S++ approaches
the boundary of the feasible set. Let

(
x(k),y(k)

)
be a se-

quence in S++ that approaches an optimum (x∗,y∗) of
(16). If fcen(x(k),y(k)) = 0, the sequence approaches the
boundary of S++ from the interior as fast as it decreases
the cost function xTy/n, and therefore, the sequence ap-
proaches the optimum strictly from within the feasible set,
staying clear from the constraints.

The central path is defined as

Scen = { (x,y) ∈ S++ | fcen(x,y) = 0}
= { (x,y) ∈ S++ | x ◦ y = αe, α > 0} .

In practice, it is not possible to rigorously enforce
fcen(x(k),y(k)) = 0. Instead, one tries to find a sequence
in a small neighborhood of the central path, see Figure 5.

A Newton step applied to the function

g(x,y) = x ◦ y − αe = 0

is a step towards the central path at α. Given(
x(k),y(k)

)
∈ S++, the search direction of the Interior

Point method is given by a solution to[
∇xg(x(k),y(k)) ∇yg(x(k),y(k))
∇F (x(k)) −I

] [
∆x(k)

∆y(k)

]
=

[
αe− x(k) ◦ y(k)

0

]
The matrices ∇xg(x(k),y(k)) ∈ R3n×3n and
∇yg(x(k),y(k)) ∈ R3n×3n are block–diagonal with
3× 3 blocks (

∇xg(x(k),y(k))
)
i,i

= L(y
(k)
i )(

∇yg(x(k),y(k))
)
i,i

= L(x
(k)
i ),

for i = 1, ..., n. In the remainder of this paper we write

L(y(k)) := ∇xg(x(k),y(k))

L(x(k)) := ∇yg(x(k),y(k))

according to our comments in 3(k).
Finally, we choose a special value for α given by

α = β
x(k)Ty(k)

2n
,

where β ∈ (0, 1] is a parameter. A choice of β = 1 means
we are looking for the point (x′,y′) on the central path
with minimal Euclidean distance ‖(x(k),y(k)) − (x′,y′)‖,
while β = 0 would yield a Newton step aiming at optimal-
ity of (16) regardless of the path of centers. We choose
the value for β at the beginning of each Newton step de-
pending on the momentary value of fcen(x(k),y(k)). If
fcen(x(k),y(k)) is large, we are close to the boundary and
we make a centralizing step towards the path of centers
using a large value of β ∈ (0, 1]. If fcen(x(k),y(k)) is small,
we are already fairly central and we can venture a mini-
mizing step with a small β ∈ (0, 1].

4.3. A feasible starting point

For the IPM to work, we need a feasible starting point
(x(0),y(0)) ∈ S++. In other words we need to find
x(0) ∈ int C such that F (x(0)) ∈ int C. This is not a trivial
task. The goal of this section is to generalize an approach
given in (Kojima et al., 1991) to construct a feasible start-
ing point to a similar CCP. The idea is to introduce one
artificial variable and transform the original complemen-
tarity problem of size 3n into a complementarity problem
of size 3n+ 1 with an obvious starting point.

We introduce the additional variable s ∈ R+ and a vec-
tor d ∈ R3n and consider the complementarity problem

C̃ 3 x̃ =

[
x
s

]
C̃ 3 ỹ =

[
ȳ
1

]
=F̃ (x̃) =

[
F (x) + s · d

1

]
(21)

0 =x̃T ỹ,

where C̃ = C × R+. Note that R+ is the cone of squares
in the Jordan algebra (R, ·), where · : R × R → R is the
standard multiplication of two scalars. (R, ·) has the same
structure as (R3, ◦) and all results from section 3 apply
analogously. The central path of the new CCP is the zero
set of

fcen(x̃, ỹ) = 2(n+ 1) log

(
xT ȳ + s

)
/(n+ 1)∏n

i=1

[
2s
√

det(xi) det(ȳi)
]1/n .

Assume, an initial feasible guess x(0) for the original

problem is given. For example, x
(0)
i = (1, 0, 0)T obviously
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lies in intC for all i = 1, ..., n. We now choose s(0) and d,
such that

ȳ(0) = ỹ
(0)
{1,...,3n} = F (x(0)) + s(0)d ∈ int C.

We can even choose these parameters in such a way, that
(x̃(0), ỹ(0)) lies on a point α > 0 of our choice on the central
path

x̃(0) ◦ ỹ(0) = αe

of the CCP (21). For all i = 1, ..., n it must hold[ √
2α
0

]
=

1√
2

[
x

(0)
in ȳ

(0)
in + x

(0)T
it ȳ

(0)
it

x
(0)
in ȳ

(0)
it + ȳ

(0)
in x

(0)
it

]

⇒ ȳ
(0)
in =

2α

x
(0)
in −

‖x(0)
it ‖2

x
(0)
in

and ȳ
(0)
it = −

(
ȳ

(0)
in

x
(0)
in

)
x

(0)
it .

For the last complementarity condition we have to make
sure, that

s(0) · 1 = s(0) = x
(0)T
i ȳ

(0)
i = 2α.

This in turn means, that

d =
1

2α

(
ȳ(0) − F (x(0))

)
.

Note that, in theory we could choose an initial guess
arbitrarily close the the optimal solution of (21) by
choosing a small α. But a small α implies a large d, so
that the system is badly scaled if s(0) = 2α is too small.

A search direction for (21) is given by L(ȳ(k)) L(x(k)) 0
∇F (x(k)) −I d

0 0 1

 ∆x(k)

∆ȳ(k)

∆s(k)


=

 αe− L(x(k))ȳ(k)

0
2α− s(k)

 (22)

or equivalently by

∆s(k) = 2α− s(k),

Ã∆x(k) = b, (23)

∆ȳ(k) = ∇F (x(k))∆x(k) + ∆s(k)d.

where

Ã =
[
L(x(k))−1L(ȳ(k)) +∇F (x(k))

]
b = α

(
x(k)

)−1

− ȳ(k) −∆s(k)d.

Since an optimal solution (x̃∗, ỹ∗) implies that s∗ = 0,
it follows that (x∗, ȳ∗) = (x∗,y∗) is optimal for the orig-
inal CCP. If s(k) 6→ 0, the original CCP (15) is infea-
sible. During the iteration, s(k) decreases and eventually

y(k) = ȳ(k)−s(k)d is feasible. Then we can use the current
iterate (x(k),y(k)) as a starting point for a feasible Interior
Point algorithm for the original CCP (15). In other words,
we continue with the iteration, but replace ȳ(k) with y(k)

and set s(l) = 0 and ∆s(l) = 0 for all future iterations
l > k.

4.4. Maximum Stepping Length

Assume without loss of generality, that (x, ȳ) ∈ S++

is feasible. When an inexact iterative solver is used to
determine the Newton direction some care has to be taken
not to leave the set S++. Hence, the next task in the
derivation of the Interior Point Method is to identify the
supremum of step sizes θ > 0, such that

x + θ∆x ∈ intC and

ȳ + θ∆ȳ ∈ intC.

Lemma 2. Let x ∈ intC and ∆x ∈ R3. Then

x + θ∆x ∈ intC ⇔
{

∆x ∈ C
or θ < θmax

where

θmax :=
det(x)√[

(∆x)T Jx
2

]2
− det(∆x) det(x)− (∆x)T Jx

2

Proof.

Let v = P (x−
1
2 )∆x.

• It holds P (x
1
2 )e = x and thus

x + θ∆x ∈ intC ⇔ P (x
1
2 ) (e + θv) ∈ intC

⇔ e + θv ∈ intC

⇔
{
λ1(e + θv) > 0
λ2(e + θv) > 0

}
⇔

{
1 + θλ1(v) > 0
1 + θλ2(v) > 0

}
,

where the last equivalence holds because of

λi(e + θv) =
1√
2

(√
2 + vn ∓ ‖θvt‖

)
= 1 + θλi(v), i = 1, 2.

If both spectral values of v are non–negative, i.e. if
v ∈ C ⇔ ∆x ∈ C, there is no restriction on θ. If
λ1 = min(λ1(v), λ2(v)) is smaller than zero, we have

θ < − 1

λ1
. (24)
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• Using section 3(i) we know that

λ1 =
(∆x)Tx−1

2

−

√[
(∆x)Tx−1

2

]2

− det(x−1) det(∆x)

=
(∆x)TJx

2 det(x)
−

√[
(∆x)TJx

2 det(x)

]2

− det(∆x)

det(x)

=

(∆x)T Jx
2 −

√[
(∆x)T Jx

2

]2
− det(x) det(∆x)

det(x)
.

(25)

Observe, that there are no imaginary solutions. If
det(∆x) < 0, the term in the square root is posi-
tive. If det(∆x) ≥ 0, the positivity of the term in the
square root follows from Lemma 1.

• Finally we only need to check when λ1 is non–
negative. We distinguish two cases.

(a) (∆x)Tx−1 < 0.
We can easily see from (25), that λ1 is always
negative.

(b) (∆x)Tx−1 ≥ 0.
From (25) we see, that λ1 is negative if
det(∆x) < 0. With Lemma 1 follows that
λ1 is non–negative, if det(∆x) is non–negative.
Because of x−1 ∈ C ⇔ x ∈ C we have
(∆x)Tx−1 ≥ 0 ⇔ (∆x)Tx ≥ 0 and therefore

λ1 ≥ 0 ⇔
{

(∆x)Tx ≥ 0
det(∆x) ≥ 0

}
⇔ ∆x ∈ C. (26)

The upper bound for θ in the case ∆x /∈ C follows by
inserting (25) into (24).

4.5. Nesterov–Todd–Scaling

As the dot–product of xi and ȳi decreases, at least one
of the two vectors approaches the boundary of its feasible
set C. But the search directions ∆xi and ∆ȳi cannot be
chosen independently, and closeness to the boundary re-
stricts the choice in feasible step sizes. The convergence
of the Interior Point Method can be improved substan-
tially by rescaling the space in which the cone C lives at
the beginning of each iteration. This is done using the
Nesterov–Todd scaling scheme, or NT–Scaling, see (Nes-
terov and Todd, 1997; Bai et al., 2004). Loosely speaking,
the idea is to rescale the vectors xi 7→ x̂i and ȳi 7→ ŷi such
that x̂i = ŷi, and neither vector is closer to the boundary
than the other.

Consider the block–diagonal automorphism Ŵ = [Ww ]

introduced in section 3(j) satisfying Ŵ x̃(k) = Ŵ−1ỹ(k).
Define ṽ = [ v

vs ] = 1√
α
Ŵ x̃(k), i.e.

v =
1√
α
Wx(k) =

1√
α
W−1ȳ(k),

vs =
1√
α
ws(k) =

1√
α
w−1

with w = 1√
s(k)

. Using

dx :=
1√
α
W∆x(k)

dy :=
1√
α
W−1∆ȳ(k),

ds :=
1√
α

1√
s(k)

∆s(k)

we can write (22) as L(Wv)W−1 L(W−1v)W 0

∇F (x(k))W−1 −W
√
s(k)d

0 0 vs

 dx
dy
ds


=

 e− L(W−1v)Wv
0

2− v2
s

 . (27)

Next, we replace L(Wv)W−1 and L(W−1v)W by L(v),
premultiply the first equation with L(v)−1 = L(v−1) and
the last equation with v−1

s . This gives the system of equa-
tions  I I 0

∇F (x(k))W−1 −W
√
s(k)d

0 0 1

 dx
dy
ds


=

 v−1 − v
0

2v−1
s − vs

 (28)

or equivalently

∆s(k) = 2α− s(k),

A∆x(k) = b, (29)

∆ȳ(k) = ∇F (x(k))∆x(k) + ∆s(k)d.

where

A =
[
W 2 +∇F (x(k))

]
=
[
P (w) +∇F (x(k))

]
b =
√
αWv−1 − ȳ(k) −∆s(k)d

=
√
α
(
P (w−

1
2 )v
)−1

− ȳ(k) −∆s(k)d

=
√
α
(
W−1v

)−1 − ȳ(k) −∆s(k)d

= α
(
x(k)

)−1

− ȳ(k) −∆s(k)d,
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and w ∈ intC is the scaling point for x(k) and ȳ(k).
The linear system (29) is an approximation of the linear

system (23). By successively solving (29) and updating
W accordingly in an inner iteration, v eventually satisfies
v−1 = v which is equivalent to x ◦ ȳ = αe. Then the
centralizing parameter α is updated and the process is
repeated until the complementarity problem is solved (Bai
et al., 2004). One could alternatively update α after each
inner iteration to find a new search direction. For instance,
centralizing steps that do not improve the value of the cost
function must not be solved with a very high accuracy and
one inner iteration might suffice to get closer to the central
path. Hence, there must not be a strict distinction between
inner and outer iterations.

Apart from improving the convergence rate of the
method, the approximation (29) yields a symmetric lin-
ear system, if ∇F (x(k)) is symmetric. This is not the case
for (23), since L(x(k))−1 and L(ȳ(k)) do not necessarily
commute. One easily checks4, that

∇F (x(k)) = Ty∇F̄ (T −1
x x(k))T −1

x

∈ Ty
(
N̄ + ∂r̃(T −1

x x(k))
)
T −1
x

is only symmetric if the term r̃(λ) is ignored (see our com-
ments at the end of section 2.4) and if the friction coeffi-
cients satisfy µi = µj for all i, j ∈ {1, ..., n}. For µi 6= µj
we can symmetrize the system via the transformation

A← T −1
y P (w)Tx + N̄

b← T −1
y b

A∆λ(k) = b

∆x(k) = Tx∆λ(k)

because of the block–diagonality of P (w).
We conclude the section on NT–scaling with an explicit

formula for the scaling point of a contact.

Lemma 3. The scaling point w ∈ R3 satisfying
P (w

1
2 )x = P (w−

1
2 )y for x,y ∈ intC is

w =
y + λJx√

xTy + 2
√

det(x) det(y)
,

where

λ := det(w) =

√
det(y)

det(x)
.

Proof. This proof is based on the one from (Bai et al.,
2004). We know from 3(j), that

w = P (x−
1
2 )
(
P (x

1
2 )y
) 1

2

.

4Simply verify, that for any symmetric X ∈ R3×3 the matrix
T yµiX(Txµj )−1 is equal to T yµjX(Txµi )

−1 only if µi = µj .

With u := x−1 and v :=
(
P (x

1
2 )y
) 1

2

we can use 3(i) to

get

det(w) = det(u) det(v) =
det(v)

det(x)
.

Using 3(i) once more on v2 = P (x
1
2 )y we obtain

det(v)2 = det(v2) = det(x) det(y)

and thus

λ = det(w) =

√
det(y)

det(x)
.

With P (w) = wwT − det(w)J we can write

y = P (w)x = wwTx− λJx

⇒ w =
1

wTx
(y + λJx) . (30)

Taking the inner product of (30) with Jw gives

2λ = 2 det(w) = wTJw

=
1

(wTx)
2

(
yTJy + 2λxTJJy + λ2xTJJJx

)
.

Making use of the fact that JJ = I results in(
wTx

)2
=

1

λ
det(y) + xTy + λ det(x).

= xTy + 2
√

det(x) det(y). (31)

Inserting (31) into (30) yields the desired result.

4.6. Inexact Search Directions

Usually, in the context of soil simulations, the number
of unknowns in every time step is quite high. Depending
on the configuration, every soil particle is in contact with
approximately 5 to 10 other particles and every contact has
three unknowns – one for the normal reaction impulse and
two for the tangential reaction impulses. In a simulation
with one million particles one can expect to have around
15 to 30 million unknowns in every time step and a direct
solver for the search direction is not an option.

Instead of directly solving the Newton step, we want to
apply an iterative method to obtain inexact search direc-
tions in each IPM iteration. When using iterative meth-
ods such as Krylov subspace regimes, the convergence rate
depends directly on the condition of the matrix A. Unfor-
tunately, one intrinsic property of IPMs is that the con-
dition of the system matrix A deteriorates close to the
optimal solution. An additional difficulty is that ∇F (x)
is highly rank–deficient in almost all cases and the CCP
does not have a unique solution. Figure 6 shows a simple,
static, two–dimensional example with merely ten resting
disks subject to frictionless contact. The associated Lin-
ear Complementarity Problem allows infinitely many so-
lutions for the reaction impulses, of which all lead to the
same zero–velocity state.
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Figure 6: Two different valid impulse solutions to a simple example
of a particle configuration allowing infinitely many solutions. The
magnitude of the reaction impulses is visualized by the width and
color of the lines connecting the two associated bodies.

Almost the entire computational effort of the Interior
Point Method is spent on the solution of the Newton step.
Therefore, some effort has be put into the regularization
and preconditioning of the system. We follow the approach
of (Gondzio, 2012) of regularizing the system first and then
preconditioning it.

4.6.1. Regularization

One way of regularizing a rank–deficient linear system
is by adding a diagonal matrix R with small values to it,

A← A+R.

R = diag(ρ1, ..., ρ3n) is called the Tikhonov matrix and
solving A∆x = b is equivalent to solving the minimization
problem

min
∆x
‖A∆x− b‖2 + ‖R∆x‖2.

The condition of the regularized system improves with the
size of the regularization parameters ρi, but larger ρi give
poorer approximations of the original problem.

Fortunately, in NSCD, the regularization parameters
have a direct physical interpretation: They can be iden-
tified with finite normal and tangential stiffnesses in the
contacts. Loosely speaking, regularization re–introduces
smoothness into the non–smooth formulation without suf-
fering from instabilities as they occur in the classical DEM,
see (Lacoursire, 2007; Tasora et al., 2013). Instead, re–
introducing finite stiffnesses improves the numerical prop-
erties of the linear systems. As perfectly rigid bodies are
always just an approximation of the real world, the reg-
ularized system is in fact closer to reality than the origi-
nal one, as long as the regularization parameters are suf-
ficiently small. We follow the idea of (Tasora et al., 2013)
and set R = TyR̄T −1

x and

R̄ = diag ([ρ1,n, ρ1,t, ρ1,t, ..., ρn,n, ρn,t, ρn,t]) . (32)

The regularization parameters

ρi,n =
1

∆t2ki,n
and ρi,t =

1

∆t2ki,t

are calculated from normal and tangential stiffnesses ki,n
and ki,t respectively for all contacts i = 1, ..., n. The diag-
onal matrices Ty and T −1

x are the transformations defined
in the beginning of Section 4.1.

If the stiffness values are chosen carefully, regularization
has more desirable properties. The authors of (Obermayr
et al., 2011) calculate stiffnesses from the deformation of
an elastic rod connecting the centers of mass the particles.
If the contact with index i is associated with the bodies A
and B, the stiffnesses are given by

ki,n =
π

4
Ê(rA + rB) and

ki,n
ki,t

=
(2− ν)(1 + ν)

2(1− ν2)
(33)

where Ê is the Young’s modulus of the material, ν the
Poisson ratio, rA and rB are the radii of body A and B
respectively. The stiffnesses in (33) yield a scale invariant
model with respect to the particle size.

4.6.2. Eigenvalues of the linear systems

The matrix of the linear system that has to be solved in
every time step is

A = W 2 +∇F (x(k)) +R

where R is a suitable regularization matrix, W = P (w
1
2 )

and w is the scaling point for x(k) and ȳ(k).

Lemma 4. Let x ◦ y = αe be a point on the central path
for α ∈ (0, 1] and let w be the scaling point for x and y.
Then the eigenvalues ωi, i = 1, ..., 3n of the automorphism

W = P (w
1
2 ) ∈ R3n×3n

satisfy

minωi = O(
√
α) and maxωi = O(

1√
α

).

Proof.
Recall that W = P (w

1
2 ) ∈ R3n×3n is block diagonal

with blocks Wi = P (w
1
2
i ) ∈ R3×3 associated to each con-

tact.
We know from 3(h) that the eigenvalues of Wi are

ωi1

(
P (w

1
2
i )
)

= λ1(w
1
2
i )2 = λ1(wi),

ωi2

(
P (w

1
2
i )
)

= λ2(w
1
2
i )2 = λ2(wi),

ωi3

(
P (w

1
2
i )
)

= det(w
1
2
i ) =

√
det(wi).

By inserting the explicit formula from Lemma 3 we obtain

ωi1 =
yin + λxin − ‖yit − λxit‖

√
2
√
xTi yi + 2

√
det(xi) det(yi)

,

ωi2 =
yin + λxin + ‖yit − λxit‖

√
2
√
xTi yi + 2

√
det(xi) det(yi)

,

ωi3 =
√
λ.
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where λ =
√

det(yi)
det(xi)

.

Because of xi ◦ yi = αe we know

• xi = αy−1
i = α

det(yi)
Jyi,

• 2α = xTi yi and

• 2
√

det(xi) det(yi) = xTi yi (with Lemma 1).

Rewriting the equations for ωi1, ωi2, ωi3 using these rela-
tions yields

ωi,1/2 =
yin + λ α

det(yi)
yin ∓ ‖yit + λ α

det(yi)
yit‖

√
2
√

2α+ 2α

=

(
1 + α

√
det(yi)

det(xi) det(yi)2

)
yin ∓ ‖yit‖

2
√

2
√
α

= (1 +
α

α
)
yin ∓ ‖yit‖

2
√

2
√
α

=
1√
α

yin ∓ ‖yit‖√
2

ωi3 =
√
λ =

√√√√√det(yi)

det(xi)

=

√
det(yi)

1√
det(xi) det(yi)

=

√
det(yi)

α
.

Analogously by using yi = αx−1
i we can calculate

ωi,1/2 =
√
α

√
2

xin ± ‖xit‖
,

ωi3 =

√
α

det(xi)
.

Taking the minimum and maximum of ωi1, ωi2 and ωi3 for
all i = 1, ..., n yields the result.

Let the sorted eigenvalues of W be

0 < ω1 ≤ ω2 ≤ ... ≤ ω3n,

the sorted eigenvalues of ∇F (xk) +R

0 < ν1 ≤ ν2 ≤ ... ≤ ν3n

and the sorted eigenvalues of A

0 < a1 ≤ a2 ≤ ... ≤ a3n.

Using Weyl’s inequality we can derive bounds for the eigen-
values of A

0 < amin := ω2
1 + ν1 ≤ a1

and an ≤ amax := ω2
n + νn. (34)

Assume now, that the current iterate (x(k),y(k)) is in a
neighborhood of a point on the central path with a suffi-
ciently small value α > 0. Then

amin = O(ρmin) and amax = O(α−1)

where ρmin is the smallest regularization parameter. Thus
the condition of the system matrix satisfies

κA = O
(

1

ρmin · α

)
.

Note, that without regularization, the lower bound on the
eigenvalues of A would be given by amin = α because ν1,
as the smallest singular value of ∇F (xk), is zero in all
interesting cases. Without regularization the condition of
A would be O(α−2).

Sufficiently large regularization bounds the smallest
eigenvalues away from zero. Our expectation on a precon-
ditioner is that the range of eigenvalues is reduced sub-
stantially.

We conclude the description of the Interior Point
Method with a pseudo–code for every time step of a sim-
ulation in Algorithm 1.

5. Numerical Tests

We implement the Interior Point Method in C++, mak-
ing use of the PETSc library for Krylov solvers (Balay
et al., 2013). In this section we compare different pre-
conditioners and iterative linear solvers for the Newton
step in each iteration. All system matrices are explicitly
constructed in a standard sparse matrix structure and no
parallelization is used so far. Once a choice for a solution
technique is made, this specific method will be optimized
in a future task.

5.1. Test Problems and Solver Setup

Our first benchmark is one time step from a simulation
of a pile of 2048 non–rotational spheres, see Figure 7(a).
The spheres have radii between 8 mm and 16 mm. With
n = 8378 potential contacts between pairs of spheres there
are 25135 unknowns to the Cone Complementarity Prob-
lem (21). It will be called Test Problem 1. Test Problem 2
is a similar pile, with 5040 non–rotational spheres, see Fig-
ure 7(b).There are n = 21052 potential contacts and thus
63157 unknowns to (21). The time step size is ∆t = 0.01 s
in all test cases.

For the analysis in this paper, we ignore the small term
r̃(λ) from the end of Section 2.4 and we use the same
frictional coefficient µ = µi = 0.4 for all contacts i =
1, ..., n. Therefore, ∇F (x) = N is constant and symmetric.
We use the same starting value xi = (0.1, 0, 0)T ∈ intC
for all contacts. Recall that we have freedom in the choice
of the initial value for α. In our experience,

α =
∑

i=1,...,n

|x(0)T

i y
(0)
i |

2n
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(a) Test Problem 1: A pile of 2048 spheres. (b) Test Problem 2: A pile of 5040 spheres.

Figure 7: Two Test Problems.

is appropriate.
After every IPM iteration, the new value for α is chosen

based on the value of fcen. We do this in accordance with
(Kojima et al., 1991) by writing

α = β
xT ȳ

2n
.

where

β =

 βcen, if fcen(x̃, ỹ) ≤ αcen,
β1, if αcen < fcen(x̃, ỹ) ≤ α1,
βbd, if α1 < fcen(x̃, ỹ).

In all tests we use the bounds αcen = 0.1 and α1 = 1
for the centralizing function fcen. We test an aggressive
choice βcen = 0.01, β1 = 0.1 and βbd = 0.5 and compare
it to a more cautious strategy using βcen = 0.1, β1 = 0.5
and βbd = 1. The aggressive choice follows the spirit of
potential reduction algorithms, while the more cautious
strategy tries to stay as central as possible, and hence it
behaves like a path–following algorithm.

5.2. Test Studies

First, we analyze how regularization and precondition-
ing effects the condition of the Matrix A. Next, we study
different Krylov methods to solve the linear subproblems.
We shortly compare the previously stated aggressive choice
of β to the more conservative one. Finally, we compare the
presented IPM to the Projected Gauß–Jacobi Method and
study its convergence behavior for different problem sizes.

5.2.1. Regularization and Preconditioning

In this section we examine numerically how regulariza-
tion and preconditioning influence the linear systems. In-
complete Cholesky (IC(0)) and Incomplete LU (ILU(0))
factorizations are considered as preconditioners, see (Saad,
2003) for details.

Figure 8 shows approximations for the range of eigenval-
ues of the linear systems in every IPM iteration applied to
Test Problem 1. The system matrices are calculated using
algorithm 1, where the linear systems are directly solved
using an LU factorization.

As expected, in the non–regularized and non–
preconditioned case, the condition grows quadratically as
α tends towards zero. With regularization, the smallest
eigenvalue of the regularized matrix N+R stays bounded,

Figure 8: The spread of eigenvalues of the linear systems for Test
Problem 1.

while the smallest eigenvalue of W = P (w) approaches
zero. Thus, for sufficiently small α, regularization bounds
the smallest eigenvalue of A = W +N+R away from zero.

The effect of the preconditioners is surprising, however.
IC(0) very effectively reduces the range of eigenvalues in
the first few iterations. Yet close to the exact solution, the
preconditioned system is not much better than the regu-
larized non–preconditioned system. ILU(0), on the other
hand, actually worsens the conditions of the systems be-
tween the 10th and the 40th iteration. Towards the exact
solution, the eigenvalues are nicely clustered around one.
In fact, all Krylov methods tested by us fail between the
10th and 16th iteration if the systems are preconditioned
with ILU(0) or ILU(1): The preconditioners are indefinite
and the inaccuracy of the solution of the linear system
causes the maximum step size θ to converge to zero.

This result implies that, if a very high accuracy is re-
quired, it might make sense to switch to ILU(0) closer to
the optimal solution after using IC(0) as an initial precon-
ditioner. Yet, all our tests fail because ILU(0) is always
indefinite after switching the preconditioner. In addition,
there is no intuitive criterion to decide when to switch the
preconditioners.

In conclusion, IC(0) is the more stable choice even
though the decrease in the range of eigenvalues close to
optimality is better with ILU(0).
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Algorithm 1 time step t← t+ ∆t

Require: positions q(t) ∈ R6m, velocities v(t) ∈ R6m,
external forces fext(t) ∈ R6m and masses M ∈ R6m×6m

of m rigid bodies.
Require: α > 0 and tolerances tol1 and tol2.

1: Perform collision detection to obtain contact normals
and signed distances of potential contacts.

2: feas =FALSE.
3: Construct N̄ using (11) and r̄ using (10) for function

evaluations of F = TyF̄ (T −1
x ).

4: Calculate regularization matrix R̄ as in (32).
5: N = TyN̄T −1

x .
6: R = TyR̄T −1

x .
7: r = Ty r̄.

8: Guess a feasible initial x(0) = Txλ(0).
9: Construct d and s(0) as in Section 4.3.

10: ȳ(0) = F (x(0)) + s(0)d.
11: k = 0
12: while s(k)‖d‖ > tol1 and x(k)Ty(k)

n > tol2 do

13: Set ∇F (x(k)) = N or evaluate ∇F (x(k)) using
(13).

14: Calculate P (w) using 3(h) and Lemma 3.
15: if feas =TRUE then

16: b← α
(
x(k)

)−1 − ȳ(k).
17: else
18: ∆s(k) = 2α− s(k).
19: b← α

(
x(k)

)−1 − ȳ(k) −∆s(k)d.
20: end if
21: A← P (w) +∇F (x(k)) +R.
22: Calculate preconditioner P for (A,b).
23: Solve P−1A∆x = P−1b.
24: Calculate stepping length θ with Lemma 2.
25: x(k+1) = x(k) + θ∆x.
26: if feas =TRUE then
27: ȳ(k+1) = ȳ(k) + θ∇F (x(k))∆x.
28: else
29: ȳ(k+1) = ȳ(k) + θ

(
∇F (x(k))∆x + ∆s(k)d

)
.

30: s(k+1) = s(k) + θ∆s(k).
31: end if
32: if feas =FALSE and ȳ(k+1) − s(k+1)d ∈ int C

then
33: ȳ(k+1) ← ȳ(k+1) − s(k+1)d.
34: s(k+1) ← 0.
35: feas =TRUE.
36: end if
37: k ← k + 1.

38: α← β x(k)T ȳ(k)

2n for some β ∈ (0, 1].
39: end while
40: λ = T −1

x x(k).
41: v(t+ ∆t) = v(t) + ∆tM−1fext(t) +M−1Dλ.
42: q(t+ ∆t) = q(t) + ∆tv(t+ ∆t).
43: t← t+ ∆t.

5.2.2. Krylov Solvers

Next, we test the performance of Krylov solvers applied
to the preconditioned system. We use the cautious choice
for β, i.e. the path–following strategy, for these tests.
We consider the Generalized Minimum Residual Method
(GMinres), the Conjugate Gradient (CG) method and
the stabilized Bi–Conjugate Gradient (BiCGstab) method.
IC(0) will serve as a preconditioner. The maximum num-
ber of Krylov iterations is set to 500 and we perform 100
outer IPM iterations. We only stop the IPM before the
maximum number of outer iterations is reached, if the step
size θ falls below a predefined threshold.

We compare the methods with regards to calculation
time and the value of the cost function

cost(λ,u) = |λTu|/n,

where λ and u are as defined in Section 2 and n is the
number of contacts. Note, that for the optimum we have

cost(λ∗,u∗) = 0.

In addition, we test the feasibility λ ∈ Kµ and u ∈ K∗µ
using the functions

feas(λ,u) = max
i=1,...,n

(max (fu(ui), fλ(λi)))

and

fu(ui) = −min (0, uin − µi‖uit‖) and

fλ(λi) = −min (0, µiλin − ‖λit‖) .

Figure 9 presents convergence plots for Test Problem 2.
Figure 9(a) depicts the cost function value over the total
number of inner Krylov iterations. While the linear solves
from the first few iterations are always cheap, the max-
imum number of 500 Krylov iterations is reached during
all later IPM iterations. In theory, IPMs converge super-
linearly. Not surprisingly, using an inexact linear solver
reduces the rate of convergence. This has two reasons.
Firstly, the condition of the matrices deteriorates close to
optimality. Secondly, as the error of the CCP decreases,
the accuracy requirements for the linear solvers increase:
The residual of the linear problem has to be of some or-
ders of magnitude smaller than the current error of the
CCP. Otherwise we cannot expect the error to decrease
any further.

We learn from 9(a) that BiCGstab delivers the smallest
error in the fewest number of inner iterations. Figure 9(b)
shows that, if the accuracy requirements are not too high,
preconditioning can be skipped altogether when using CG.
This fits to our findings from the previous section, that
IC(0) is not necessarily better than the not preconditioned
regularized system close to optimality.

We observe for all calculations that, initially, the feasi-
bility error decreases with a comparable rate as the cost
function. Then, it drops suddenly from around 10−1.3 to
zero by the 19th IPM iteration for all Krylov solvers and
the algorithm switches to a feasible Interior Point Method.
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Figure 9: Comaprison of different Krylov Solvers.

5.2.3. Path–following vs. Potential Reduction

In this section we compare the path–following method
(βcen = 0.1, β1 = 0.5, βbd = 1.0) to the potential reduc-
tion technique (βcen = 0.01, β1 = 0.1, βbd = 0.5) applied
to Test Problem 2.

Figure 10 shows the convergence behavior of the two
approaches. Figure 10(a) shows that the more aggressive
potential reduction scheme reduces the error faster than
the path–following scheme, regardless of whether a direct
solver or a Krylov method is used. When we use BiCGstab
as the linear solver, the step size θ converges to zero quickly
and we are forced to stop after around 30 iterations. This
is not the case for path–following, but the convergence
rate decreases after 50 iterations. Figure 10(a) also shows
that, if the linear systems are solved accurately, the error
is reduced to machine precision at a constant rate, both
for path–following and potential reduction.

Figure 10(b) compares the two techniques in terms of
calculation time. Path–following allows larger step sizes
θ and the linear solvers close to the central path seem to
be better conditioned, so that in total less inner Krylov
iterations are needed. Therefore, if the IPM is combined
with an inexact linear solver, the more conservative path–
following method converges faster than potential reduc-
tion.

5.2.4. Comparison to PGJ

As a final test, we compare the IPM to PGJ in terms
of accuracy. We use the path–following strategy, IC(0)
as a preconditioner and BiCGstab as a solver. The IPM
decreases the cost function at about the same rate as it
decreases the feasibility error. In our experience, PGJ re-
duces the cost function much faster than the feasibility
error. To compare the methods more easily, we examine
them in terms of the error

error(λ,u) = max (cost(λ,u), feas(λ,u)) ,

where the functions cost and feas are the same as in Sec-
tion 5.2.2.

Figure 11(a) shows the convergence of PGJ and IPM
for both test cases. PGJ struggles specifically with larger
problems, its convergence rate stalls almost completely be-
fore a reasonably small error is achieved. The convergence
rate of IPM, on the other hand, decreases slowly with the
problem size. For Test Problem 2, PGJ requires about
43000 iterations to reduce the error below 10−3. The Inte-
rior Point Method requires a total of around 2545 Krylov
iterations and a little more than a fifth of the calculation
time for the same accuracy. From Figure 11(b) we learn
that the decrease in the convergence rate of the IPM is
almost entirely due to the inaccuracy of the linear solves.
We see the error plotted over the number of outer IPM it-
erations when a direct solver is used. The number of outer
IPM iterations needed to achieve a certain accuracy are
nearly the same for both test problems.

IPM scales better with the problem size than PGJ does
and achieves a smaller error for both test cases. The scal-
ability of the IPM with the problem size depends almost
entirely on the scalability of the linear solver.

6. Conclusion

We conclude, that the presented IPM is well–suited to
solve the CCP to a higher accuracy than PGJ. With a
direct solver, IPM converges with a constant rate until
machine precision is reached. Since the IPM scales with
the number of particles just as well as the linear solvers
do, a direct solver cannot be applied in reasonable time
for large scale problems. We tested three different Krylov
solvers and two preconditioners and found that regulariz-
ing the subsystems, preconditioning them with Incomplete
Cholesky factorizations and solving them with BiCGstab
gives the fastest convergence. The inaccuracy of the lin-
ear solves decreases the overall convergence rate of the

19



  0  20  40  60  80
10

−15

10
−10

10
−5

10
0

IPM iterations

co
st

 f
u

n
ct

io
n

 

 

path−following, direct LU

path−following, BiCGstab, IC(0)

potential reduction, direct LU

potential reduction, BiCGstab, IC(0)

(a) cost function value over number of IPM iterations.

  0 500 1000 1500
10

−8

10
−6

10
−4

10
−2

10
0

calculation time [s]

co
st

 f
u

n
ct

io
n

 

 

path−following, direct LU

path−following, BiCGstab, IC(0)

potential reduction, direct LU

potential reduction, BiCGstab, IC(0)

(b) cost function value over calculation time.

Figure 10: Path–Following vs. Potential Reduction.

0 500 1000 1500 2000
10

−9

10
−7

10
−5

10
−3

10
−1

10
1

calculation time [s]

er
ro

r

 

 

IPM−BiCGstab: Test Problem 1

IPM−BiCGstab: Test Problem 2

PGJ: Test Problem 1

PGJ: Test Problem 2

(a) error value over calculation time.

0 20 40 60 80 100

10
−14

10
−10

10
−6

10
−2

10
2

IPM iterations

co
st

 f
u

n
ct

io
n

 

 

Test Case 1: LU

Test Case 1: BiCGstab

Test Case 2: LU

Test Case 2: BiCGstab

(b) cost function value over IPM iterations.

Figure 11: The convergence of PGJ and IPM for different problem sizes.

IPM, but the inexact IPM still produces smaller errors
than PGJ. IPMs superiority over PGJ becomes especially
clear as the problem size increases.

We also found that, towards the exact solution, IC(0)
does not decrease the range of eigenvalues much further
than plain regularization does. The rate of convergence of
the IPM and its calculation time depend highly on the ef-
ficiency of the preconditioner and the linear solver. While
the method has shown its potential, IC(0) and BiCGstab
still require a large number of iterations and the calcula-
tion time is higher than desirable.

In the future, the highest priority is to further ana-
lyze different preconditioners. Possibly there are problem–
related ways to improve the numerical properties of the
linear systems, either by taking advantage of the physical
model or by manipulating the Interior Point Method itself.
State–of–the–art linear solvers such as Algebraic Multigrid
Methods could be applied if the accuracy requirement is
very high. Once it is clear which solution technique fits
best into the IPM framework, there are a lot of further

optimizations to think of. One could start solving the
CCP using PGJ and once the convergence rate decreases,
the PGJ solution can be used to construct a good start-
ing value for the IPM. Similarly, one could exploit the fact
that the linear systems behave nicely in the first few IPM
iterations. Hence, a simple and cheap linear solver suf-
fices. As the error decreases it might make sense to switch
to a more powerful solver. Ideally, the linear solvers should
lend themselves for a matrix–free implementation and they
should be parallelizable.

For the prediction of draft forces from the interaction
of an excavator with soil, we have to demand very high
standards from the simulation method. It has to be sta-
ble, accurate and it should be able to run a simulation in a
reasonably short amount of time. So far, neither DEM nor
NSCD are entirely satisfactory: One method is accurate,
but instable and slow; while the other is reasonably fast
and stable, but inaccurate. In this paper, we use results
from abstract algebra, convex analysis, measure theory,
optimization, nonlinear programming and numerics to im-
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prove the accuracy of NSCD. So far, the presented Interior
Point Method is little more than a prototype, but it is al-
ready substantially more accurate than PGJ and leaves a
lot of room for further development.
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DeSaxcé, G., Feng, Z.Q., 1998. The bipotential method: A con-
structive approach to design the complete contact law with fric-
tion and improved numerical algorithms. Mathematical and Com-
puter Modelling 28, pp. 225 – 245. Recent Advances in Contact
Mechanics.
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