# Ganzheitliche Bewertung der Eignung eines 6-achsigen Roboters für die aseptische Fertigung

- 18. Pharmatechnik-Konferenz
- 13. April 2016 Pharma-Kongress 2016 Düsseldorf



13.04.2016

Dipl.-Biol. (t.o.) Markus Keller

Fraunhofer IPA, Reinst- und Mikroproduktion





# **Die Fraunhofer-Gesellschaft**

- größte Einrichtung Europas für angewandte Forschung

- 67 Institute an über 40 Standorten
- 23.000 Mitarbeiter
- 2,0 Mrd. € Budget
   1,7 Mrd. € Auftragsforschung
- Motivation: Forschung, die den Menschen nützt
- Anwendungsorientierte Forschung: Forschen für die Praxis



Quelle: Fraunhofer



# **Fraunhofer IPA**

Abteilung Reinst- und Mikroproduktion

- Angewandte Forschung und Entwicklung
- 30 Jahre Erfahrung und Know-how
- ~ 56 Mitarbeiter, 40 student. Hilfskräfte
- Mehrere Referenzreinräume ISO 1
- Über 70 Patentanmeldungen
- Kunden:
  - Hersteller von kontaminationskritischen Produkten
  - Hersteller von Equipment f
    ür den Reinraum
  - Reinraumplaner







# Grundlagen: Ganzheitliche Bewertung eines Betriebsmittels für die aseptische Fertigung





# Hygienic Design: Forderungen der GMP

Auszug aus dem EU-GMP-Leitfaden Volume 4 Annex 1:

» ... in clean areas, all surfaces should be smooth, imperious and unbroken in order to <u>minimize the shredding or accumulation of particles</u> or microorganisms and to <u>permit repeated application of cleaning agents</u> and desinfectants where used ... «

» ... The manufacture of sterile products is subject to special requirements in order to minimize **risks of microbiological contamination**, and of **particulate or pyrogen contamination**.



Verstoffwechselbarkeit und Mikrobizidität Reinigung Chemische Resistenz

Hygienic design



# Regel 1: Verwendung drehender Bewegungselemente

- Erforderliche Bewegung kann oft durch weniger bewegende Teile erreicht werden
- Kapseln sich drehender Elemente durch
  - Dichtungen
  - Segmentielle Dichtungselemente
    - ➔ Oft ideal: aktive Absaugung



Quelle: Friedrich Sailer GmbH



# **Regel 2: Minimierung Gleitreibung**

- nach Möglichkeit keine Gleitringdichtungen
- Vermeidung unnötiger Produktkontakte



Quelle: Igus Inc.

# Regel 3: Materialauswahl/Oberflächenbeschaffenheit

- Materialien mit guten ESD-Eigenschaften
- Materialkombinationen (z.B.: Polymer – Metall):
- Glatte Oberflächen, keine scharfe Kanten
   → einfacher zu reinigen





# Regel 4: Analyse der Produkthandhabung

- Nein: Greifen in derselben Richtung wie die Richtung des Primär-Luftstroms
- Ja: Geifen von der Seite
  - → Greifer beeinflusst nicht den Primär-Luftstrom
  - ➔ Ablenkungen des Luftstroms werden vermieden
- Falls Greifer nur über dem Produkt eingesetzt werden kann:
  - → bewegende Elemente neben dem Produkt
     → Auswahl der Greifer-Geometrie und des Greifwegs um stagnierende Luftgebiete nicht in kritischen Bereichen zu forcieren





Sterilisierbarer Vakuumgreifer; Quelle: DIL e.V.



# Regel 5: Integration verschiedener Komponenten

Reduktion der notwendigen Anzahl an Komponenten auf ein Minimum

➔ eine Komponente mit mehreren Funktionen

Regel 6: hermetische Abtrennung

- abtrennende Komponenten:
  - Trennwände:
    - ➔ glatt, beschichtetes Material
  - Feste Kapselung durch Einhausung
    - → alle beweglichen Teile in einem Gehäuse
    - → integrierte Energieversorgung
- gezielt beeinflusste Strömungsführung um das Produkt



Quelle: Hastrup-Walcher



# Hygienic Design: Forderungen von Richtlinien: EHEDG

Auszug aus Richtlinien der EHEDG:

- Ecken
   Mindest-Radius von R ≥ 3 mm
   → garantiert Reinigbarkeit
- Waagrechte Oberflächen müssen vermieden werden
  - → notwendige Neigung ≥ 1,5 % garantiert Flüssigkeitsabfluss
- Verbindungstechnik durchgehend wasserdichte glatte Stoßnähte
  - ➔ garantieren die Reinigbarkeit und mögliche Keimfreiheit









### Quelle: EHEDG

Seite 11

© Fraunhofer

Zu Vermeiden:

- Stehendes Wasser
- Spitze Ecken
- Versperrungen
- Tiefe Fugen
- Schlechte Erreichbarkeit



Quelle: Friedrich Sailer GmbH



Auszug aus EHEDG-Richtlinie Doc. 13: Schraubverbindungen



Abb. 4: Hygienerisiken durch Schrauben im Produktbereich, metallische Kontaktflächen, Spalte und Toträume oder Vertiefungen.

Quelle: EHEDG



# Auszug aus EHEDG-Richtlinie Doc. 13: Schraubverbindungen



Abb. 5: Hygienegerechte Konstruktion von Schraubverbindungen:

Quelle: EHEDG



# Hygienic Design im Anlagenbau





# Hygienic Design im Anlagenbau







**Quelle: Freudenberg Sealing Technologies** 

Quelle: Novonox



Quelle: Pflitsch GmbH



Quelle: Schunk









Quelle: Fraunhofer IPA



Seite 16















# **Durchgängiges Hygienic Design eines Greifers**





# **Durchgängiges Hygienic Design eines Greifers**

- Silikon: entspricht FDA §177.2600: Rubber articles intended for repeated use
  - ISO 10993-5: keine Cytotoxizität; ISO 10993-11: keine Pyrogenität
- Edelstahl 1.4401/AISI 316





# **Partikelemission** Reinraumtauglichkeits-Klassifizierung VDI 2083 Blatt 9.1

Falls Reibung unvermeidbar ist:

- Verwendung geeigneter Materialpaarungen
- Ggf entfernen generierter Partikel durch interne Absaugung
- Bestimmung der Partikelemission und Reinraumtauglichkeits-Klassifizierung VDI 2083 Blatt 9.1





# Partikelemission Reinraumtauglichkeits-Klassifizierung VDI 2083 Blatt 9.1

# Messumgebung: Referenzreinraum ISO 1 (14644-1)





# Partikelemission Reinraumklassen

|         | Regu   | llatory    |          | Li        | miting value | es of each | air cleanline | ess class fo | or differing | particle size | es and refer | ence volum | es (acc. to | ISO 14644-1 | 1)    |
|---------|--------|------------|----------|-----------|--------------|------------|---------------|--------------|--------------|---------------|--------------|------------|-------------|-------------|-------|
| DIN EN  | EU-GMP | EU-GMP     | US Fed.  | 0.1       | μm           | 0.2        | μm            | 0.3          | μm           | 0.5           | μm           | 1.0        | μm          | 5.0         | μm    |
| ISO     | "at    | "in        | Standard | per       | per          | per        | per           | per          | per          | per           | per          | per        | per         | per         | per   |
| 14644-1 | rest"  | operation" | 209E*    | m³        | cbf          | m³         | cbf           | m³           | cbf          | m³            | cbf          | m³         | cbf         | m³          | cbf   |
| 1       |        |            |          | 10        | 0.3          | 2          | 0.1           |              |              |               |              |            |             |             |       |
| 2       |        |            |          | 100       | 3            | 24         | 1             | 10           | 0.3          | 4             | 0.1          |            |             |             |       |
| 3       |        |            |          | 1,000     | 30           | 237        | 7             | 102          | 3            | 35            | 1            | 8          | 0.2         |             |       |
|         |        |            | 1        | 1,240     | 35           | 265        | 8             | 106          | 3            | 35            | 1            |            |             |             |       |
| 4       |        |            |          | 10,000    | 300          | 2,370      | 67            | 1,020        | 29           | 352           | 9.9          | 83         | 2           |             |       |
|         |        |            | 10       | 12,000    | 340          | 2,650      | 75            | 1,060        | 29           | 353           | 10           |            |             |             |       |
| 5       |        |            |          | 100,000   | 2,833        | 23,700     | 671           | 10,200       | 289          | 3,520         | 100          | 832        | 24          | 29          | 0.8   |
|         | А      | А          |          |           |              |            |               |              |              | 3,520         | 100          |            |             | 20          | 0.6   |
|         | В      |            |          |           |              |            |               |              |              | 3,520         | 100          |            |             | 29          | 0.8   |
|         |        |            | 100      |           |              | 26,500     | 750           | 10,600       | 300          | 3,530         | 100          |            |             |             |       |
| 6       |        |            |          | 1,000,000 | 28,329       | 237,000    | 6,710         | 102,000      | 2,890        | 35,200        | 997          | 8,320      | 235         | 293         | 8     |
|         |        |            | 1,000    |           |              |            |               |              |              | 35,300        | 1,000        |            |             | 247         | 7     |
| 7       |        |            |          |           |              |            |               |              |              | 352,000       | 9,972        | 83,200     | 2,357       | 2,930       | 83    |
|         | С      |            |          |           |              |            |               |              |              | 352,000       | 9,972        |            |             | 2,900       | 82    |
|         |        | В          |          |           |              |            |               |              |              | 352,000       | 9,972        |            |             | 2,900       | 82    |
|         |        |            | 10,000   |           |              |            |               |              |              | 353,000       | 10,000       |            |             | 2,470       | 70    |
| 8       |        |            |          |           |              |            |               |              |              | 3,520,000     | 99,716       | 832,000    | 23,569      | 29,300      | 830   |
|         | D      |            |          |           |              |            |               |              |              | 3,520,000     | 99,716       |            |             | 29,000      | 821   |
|         |        | С          |          |           |              |            |               |              |              | 3,520,000     | 99,716       |            |             | 29,000      | 821   |
|         |        |            | 100,000  |           |              |            |               |              |              | 3,530,000     | 100,000      |            |             | 24,700      | 700   |
| 9       |        |            |          |           |              |            |               |              |              | 35,200,000    | 997,167      | 8,320,000  | 235,694     | 293,000     | 8,300 |



Klassifizierung: Betriebsmittel ist geeignet für Einsatz in der Luftreinheitsklasse X





Quelle: Fraunhofer IPA



Seite 26



Quelle: Fraunhofer IPA



Seite 27









# Partikelemission Ergebnisübersicht: Luftreinheitsklassen nach ISO 14644-1

| 14044-1                |                     |      | Ax         | is 1     |      |      |      |  |  |  |
|------------------------|---------------------|------|------------|----------|------|------|------|--|--|--|
|                        | Messpunkt           | MP01 | MP02       | MP03     | MP04 | MP05 |      |  |  |  |
|                        | Luftreinheitsklasse | 2    | 1          | 1        | 2    | 1    |      |  |  |  |
| Roboter                |                     |      | Ax         | is 2     |      |      |      |  |  |  |
|                        | Messpunkt           | MP06 | MP07       | MP08     | MP09 | MP10 |      |  |  |  |
| Last 1,6 kg            | Luftreinheitsklasse | 1    | 1          | 1        | 2    | 4    |      |  |  |  |
| · 0                    |                     |      | Ax         | is 3     |      |      |      |  |  |  |
| Fraebnis <sup>.</sup>  | Messpunkt           | MP11 | MP12       | MP13     | MP14 | MP15 |      |  |  |  |
|                        | Luftreinheitsklasse | 1    | 5          | 2        | 1    | 4    |      |  |  |  |
|                        | Axis 4              |      |            |          |      |      |      |  |  |  |
|                        | Messpunkt           | MP16 | MP17       | MP18     | MP19 | MP20 | MP21 |  |  |  |
|                        | Luftreinheitsklasse | 1    | 1          | 1        | 1    | 1    | 1    |  |  |  |
|                        |                     |      | Ax         | is 5     |      |      |      |  |  |  |
|                        | Messpunkt           | MP22 | MP23       | MP24     | MP25 | MP26 |      |  |  |  |
|                        | Luftreinheitsklasse | 1    | 1          | 1        | 4    | 1    |      |  |  |  |
|                        | Axis 6.1 (Flange A) |      |            |          |      |      |      |  |  |  |
|                        | Messpunkt           | MP27 | MP28       | MP29     | MP30 |      |      |  |  |  |
|                        | Luftreinheitsklasse | 2    | 1          | 1        | 1    |      |      |  |  |  |
|                        |                     |      | Axis 6.2 ( | Flange N | )    |      |      |  |  |  |
| Quelle: Fraunhofer IPA | Messpunkt           | MP31 | MP32       | MP33     | MP34 |      |      |  |  |  |
|                        | Luftreinheitsklasse | 1    | 1          | 2        | 1    |      |      |  |  |  |
|                        |                     |      |            |          |      |      |      |  |  |  |



# Partikelemission Ergebnisübersicht: Luftreinheitsklassen nach ISO 14644-1

Greifer

- Zyklus: 2 s
- Frequenz: 30/min
- Ergebnis:
- → ISO 4/GMP A

| Messpunkt           | MP04 | MP05 | MP06 | MP07 |
|---------------------|------|------|------|------|
| Luftreinheitsklasse | 1    | 1    | 4    | 4    |



# Reinigbarkeit VDMA-Merkblatt: Riboflavintest

Fluoreszenztest zur Prüfung der Reinigbarkeit von Komponenten, Maschinen und Anlagen

- Testverschmutzung: Stärke (Empfehlung) mit Riboflavin; alternativ Uranin
- Direkter Nachweis durch UV-Betrachtung bei 366 nm
  - Reinigbarkeitstest: Nachweis vollständiger Reinigbarkeit
  - Schwachstellentest: Lokalisierung kritischer Stellen
  - → Deren Anzahl ist **quantifizierbar!**



Bildquelle: Fraunhofer IPA



VDMA Merkblatt (2007). Riboflavintest für keimarme oder sterile Verfahrenstechniken-Fluoreszenztest zur Prüfung der Reinigbarkeit.

# Reinigung Übersicht Reinigungsverfahren

- Eine Reinigung führt zur Reduktion einer Kontamination auf Oberflächen
- Eine Reinigung muss immer auf die jeweilige Anwendung/Material abgestimmt sein



Quelle: DIN 8592; erweitert durch Fraunhofer IPA



# Vorgehensweise:

- Festlegung der Schwachstellen
- Kontamination mit Riboflavin
- Bilddokumentation VOR Reinigung
- Wischreinigung mit Reinstwasser
- Bilddokumentation NACH Reinigung
- Bewertung der Schwachstellen bezüglich der Reinigbarkeit

















# Chemische Beständigkeit **Anforderungen und Vorgehensweise**

- GMP: »...verwendete Materialien müssen gegenüber eingesetzten Reinigungs- und Desinfektionsmitteln resistent sein... «
- Zur Absicherung gegenüber zukünftigen Kunden wird folgendes repräsentatives Chemikalienspektrum getestet:
  - 1. Formalin (37 %)
  - 2. Ammoniak (25 %)
  - 3. Wasserstoffperoxid (30 %) 8. Isopropanol (100%)
  - 4. Schwefelsäure (5 %)
  - 5. Phosphorsäure (30 %)

- 6. Peressigsäure (15 %)
- 7. Salzsäure (5%)

  - 9. Natronlauge (5 %)
  - 10. Natrumhypochlorid (15 %)

# Testverfahren nach

# ISO 2812-1: Tauchverfahren





# Chemische Beständigkeit Anforderungen und Vorgehensweise

## Versuchsansatz:







# Chemische Beständigkeit Klassifizierung

# Bewertung nach ISO 4628-1 bis -6

### Tabelle 1 — Kennwerte zum Bewerten der Menge von Schäden

| Kennwert | Menge der Schäden                                                         |
|----------|---------------------------------------------------------------------------|
| 0        | keine, d. h. keine erkennbaren Schäden                                    |
| 1        | sehr wenige, d. h. kleine, gerade noch signifikante Anzahl von<br>Schäden |
| 2        | wenige, d. h. kleine, aber signifikante Anzahl von Schäden                |
| 3        | mäßig viele Schäden                                                       |
| 4        | Schäden in beträchtlicher Anzahl                                          |
| 5        | sehr viele Schäden                                                        |

### Tabelle 2 — Kennwerte zum Bewerten der Größe von Schäden

| Kennwert               | Größe der Schäden <sup>a</sup>                                                                        |
|------------------------|-------------------------------------------------------------------------------------------------------|
| 0                      | nicht sichtbar bei 10facher Vergrößerung                                                              |
| 1                      | nur sichtbar bei bis zu 10facher Vergrößerung                                                         |
| 2                      | gerade sichtbar mit bloßem Auge (auf Normalsichtigkeit korrigiertes<br>Sehvermögen)                   |
| 3                      | deutlich sichtbar mit bloßem Auge (auf Normalsichtigkeit korrigiertes<br>Sehvermögen) (bis zu 0,5 mm) |
| 4                      | Bereich 0,5 mm bis 5 mm                                                                               |
| 5                      | größer als 5 mm                                                                                       |
| a Falls in den Folgete | ilen von ISO 4628 nicht anders festgelegt.                                                            |

# Beurteilung nach VDI 2083 Blatt 17

| Kennzahl | Bewertungsskala         | Beurteilung        |
|----------|-------------------------|--------------------|
| 0        | keine Veränderung       | beständig          |
| 1        | spur verändert          | bedingt beständig  |
| 2        | gering verändert        | bearingt bestandig |
| 3        | mittlere Veränderung    |                    |
| 4        | starke Veränderung      | nicht beständig    |
| 5        | sehr starke Veränderung |                    |





# Chemische Beständigkeit Klassifizierung

# Zeitlicher Verlauf!

| IT!<br>Reagenzien                      | Belastung<br>1 Stunde | Belastung<br>3 Stunden | Belastung<br>6 Stunden | Belastung<br>24<br>Stunden |     |
|----------------------------------------|-----------------------|------------------------|------------------------|----------------------------|-----|
| Formalin (37 %)                        | N-0                   | N-0                    | N-0                    | N-0                        | 0   |
| Ammoniak (25 %)                        | N-0                   | N-0                    | N-0                    | N-0                        | 0   |
| 3 H <sub>2</sub> O <sub>2</sub> (30 %) | N-0                   | N-0                    | N-0                    | N-0                        | 0   |
| Schwefelsäure (5 %)                    | N-0                   | N-0                    | N-0                    | N-0                        | 0   |
| Phosphorsäure (30 %)                   | N1-S1                 | N1-S1                  | N1-S1                  | N1-S1                      | 1   |
| Peressigsäure (15 %)                   | N1-S1                 | N1-S1                  | N1-S1                  | N1-S1                      | 1   |
| Salzsäure (5%)                         | N1-S2                 | N1-S2                  | N1-S3                  | N1-S3                      | 3   |
| Isopropanol (100%)                     | N-0                   | N-0                    | N-0                    | N-0                        | 0   |
| Natronlauge (5 %)                      | N-0                   | N-0                    | N-0                    | N-0                        | 0   |
| Natrumhypochlorid (15 %)               | N-0                   | N-0                    | N-0                    | N-0                        | 0   |
|                                        | CSM-Klassif           | izierung               |                        |                            | 0,5 |



# Chemische Beständigkeit Klassifizierung

Schlechteste Kennzahl (N, S, I,...) bei 24 Stunden Belastung gibt die Bewertung

| Kennzahl | CSM       |
|----------|-----------|
| 0        | excellent |
| 1        | very good |
| 2        | good      |
| 3        | weak      |
| 4        | very weak |
| 5        | none      |

Klassifizierungsdurchschnitt aller 10 Chemikalien ergibt Gesamtklasse (gerundet)



Nuplex Construction Report No. NU 1310-671 Sureshield Chemical Resistance: excellent



# Chemische Beständigkeit Ergebnis

# Ergebnisse nach 24 Stunden Belastungsdauer

|                         | а  | b  | С  | d  | е  | f  | g  | h  | i  | j  | k  |    | m  | n  | 0  | р  |
|-------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                         | Μ  | Μ  | Μ  | Μ  | Μ  | Μ  | Μ  | Р  | Р  | Р  | Р  | Р  | Р  | Р  | Р  | Р  |
| Formalin 37 %           | NO | 1  | NO | NO | NO | NO | NO |
| Ammoniak 25 %           | NO | 12 | 11 | NO | 15 | NO | NO |
| Wasserstoffperoxid 30 % | NO |
| Schwefelsäure 5 %       | 11 | NO | 13 | NO | NO | NO | NO | N0 | 1  | 1  | NO | NO | NO | NO | NO | NO |
| Phosphorsäure 30 %      | NO |
| Peressigsäure 15 %      | NO | 13 | 13 | 13 | 1  | 13 | NO | NO | 15 |
| Salzsäure 5 %           | NO | 12 | 13 | ĮΔ | 15 | ĮΔ | 13 | NO | 11 | 1  | NO | NO | NO | NO | NO | NO |
| Isopropanol 100 %       | NO | 11 |
| Natruiumhydroxid 5 %    | NO |
| Natriumhypochlorit 5 %  | NO | 12 | NO | NO | 1  | NO |
| Gesamtergebnis          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

 $\rightarrow$  Hervorragende chemische Resistenz ALLER eingesetzten und mit dem Aussenraum in Kontakt stehenden Materialien gegen H<sub>2</sub>O<sub>2</sub> und Isopropanol



# Chemische Beständigkeit Ergebnis

Material d und Salzsäure nach 24 Stunden:



Bildquelle: Fraunhofer IPA



Seite 44

# **Biologische Beständigkeit**

Bestimmung mit Hilfe der Entwicklung der Anzahl von Mikroorganismen auf einer Materialoberfläche



Absicherung für Anlagenbauer und -betreiber: ISO 846: Plastics, evaluation of the action of microorganisms



Seite 45

# **Biologische Beständigkeit**

# Zu Grunde liegender Standard: DIN EN ISO 846

- Verfahren A: Pilze
- Verfahren B: fungistatische Wirksamkeit
- Verfahren C: Bakterien
- Verfahren D: Eingrabversuch

|               | DEUTSCHE NORM                                                                                                                      | Oktober 1997                      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|               | Kunststoffe<br>Bestimmung der Einwirkung von Mikroorganismen<br>auf Kunststoffe<br>(ISO 846:1997) Deutsche Fassung EN ISO 846:1997 | DIN<br>EN ISO 846                 |
| ICS 07.100.99 | ; 83.080.01                                                                                                                        | Ersatz für<br>DIN 53739 : 1984-11 |





# Biologische Beständigkeit Versuchsansatz

Stammkulturen:

- Aspergillus niger
- Penicilium funiculosum
- Pecliomyces variotii
- Gliocladium virens
- Chaetominum globosum

Pseudomonas aeruginosa







# Biologische Beständigkeit Auswertung

- Nach erfolgter Inkubation bei 24 °C für 4 Wochen visuelle Betrachtung der Proben: Mit bloßem Auge und Stereolupe
- Unter mikroskopischer Betrachtung sind auf dem Bodenbelag Pilzsporen zu sehen!





# **Biologische Beständigkeit Klassifizierung**

### Tabelle 4: Bewertung des Pilzwachstums

| Wachstums-<br>intensität | Beurteilung                                                                              |
|--------------------------|------------------------------------------------------------------------------------------|
| 0                        | kein Wachstum bei mikroskopischer<br>Betrachtung erkennbar                               |
| 1                        | kein Wachstum mit bloßem Auge,<br>aber unter dem Mikroskop klar<br>erkennbar             |
| 2                        | Wachstum mit bloßem Auge erkenn-<br>bar, bis zu 25 % der Proben-<br>oberfläche bewachsen |
| 3                        | Wachstum mit bloßem Auge erkenn-<br>bar, bis zu 50 % der Probenober-<br>fläche bewachsen |
| 4                        | beträchtliches Wachstum, über 50 %<br>der Probenoberfläche bewachsen                     |
| 5                        | starkes Wachstum, ganze Proben-<br>oberfläche bewachsen                                  |

Vom Test auf Bakterien und Pilze wird das schlechtere Ergebnis zur Klassifizierung herangezogen.

|     | Biologische<br>Resistenz                                    | CSM-<br>Klassifizierung                                                                  |   |
|-----|-------------------------------------------------------------|------------------------------------------------------------------------------------------|---|
|     | 0                                                           | excellent                                                                                |   |
|     | 1                                                           | very good                                                                                |   |
|     | 2                                                           | good                                                                                     |   |
|     | 3                                                           | weak                                                                                     |   |
|     | 4                                                           | very weak                                                                                |   |
|     | 5                                                           | none                                                                                     |   |
|     |                                                             |                                                                                          |   |
| Rep | C S M<br>IPA<br>Nuplex Construction<br>port No. NU 1310-671 | <b>Cleanroom</b><br>Suitable<br><b>Materials</b><br>Sureshield<br>Biol. Resistance: good | ® |
|     | Flooring                                                    | & Coating                                                                                |   |



# Biologische Beständigkeit Ergebnisse

| Nummer | Pilze        | Bakterien    | Klassifizierung |
|--------|--------------|--------------|-----------------|
| 1      | 1, very good | 0, excellent | 1, very good    |
| 2      | 2, good      | 0, excellent | 2, good         |
| 3      | 2, good      | 1, very good | 2, good         |
| 4      | 2, good      | 0, excellent | 2, good         |
| 5      | 2, good      | 0, excellent | 2, good         |
| 6      | 0, excellent | 2, good      | 2, good         |
| 7      | 1, very good | 1, very good | 1, very good    |
| 8      | 2, good      | 0, excellent | 2, good         |
| 9      | 0, excellent | 0, excellent | 0, excellent    |

Ergebnis: Keines der Materialien zeigt eine ungenügende biologische Beständigkeit.



# Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas

Sterilisierung mit gasförmigen Wasserstoffperoxid:

- Etabliertes anerkanntes Verfahren
- Verwendung zur Dekontamination in Isolatoren



Bildquelle: Skan AG



Bildquelle: Bosch Packaging Technology



Krishna et al. (2000):

Ein Nachteil der VHP-Sterilisierung sind stark VHP-adsorbierende Materialien wie Papier und PVC...welche signifikant zur Verlängerung der Belüftungsphase beitragen können.

Belly & Wilkins (2000):

VHP kann von Kunststoffen...adsorbiert werden Diese Materialien können anschließend H2O2 mit sehr geringen Raten desorbieren. H2O2adsorbierenden Materialien müssen bei der Konstruktion von Isolatoren und Formatteilen vermieden werden.

Krishna, A.K.; Lodhi, S.A. and Harris, M.R. (2000): Isolation Technology for Research and Development Applications: FromConcept to Production, Vol. 5, No. 4, Pages 507-520

Belly, S.; Wilkins, J. (2000): A Technical Review of Isolators .The Official Journal of ISPE, Vol.18 No.2



# Steris (Firmenschrift, 2002):

Analyse der Restmenge an adsorbiertem VPHP bei verschiedenen Materialien

**Bioquell** (Firmenschrift 2010):

- H<sub>2</sub>O<sub>2</sub>-Gas adsorbierende Materialien:
  - PVC
  - PMMA

| Sample                                                                                                      | Surface<br>Area<br>(cm2)                                                 | Extraction<br>Volume<br>(ML)                       | H <sub>2</sub> O <sub>2</sub><br>Levels<br>(MG/L)          | H <sub>2</sub> O <sub>2</sub><br>Levels<br>(ug/CM2)                  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|
| Control                                                                                                     | 4.0145                                                                   | 10                                                 | 0.069                                                      | 0.17                                                                 |
| FDA Silicone Rubber                                                                                         | 4.0175                                                                   | 10                                                 | 1.32                                                       | 3.1                                                                  |
| Control                                                                                                     | 3.477                                                                    | 10                                                 | 0.08                                                       | 0.23                                                                 |
| VINYL-BUNA N Rubber                                                                                         | 3.477                                                                    | 10                                                 | 0.33                                                       | 0.99                                                                 |
| Control                                                                                                     | 4.9                                                                      | 10                                                 | 0.08                                                       | 0.18                                                                 |
| EPDM Rubber                                                                                                 | 4.9                                                                      | 10                                                 | 0.12                                                       | 0.27                                                                 |
| Control                                                                                                     | 5.33                                                                     | 10                                                 | 0.14                                                       | 0.26                                                                 |
| Polyurethane                                                                                                | 5.33                                                                     | 10                                                 | 62.85                                                      | 117.93                                                               |
| Control                                                                                                     | 5.097                                                                    | 10                                                 | 0.11                                                       | 0.21                                                                 |
|                                                                                                             |                                                                          | 10                                                 | 0.11                                                       | 0.21                                                                 |
| Cast Acrylic                                                                                                | 5.097                                                                    | 10                                                 | 6.61                                                       | 12.98                                                                |
| Cast Acrylic<br>Control                                                                                     | 5.097<br>5.15                                                            | 10<br>10<br>10                                     | 6.61<br>0.15                                               | 12.98<br>0.29                                                        |
| Cast Acrylic<br>Control<br>Nylon 6/6                                                                        | 5.097<br>5.15<br>5.15                                                    | 10<br>10<br>10                                     | 6.61<br>0.15<br>61                                         | 12.98<br>0.29<br>119                                                 |
| Cast Acrylic<br>Control<br>Nylon 6/6<br>Control                                                             | 5.097<br>5.15<br>5.15<br>5.42                                            | 10<br>10<br>10<br>10<br>10                         | 6.61<br>0.15<br>61<br>0.08                                 | 0.29<br>0.29<br>119<br>0.16                                          |
| Cast Acrylic<br>Control<br>Nylon 6/6<br>Control<br>UHMW Polyethylene                                        | 5.097<br>5.15<br>5.15<br>5.42<br>5.42                                    | 10<br>10<br>10<br>10<br>10<br>10                   | 6.61<br>0.15<br>61<br>0.08<br>0.12                         | 12.98<br>0.29<br>119<br>0.16<br>0.22                                 |
| Cast Acrylic<br>Control<br>Nylon 6/6<br>Control<br>UHMW Polyethylene<br>Control                             | 5.097<br>5.15<br>5.15<br>5.42<br>5.42<br>4.827                           | 10<br>10<br>10<br>10<br>10<br>10<br>10             | 6.61<br>0.15<br>61<br>0.08<br>0.12<br>0.06                 | 12.98<br>0.29<br>119<br>0.16<br>0.22<br>0.13                         |
| Cast Acrylic<br>Control<br>Nylon 6/6<br>Control<br>UHMW Polyethylene<br>Control<br>Polypropylene            | 5.097<br>5.15<br>5.15<br>5.42<br>5.42<br>4.827<br>4.827                  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | 6.61<br>0.15<br>61<br>0.08<br>0.12<br>0.06<br>0.09         | 0.21<br>12.98<br>0.29<br>119<br>0.16<br>0.22<br>0.13<br>0.19         |
| Cast Acrylic<br>Control<br>Nylon 6/6<br>Control<br>UHMW Polyethylene<br>Control<br>Polypropylene<br>Control | 5.097<br>5.15<br>5.15<br>5.42<br>5.42<br>4.827<br>4.827<br>4.827<br>5.11 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 6.61<br>0.15<br>61<br>0.08<br>0.12<br>0.06<br>0.09<br>0.15 | 0.21<br>12.98<br>0.29<br>119<br>0.16<br>0.22<br>0.13<br>0.19<br>0.29 |

STERIS Corporation (2002): Material compatibility with vaporizes hydrogen peroxide (VHP®) Sterilization, Publication ID #M2331EN.2002-04, Rev. A

Bioquell UK Ltd (2010): Hydrogen peroxide vapour material compatibility: Issues and facts for Bioquell technology. TECHNICAL REPORT HPV Compatibility 146/10



Seite 53

# Bacterial endospore inactivation caused by outgassing of vapourous hydrogen peroxide from polymethyl methacrylate (Plexiglas<sup>®</sup>)

P.A. Baron<sup>1</sup>, C.F. Estill<sup>1</sup>, J.K. Beard<sup>2</sup>, M.J. Hein<sup>1</sup> and L. Larsen<sup>2</sup>

National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
 U.S. Army Dugway Proving Ground, Dugway, UT, USA

Conclusions:  $H_2O_2$  can be absorbed into plastic and released after an extended period of time (weeks), allowing a sufficient concentration to accumulate in small volumes to inactivate spores. Outgassing the plastic or coating the surface with an impermeable layer are potential solutions to reduce spore inactivation.

Baron, P. A.; Estill, C. F.; Beard, J. K.; Hein, M. J.; Larsen, L. (2007): Bacterial endospore inactivation caused by outgassing of vapourous hydrogen peroxide from polymethyl methacrylate (Plexiglas®). In: *Letters in applied microbiology* 45 (5), S. 485–490.



Radl et al. (2011):

Aufnahmekapazität und innere Diffusion von Wasserstoffperoxid



Radl, S.; Larisegger, S.; Suzzi, D. and Khinast, J.G.(2011): Quantifying Absorption Effects during Hydrogen Peroxide Decontamination. J Pharm Innov



Raumfahrt-Standard: ECSS Q-ST-53-C

Verlust von H2O2 aufgrund Absorption in PU, Zellulose und PA

# Space product assurance

Materials and hardware compatibility tests for sterilization processes





Raumfahrt-Standard: ECSS Q-ST-53-C: Hintergrund: Planetary protection!





# Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Hintergrund



# **Prozessdauer** in h:mm:ss

→Aufgrund der H<sub>2</sub>O<sub>2</sub>-Absorption von Materialien während der Begasung und der verzögerten Desorption während der Belüftung ist die tatsächlich notwendige Zeit (rot) der Dekontamination oft signifikant länger als der theoretische Wert (blau)



Seite 58

# Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Hintergrund





# Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Hintergrund

Auswahl geeigneter Materialien für:

# schnelle Dekontaminationszyklen

 $\rightarrow$ Materialien mit geringer Adsorption und schneller Desorption von  $H_2O_2$ -Gas

- Während der Dekontamination: Sicheres Erreichen der notwendigen H<sub>2</sub>O<sub>2</sub>-Gas-Konzentration auf allen Oberflächen.
- Katalytische Effekte sind zu vermeiden!



# Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Testmethode: VDI 2083 Blatt 20 (draft)

Emissionszelle und Verrohrung komplett aus PTFE und PFA





# Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Testmethode: VDI 2083 Blatt 20 (draft)





Quelle: Fraunhofer IPA



Seite 62



| K-VALUE                                       | H <sub>2</sub> O <sub>2</sub> Adsorption and desorption kinetics:<br>Classification                                                        |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| < 5 min                                       | Non-adsorptive                                                                                                                             |  |
| 5-15 min                                      | Fast                                                                                                                                       |  |
| 15-60 min                                     | Medium                                                                                                                                     |  |
| > 60 min                                      | Slow                                                                                                                                       |  |
| Not determinable due to<br>catalytic activity | Cleanter Gmbri<br>Report No. CT 0908-123Cleanter Gmbri<br>Date Science<br>Date Science<br>Date Science<br>Date Science<br>Date Science<br> |  |



Große Unterschiede zwischen den Materialien:





Große Unterschiede zwischen den Materialien (Zoom):





# Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Materialien mit katalytischem Effekt für H<sub>2</sub>O<sub>2</sub>

k-Wert ist nicht bestimmbar: katalytisch aktives Material (AeroLaser)





# Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas



K-Wert (in min)

Ergebnis: Keines der Materialien zeigt eine stark zeitverzögerte Emission von Wasserstoffperoxid nach erfolgter Begasung



# Strömungsverhalten Biologische Beständigkeit Luftgetragene partikuläre Kontaminationen Parameter einer

Oberflächenqualität

Chemikalienbeständigkeit

Reinigbarkeit

ganzheitlichen Bewertung

Einhaltung (inter-)nationaler Richtlinien und Standards (GMP, FDA, ISO, EHEDG,..) Hygienic Design

Schnelle H<sub>2</sub>O<sub>2</sub>-Dekontaminationszyklen

Konzeption des

**Betriebsmittels** 



# Ergebnisdarstellung auf www.ipa-qualification.com

|    | 🖉 Fraun       | hofer<br>IPA      |                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                            |
|----|---------------|-------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Übersicht     | TESTED DE         | VICE® CSM®                                                                 |                                                                                                                                                                               |                                                                                                                                                                                                                            |
| TE | ESTED DEVICE® |                   |                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                            |
| L  | Suchen ► Neue | Suche             |                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                            |
|    | Report Nr. 搔  | Hersteller▼▲      | Produktname▼▲                                                              | Art der Untersuchung (Ergebnis)▼▲                                                                                                                                             | Filter                                                                                                                                                                                                                     |
| l  | LE 1212-626   | LEONI Kerpen GmbH | MegaLine D1-20 S/U superflex<br>4P 11Y<br>SPICE Code 10124                 | Ausgasung (VDI 2083 Blatt 17)<br>Chemische Beständigkeit<br>(VDI 2083 Blatt 17)<br>Partikelemission<br>(VDI 2083 Blatt 9.1)<br>Riboflavintest<br>(VDMA Informationsmerkblatt) | Text                                                                                                                                                                                                                       |
| 1  | SI 1309-665   | Sika AG           | <u>Bodenbelag</u><br><u>Sikafloor-264</u><br><u>smooth</u>                 | Riboflavintest<br>(VDMA Informationsmerkblatt)                                                                                                                                | Tauglich für Einsatz in         Reinraumbereichen der         Luftreinheitsklasse nach ISO         14644-1* <u>Alle ISO Klassen</u> (12 Treffer)         Art der Untersuchung <u>Alle (507 Treffer)</u> Alle (507 Treffer) |
| ļ  | SI 1309-665   | Sika AG           | <u>Bodenbelag</u><br><u>Sikafloor-264 Thixo</u><br><u>textured</u>         | Riboflavintest<br>(VDMA Informationsmerkblatt)                                                                                                                                |                                                                                                                                                                                                                            |
|    | SI 1309-665   | Sika AG           | <u>Bodenbelag</u><br><u>Sikafloor-264 Thixo</u><br><u>textured + 5% QS</u> | Riboflavintest<br>(VDMA Informationsmerkblatt)                                                                                                                                |                                                                                                                                                                                                                            |
|    | SI 1309-665   | Sika AG           | <u>Bodenbelag</u><br>Sikafloor-264 Thixo                                   | Riboflavintest                                                                                                                                                                | ( <u>1 Treffer</u> )<br>Ausgasung (VDI 2083 Blatt                                                                                                                                                                          |



# Kontakt

# Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA Reinst- und Mikroproduktion

Udo Gommel | Phone +49 711 970-1633 | udo.gommel@ipa.fraunhofer.de

Markus Keller | Phone +49 711 970-1560 | markus.keller@ipa.fraunhofer.de



ADRESSE: Nobelstr. 12, D-70569 Stuttgart

**INTERNET:** www.ipa.fraunhofer.de/cleanroom www.ipa-qualification.com www.tested-device.de

