# Ganzheitliche Bewertung der Eignung eines 6-achsigen Roboters für die aseptische Fertigung

- 18. Pharmatechnik-Konferenz
- 13. April 2016 Pharma-Kongress 2016 Düsseldorf



13.04.2016

Dipl.-Biol. (t.o.) Markus Keller

Fraunhofer IPA, Reinst- und Mikroproduktion





#### Die Fraunhofer-Gesellschaft

- größte Einrichtung Europas für angewandte Forschung

- 67 Institute an über40 Standorten
- 23.000 Mitarbeiter
- 2,0 Mrd. € Budget1,7 Mrd. € Auftragsforschung
- Motivation:
   Forschung, die den Menschen nützt
- Anwendungsorientierte Forschung: Forschen für die Praxis



Quelle: Fraunhofer



#### Fraunhofer IPA

#### Abteilung Reinst- und Mikroproduktion

- Angewandte Forschung und Entwicklung
- 30 Jahre Erfahrung und Know-how
- ~ 56 Mitarbeiter, 40 student. Hilfskräfte
- Mehrere Referenzreinräume ISO 1
- Über 70 Patentanmeldungen
- Kunden:
  - Hersteller von kontaminationskritischen Produkten
  - Hersteller von Equipment für den Reinraum
  - Reinraumplaner







# Grundlagen: Ganzheitliche Bewertung eines Betriebsmittels für die aseptische Fertigung



# Hygienic Design: Forderungen der GMP

Hygienic design Auszug aus dem EU-GMP-Leitfaden Volume 4 Annex 1: » ... in clean areas, all surfaces should be smooth, imperious and unbroken in order to minimize the shredding or accumulation of particles or microorganisms and to permit repeated application of cleaning agents and desinfectants where used ... « » ... The manufacture of sterile products is subject to special requirements in order to minimize risks of microbiological contamination, and of particulate or pyrogen contamination.« Verstoffwechselbarkeit Reinigung **Partikel** und Mikrobizidität Chemische Resistenz

### - grundlegende Prinzipien zur Fehlerminimierung

#### Regel 1: Verwendung drehender Bewegungselemente

- Erforderliche Bewegung kann oft durch weniger bewegende Teile erreicht werden
- Kapseln sich drehender Elemente durch
  - Dichtungen
  - Segmentielle Dichtungselemente
    - → Oft ideal: aktive Absaugung



Quelle: Friedrich Sailer GmbH

## - grundlegende Prinzipien zur Fehlerminimierung

#### Regel 2: Minimierung Gleitreibung

- Keine Gleitbahnen > besser: Rollenunterstützung
- nach Möglichkeit keine Gleitringdichtungen
- Vermeidung unnötiger Produktkontakte



Quelle: Igus Inc.

#### Regel 3: Materialauswahl/Oberflächenbeschaffenheit

- Materialien mit guten ESD-Eigenschaften
- Materialkombinationen (z.B.: Polymer – Metall):
- Glatte Oberflächen, keine scharfe Kanten→ einfacher zu reinigen



Quelle: Fraunhofer IPA



### - grundlegende Prinzipien zur Fehlerminimierung

#### Regel 4: Analyse der Produkthandhabung

- Nein: Greifen in derselben Richtung wie die Richtung des Primär-Luftstroms
- Ja: Geifen von der Seite
  - → Greifer beeinflusst nicht den Primär-Luftstrom
  - → Ablenkungen des Luftstroms werden vermieden
- Falls Greifer nur über dem Produkt eingesetzt werden kann:
  - → bewegende Elemente neben dem Produkt
  - → Auswahl der Greifer-Geometrie und des Greifwegs um stagnierende Luftgebiete nicht in kritischen Bereichen zu forcieren



Sterilisierbarer Vakuumgreifer; Quelle: DIL e.V.

Minimale Anzahl von Handhabungsschritten

## - grundlegende Prinzipien zur Fehlerminimierung

#### Regel 5: Integration verschiedener Komponenten

- Reduktion der notwendigen Anzahl an Komponenten auf ein Minimum
  - → eine Komponente mit mehreren Funktionen

#### Regel 6: hermetische Abtrennung

- abtrennende Komponenten:
  - Trennwände:
    - → glatt, beschichtetes Material
  - Feste Kapselung durch Einhausung
    - → alle beweglichen Teile in einem Gehäuse
    - → integrierte Energieversorgung
- gezielt beeinflusste Strömungsführung um das Produkt



Quelle: Hastrup-Walcher

# Hygienic Design: Forderungen von Richtlinien: EHEDG

#### Auszug aus Richtlinien der EHEDG:

- EckenMindest-Radius von R ≥ 3 mm⇒ garantiert Reinigbarkeit
- Waagrechte Oberflächen müssen vermieden werden
  - → notwendige Neigung ≥ 1,5 % garantiert Flüssigkeitsabfluss
- Verbindungstechnik durchgehend wasserdichte glatte Stoßnähte
  - → garantieren die Reinigbarkeit und mögliche Keimfreiheit





## - grundlegende Prinzipien zur Fehlerminimierung

Einfluss der geometrischen Ausgestaltung auf die Reinigbarkeit



Zu Vermeiden:

- Stehendes Wasser
- Spitze Ecken
- Versperrungen
- Tiefe Fugen
- Schlechte Erreichbarkeit



Quelle: Friedrich Sailer GmbH



Quelle: EHEDG

## - grundlegende Prinzipien zur Fehlerminimierung

Auszug aus EHEDG-Richtlinie Doc. 13: Schraubverbindungen



Abb. 4: Hygienerisiken durch Schrauben im Produktbereich, metallische Kontaktflächen, Spalte und Toträume oder Vertiefungen.

Quelle: EHEDG

## - grundlegende Prinzipien zur Fehlerminimierung

Auszug aus EHEDG-Richtlinie Doc. 13: Schraubverbindungen



Abb. 5: Hygienegerechte Konstruktion von Schraubverbindungen:

Fraunhofer

Quelle: EHEDG

# Hygienic Design im Anlagenbau



## Hygienic Design im Anlagenbau

#### Beispiele:









Quelle: Pflitsch GmbH



Quelle: Schunk



















Quelle: Fraunhofer IPA

# Durchgängiges Hygienic Design eines Greifers







## Durchgängiges Hygienic Design eines Greifers

- Silikon: entspricht FDA §177.2600: Rubber articles intended for repeated use
  - ISO 10993-5: keine Cytotoxizität; ISO 10993-11: keine Pyrogenität
- Edelstahl 1.4401/AISI 316



# Partikelemission Reinraumtauglichkeits-Klassifizierung VDI 2083 Blatt 9.1

#### Falls Reibung unvermeidbar ist:

- Verwendung geeigneter Materialpaarungen
- Ggf entfernen generierter Partikel durch interne Absaugung
- Bestimmung der Partikelemission und Reinraumtauglichkeits-Klassifizierung VDI 2083 Blatt 9.1





# Partikelemission Reinraumtauglichkeits-Klassifizierung VDI 2083 Blatt 9.1

Messumgebung: Referenzreinraum ISO 1 (14644-1)



# Partikelemission Reinraumklassen

|         | Regu   | ılatory    |          | Lin       | niting valu | es of each | air cleanline | ess class fo | r differing | particle size | s and refer | ence volum | es (acc. to | ISO 14644-1 | 1)    |
|---------|--------|------------|----------|-----------|-------------|------------|---------------|--------------|-------------|---------------|-------------|------------|-------------|-------------|-------|
| DIN EN  | EU-GMP | EU-GMP     | US Fed.  | 0.1 μ     | um          | 0.2        | μm            | 0.3          | μm          | 0.5           | μm          | 1.0        | μm          | 5.0         | μm    |
| ISO     | "at    | "in        | Standard | per       | per         | per        | per           | per          | per         | per           | per         | per        | per         | per         | per   |
| 14644-1 | rest"  | operation" | 209E*    | m³        | cbf         | m³         | cbf           | m³           | cbf         | m³            | cbf         | m³         | cbf         | m³          | cbf   |
| 1       |        |            |          | 10        | 0.3         | 2          | 0.1           |              |             |               |             |            |             |             |       |
| 2       |        |            |          | 100       | 3           | 24         | 1             | 10           | 0.3         | 4             | 0.1         |            |             |             |       |
| 3       |        |            |          | 1,000     | 30          | 237        | 7             | 102          | 3           | 35            | 1           | 8          | 0.2         |             |       |
|         |        |            | 1        | 1,240     | 35          | 265        | 8             | 106          | 3           | 35            | 1           |            |             |             |       |
| 4       |        |            |          | 10,000    | 300         | 2,370      | 67            | 1,020        | 29          | 352           | 9.9         | 83         | 2           |             |       |
|         |        |            | 10       | 12,000    | 340         | 2,650      | 75            | 1,060        | 29          | 353           | 10          |            |             |             |       |
| 5       |        |            |          | 100,000   | 2,833       | 23,700     | 671           | 10,200       | 289         | 3,520         | 100         | 832        | 24          | 29          | 0.8   |
|         | Α      | Α          |          |           |             |            |               |              |             | 3,520         | 100         |            |             | 20          | 0.6   |
|         | В      |            |          |           |             |            |               |              |             | 3,520         | 100         |            |             | 29          | 0.8   |
|         |        |            | 100      |           |             | 26,500     | 750           | 10,600       | 300         | 3,530         | 100         |            |             |             |       |
| 6       |        |            |          | 1,000,000 | 28,329      | 237,000    | 6,710         | 102,000      | 2,890       | 35,200        | 997         | 8,320      | 235         | 293         | 8     |
|         |        |            | 1,000    |           |             |            |               |              |             | 35,300        | 1,000       |            |             | 247         | 7     |
| 7       |        |            |          |           |             |            |               |              |             | 352,000       | 9,972       | 83,200     | 2,357       | 2,930       | 83    |
|         | С      |            |          |           |             |            |               |              |             | 352,000       | 9,972       |            |             | 2,900       | 82    |
|         |        | В          |          |           |             |            |               |              |             | 352,000       | 9,972       |            |             | 2,900       | 82    |
|         |        |            | 10,000   |           |             |            |               |              |             | 353,000       | 10,000      |            |             | 2,470       | 70    |
| 8       |        |            |          |           |             |            |               |              |             | 3,520,000     | 99,716      | 832,000    | 23,569      | 29,300      | 830   |
|         | D      |            |          |           |             |            |               |              |             | 3,520,000     | 99,716      |            |             | 29,000      | 821   |
|         |        | С          |          |           |             |            |               |              |             | 3,520,000     | 99,716      |            |             | 29,000      | 821   |
|         |        |            | 100,000  |           |             |            |               |              |             | 3,530,000     | 100,000     |            |             | 24,700      | 700   |
| 9       |        |            |          |           |             |            |               |              |             | 35,200,000    | 997,167     | 8,320,000  | 235,694     | 293,000     | 8,300 |





Festlegung der Prüfumgebung

Dekontamination des Prüflings

Definition der Betriebsparameter

Lokalisierung der Messstellen

Klassifizierungsmessungen

Statistische Verifikation





#### Klassifizierung:

Betriebsmittel ist geeignet für Einsatz in der Luftreinheitsklasse X





































Partikelemission Fraebnisübersich

Ergebnisübersicht: Luftreinheitsklassen nach ISO

14644-1

Roboter

Last 1,6 kg

Ergebnis:

→ ISO 5/GMP A

| Axis 1              |      |      |      |      |      |      |  |  |  |
|---------------------|------|------|------|------|------|------|--|--|--|
| Messpunkt           | MP01 | MP02 | MP03 | MP04 | MP05 |      |  |  |  |
| Luftreinheitsklasse | 2    | 1    | 1    | 2    | 1    |      |  |  |  |
| Axis 2              |      |      |      |      |      |      |  |  |  |
| Messpunkt           | MP06 | MP07 | MP08 | MP09 | MP10 |      |  |  |  |
| Luftreinheitsklasse | 1    | 1    | 1    | 2    | 4    |      |  |  |  |
| Axis 3              |      |      |      |      |      |      |  |  |  |
| Messpunkt           | MP11 | MP12 | MP13 | MP14 | MP15 |      |  |  |  |
| Luftreinheitsklasse | 1    | 5    | 2    | 1    | 4    |      |  |  |  |
| Axis 4              |      |      |      |      |      |      |  |  |  |
| Messpunkt           | MP16 | MP17 | MP18 | MP19 | MP20 | MP21 |  |  |  |
| Luftreinheitsklasse | 1    | 1    | 1    | 1    | 1    | 1    |  |  |  |
| Axis 5              |      |      |      |      |      |      |  |  |  |
| Messpunkt           | MP22 | MP23 | MP24 | MP25 | MP26 |      |  |  |  |
| Luftreinheitsklasse | 1    | 1    | 1    | 4    | 1    |      |  |  |  |
| Axis 6.1 (Flange A) |      |      |      |      |      |      |  |  |  |
| Messpunkt           | MP27 | MP28 | MP29 | MP30 |      |      |  |  |  |
| Luftreinheitsklasse | 2    | 1    | 1    | 1    |      |      |  |  |  |
| Axis 6.2 (Flange N) |      |      |      |      |      |      |  |  |  |
| Messpunkt           | MP31 | MP32 | MP33 | MP34 |      |      |  |  |  |
| Luftreinheitsklasse | 1    | 1    | 2    | 1    |      |      |  |  |  |
|                     |      |      |      |      |      |      |  |  |  |

## Partikelemission Ergebnisübersicht: Luftreinheitsklassen nach ISO 14644-1

Greifer

Zyklus: 2 s

Frequenz: 30/min

Ergebnis:

#### → ISO 4/GMP A

| Messpunkt           | MP04 | MP05 | MP06 | MP07 |
|---------------------|------|------|------|------|
| Luftreinheitsklasse | 1    | 1    | 4    | 4    |

# Reinigbarkeit VDMA-Merkblatt: Riboflavintest

Fluoreszenztest zur Prüfung der Reinigbarkeit von Komponenten, Maschinen und Anlagen

- Testverschmutzung: Stärke (Empfehlung) mit Riboflavin; alternativ Uranin
- Direkter Nachweis durch UV-Betrachtung bei 366 nm
  - Reinigbarkeitstest:Nachweis vollständiger Reinigbarkeit
  - Schwachstellentest: Lokalisierung kritischer Stellen
  - → Deren Anzahl ist quantifizierbar!



Bildquelle: Fraunhofer IPA

**VDMA** Merkblatt (2007). **Riboflavintest** für keimarme oder sterile Verfahrenstechniken-Fluoreszenztest zur Prüfung der Reinigbarkeit.

## Reinigung Übersicht Reinigungsverfahren

Eine Reinigung führt zur Reduktion einer Kontamination auf Oberflächen

Eine Reinigung muss immer auf die jeweilige Anwendung/Material abgestimmt

sein



Quelle: DIN 8592; erweitert durch Fraunhofer IPA

# Reinigbarkeit: VDMA-Riboflavintest: Schwachstellenanalyse für Komponenten

#### Vorgehensweise:

- Festlegung der Schwachstellen
- Kontamination mit Riboflavin
- Bilddokumentation VOR Reinigung
- Wischreinigung mit Reinstwasser
- Bilddokumentation NACH Reinigung
- Bewertung der Schwachstellen bezüglich der Reinigbarkeit



Bildquelle: Fraunhofer IPA

# Reinigbarkeit: VDMA-Riboflavintest: Schwachstellenanalyse für Komponenten



Bildquelle: Fraunhofer IPA

# Reinigbarkeit: VDMA-Riboflavintest: Schwachstellenanalyse für Komponenten



Bildquelle: Fraunhofer IPA



### Reinigbarkeit: VDMA-Riboflavintest: Schwachstellenanalyse für Komponenten



Bildquelle: Fraunhofer IPA



### Chemische Beständigkeit Anforderungen und Vorgehensweise

- GMP: »...verwendete Materialien müssen gegenüber eingesetzten Reinigungs- und Desinfektionsmitteln resistent sein... «
- Zur Absicherung gegenüber zukünftigen Kunden wird folgendes repräsentatives Chemikalienspektrum getestet:
  - 1. Formalin (37 %)
  - 2. Ammoniak (25 %)
  - 3. Wasserstoffperoxid (30 %) 8. Isopropanol (100%)
  - 4. Schwefelsäure (5 %)
  - 5. Phosphorsäure (30 %)

- 6. Peressigsäure (15 %)
- 7. Salzsäure (5%)

  - 9. Natronlauge (5 %)
  - 10. Natrumhypochlorid (15 %)

#### Testverfahren nach

■ ISO 2812-1: Tauchverfahren



Bildquelle: Fraunhofer IPA

### Chemische Beständigkeit Anforderungen und Vorgehensweise

#### Versuchsansatz:





Bildquelle: Fraunhofer IPA



### Chemische Beständigkeit Klassifizierung

### Bewertung nach ISO 4628-1 bis -6

Tabelle 1 — Kennwerte zum Bewerten der Menge von Schäden

| Kennwert | Menge der Schäden                                                         |
|----------|---------------------------------------------------------------------------|
| 0        | keine, d. h. keine erkennbaren Schäden                                    |
| 1        | sehr wenige, d. h. kleine, gerade noch signifikante Anzahl von<br>Schäden |
| 2        | wenige, d. h. kleine, aber signifikante Anzahl von Schäden                |
| 3        | mäßig viele Schäden                                                       |
| 4        | Schäden in beträchtlicher Anzahl                                          |
| 5        | sehr viele Schäden                                                        |

Tabelle 2 — Kennwerte zum Bewerten der Größe von Schäden

| Kennwert                                                       | Größe der Schäden <sup>a</sup>                                                                        |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| 0                                                              | nicht sichtbar bei 10facher Vergrößerung                                                              |  |  |  |
| 1                                                              | nur sichtbar bei bis zu 10facher Vergrößerung                                                         |  |  |  |
| 2                                                              | gerade sichtbar mit bloßem Auge (auf Normalsichtigkeit korrigiertes<br>Sehvermögen)                   |  |  |  |
| 3                                                              | deutlich sichtbar mit bloßem Auge (auf Normalsichtigkeit korrigiertes<br>Sehvermögen) (bis zu 0,5 mm) |  |  |  |
| 4                                                              | Bereich 0,5 mm bis 5 mm                                                                               |  |  |  |
| 5                                                              | 5 größer als 5 mm                                                                                     |  |  |  |
| Falls in den Folgeteilen von ISO 4628 nicht anders festgelegt. |                                                                                                       |  |  |  |

### Beurteilung nach VDI 2083 Blatt 17

| Kennzahl | Bewertungsskala         | Beurteilung         |
|----------|-------------------------|---------------------|
| 0        | keine Veränderung       | beständig           |
| 1        | spur verändert          | bedingt beständig   |
| 2        | gering verändert        | bearingt bestaridig |
| 3        | mittlere Veränderung    |                     |
| 4        | starke Veränderung      | nicht beständig     |
| 5        | sehr starke Veränderung |                     |





### Chemische Beständigkeit Klassifizierung

### Zeitlicher Verlauf!

| U†!<br>Reagenzien                      | Belastung<br>1 Stunde | Belastung<br>3 Stunden | Belastung<br>6 Stunden | Belastung<br>24<br>Stunden |   |  |
|----------------------------------------|-----------------------|------------------------|------------------------|----------------------------|---|--|
| Formalin (37 %)                        | N-0                   | N-0                    | N-0                    | N-0                        | 0 |  |
| Ammoniak (25 %)                        | N-0                   | N-0                    | N-0                    | N-0                        | 0 |  |
| 3 H <sub>2</sub> O <sub>2</sub> (30 %) | N-0                   | N-0                    | N-0                    | N-0                        | 0 |  |
| Schwefelsäure (5 %)                    | N-0                   | N-0                    | N-0                    | N-0                        | 0 |  |
| Phosphorsäure (30 %)                   | N1-S1                 | N1-S1                  | N1-S1                  | N1-S1                      | 1 |  |
| Peressigsäure (15 %)                   | N1-S1                 | N1-S1                  | N1-S1                  | N1-S1                      | 1 |  |
| Salzsäure (5%)                         | N1-S2                 | N1-S2                  | N1-S3                  | N1-S3                      | 3 |  |
| Isopropanol (100%)                     | N-0                   | N-0                    | N-0                    | N-0                        | 0 |  |
| Natronlauge (5 %)                      | N-0                   | N-0                    | N-0                    | N-0                        | 0 |  |
| Natrumhypochlorid (15 %)               | N-0                   | N-0                    | N-0                    | N-0                        | 0 |  |
| CSM-Klassifizierung                    |                       |                        |                        |                            |   |  |

### Chemische Beständigkeit Klassifizierung

 Schlechteste Kennzahl (N, S, I,...) bei 24 Stunden Belastung gibt die Bewertung

> Klassifizierungsdurchschnitt aller 10 Chemikalien ergibt

Gesamtklasse (gerundet)



| Kennzahl | CSM       |
|----------|-----------|
| 0        | excellent |
| 1        | very good |
| 2        | good      |
| 3        | weak      |
| 4        | very weak |
| 5        | none      |

### Chemische Beständigkeit Ergebnis

### Ergebnisse nach 24 Stunden Belastungsdauer

|                         | а    | b         | C         | d   | е          | f  | g         | h  | i  | j         | k          | ı  | m          | n          | 0  | р  |
|-------------------------|------|-----------|-----------|-----|------------|----|-----------|----|----|-----------|------------|----|------------|------------|----|----|
|                         | М    | М         | М         | М   | М          | М  | М         | Р  | Р  | P         | Р          | Р  | Р          | Р          | Р  | P  |
| Formalin 37 %           | NO   | N0        | N0        | N0  | NO         | N0 | N0        | N0 | N0 | NO        | 11         | N0 | N0         | NO         | NO | NO |
| Ammoniak 25 %           | NO   | ΝO        | ΝO        | ΝO  | ΝO         | ΝO | ΝO        | NO | ΝO | NO        | 12         | 11 | ΝO         | <u> 15</u> | ΝO | NO |
| Wasserstoffperoxid 30 % | NO   | N0        | N0        | N0  | NO         | N0 | NO        | N0 | N0 | NO        | N0         | N0 | N0         | NO         | NO | N0 |
| Schwefelsäure 5 %       | - 11 | N0        | I3        | N0  | N0         | N0 | N0        | N0 | 11 | 11        | N0         | N0 | N0         | N0         | N0 | N0 |
| Phosphorsäure 30 %      | NO   | N0        | N0        | N0  | N0         | N0 | N0        | N0 | N0 | N0        | N0         | N0 | N0         | N0         | N0 | NO |
| Peressigsäure 15 %      | NO   | N0        | N0        | N0  | N0         | N0 | N0        | N0 | I3 | 13        | <b>I</b> 3 | 11 | <b>I</b> 3 | NO         | N0 | 15 |
| Salzsäure 5 %           | ΝŌ   | <u>12</u> | <u>13</u> | ĮĄ. | <u> 15</u> | 14 | <u>13</u> | ΝŌ | ļ1 | <u>[1</u> | ΝŌ         | ΝŌ | ΝŌ         | ΝŌ         | ΝŌ | ΝO |
| Isopropanol 100 %       | NO   | N0        | N0        | N0  | NO         | N0 | NO        | NO | N0 | NO        | NO         | N0 | N0         | NO         | NO | 11 |
| Natruiumhydroxid 5 %    | N0   | N0        | N0        | N0  | N0         | N0 | N0        | N0 | N0 | N0        | N0         | N0 | N0         | N0         | N0 | N0 |
| Natriumhypochlorit 5 %  | N0   | 12        | N0        | N0  | 11         | N0 | N0        | N0 | N0 | N0        | N0         | N0 | N0         | N0         | NO | N0 |
| Gesamtergebnis          |      |           |           |     |            |    |           |    |    |           |            |    |            |            |    |    |

→ Hervorragende chemische Resistenz ALLER eingesetzten und mit dem Aussenraum in Kontakt stehenden Materialien gegen H<sub>2</sub>O<sub>2</sub> und Isopropanol

### Chemische Beständigkeit Ergebnis

Material d und Salzsäure nach 24 Stunden:



Bildquelle: Fraunhofer IPA



### Biologische Beständigkeit

Bestimmung mit Hilfe der Entwicklung der Anzahl von Mikroorganismen auf einer Materialoberfläche



Mikrobizid:

Materialien, welche die Anzahl an Mikroorganismen reduzieren (z.B.: Stahl dotiert mit Silberionen)



Verstoffwechselbar:

Material wird als Nahrungsquelle von den Mikroorganismen verstoffwechselt (z.B.: Holz)



**Biostatisch:** 

Anzahl der Mikroorganismen bleibt konstant

Absicherung für Anlagenbauer und -betreiber:

ISO 846: Plastics, evaluation of the action of microorganisms

### **Biologische Beständigkeit**

### Zu Grunde liegender Standard: DIN EN ISO 846

- Verfahren A: Pilze
- Verfahren B: fungistatische Wirksamkeit
- Verfahren C: Bakterien
- Verfahren D: Eingrabversuch







### Biologische Beständigkeit Versuchsansatz

#### Stammkulturen:

- Aspergillus niger
- Penicilium funiculosum
- Pecliomyces variotii
- Gliocladium virens
- Chaetominum globosum
- Pseudomonas aeruginosa







# Biologische Beständigkeit Auswertung

- Nach erfolgter Inkubation bei 24 °C für 4 Wochen visuelle Betrachtung der Proben: Mit bloßem Auge und Stereolupe
- Unter mikroskopischer Betrachtung sind auf dem Bodenbelag Pilzsporen zu sehen!







### Biologische Beständigkeit Klassifizierung

Tabelle 4: Bewertung des Pilzwachstums

| Wachstums-<br>intensität | Beurteilung                                                                              |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
| 0                        | kein Wachstum bei mikroskopischer<br>Betrachtung erkennbar                               |  |  |  |  |
| 1                        | kein Wachstum mit bloßem Auge,<br>aber unter dem Mikroskop klar<br>erkennbar             |  |  |  |  |
| 2                        | Wachstum mit bloßem Auge erkenn-<br>bar, bis zu 25 % der Proben-<br>oberfläche bewachsen |  |  |  |  |
| 3                        | Wachstum mit bloßem Auge erkenn-<br>bar, bis zu 50 % der Probenober-<br>fläche bewachsen |  |  |  |  |
| 4                        | beträchtliches Wachstum, über 50 % der Probenoberfläche bewachsen                        |  |  |  |  |
| 5                        | starkes Wachstum, ganze Proben-<br>oberfläche bewachsen                                  |  |  |  |  |

Vom Test auf Bakterien und Pilze wird das schlechtere Ergebnis zur Klassifizierung herangezogen.





### Biologische Beständigkeit Ergebnisse

| Nummer | Pilze        | Bakterien    | Klassifizierung |
|--------|--------------|--------------|-----------------|
| 1      | 1, very good | 0, excellent | 1, very good    |
| 2      | 2, good      | 0, excellent | 2, good         |
| 3      | 2, good      | 1, very good | 2, good         |
| 4      | 2, good      | 0, excellent | 2, good         |
| 5      | 2, good      | 0, excellent | 2, good         |
| 6      | 0, excellent | 2, good      | 2, good         |
| 7      | 1, very good | 1, very good | 1, very good    |
| 8      | 2, good      | 0, excellent | 2, good         |
| 9      | 0, excellent | 0, excellent | 0, excellent    |

Ergebnis: Keines der Materialien zeigt eine ungenügende biologische Beständigkeit.

### Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas

- Sterilisierung mit gasförmigen Wasserstoffperoxid:
  - Etabliertes anerkanntes Verfahren
  - Verwendung zur Dekontamination in Isolatoren



Bildquelle: Skan AG



Bildquelle: Bosch Packaging Technology

### Krishna et al. (2000):

Ein Nachteil der VHP-Sterilisierung sind stark VHP-adsorbierende Materialien wie Papier und PVC...welche signifikant zur Verlängerung der Belüftungsphase beitragen können.

### Belly & Wilkins (2000):

■ VHP kann von Kunststoffen…adsorbiert werden Diese Materialien können anschließend H2O2 mit sehr geringen Raten desorbieren. H2O2-adsorbierenden Materialien müssen bei der Konstruktion von Isolatoren und Formatteilen vermieden werden.

Krishna, A.K.; Lodhi, S.A. and Harris, M.R. (2000): Isolation Technology for Research and Development Applications: FromConcept to Production, Vol. 5, No. 4, Pages 507-520

Belly, S.; Wilkins, J. (2000): A Technical Review of Isolators .The Official Journal of ISPE, Vol.18 No.2

### Steris (Firmenschrift, 2002):

 Analyse der Restmenge an adsorbiertem VPHP bei verschiedenen Materialien

### **Bioquell** (Firmenschrift 2010):

- H<sub>2</sub>O<sub>2</sub>-Gas adsorbierende Materialien:
  - PVC
  - PMMA
  - **...**

| Sample              | Surface<br>Area<br>(cm2) | Extraction<br>Volume<br>(ML) | H <sub>2</sub> O <sub>2</sub><br>Levels<br>(MG/L) | H <sub>2</sub> O <sub>2</sub><br>Levels<br>(ug/CM2) |
|---------------------|--------------------------|------------------------------|---------------------------------------------------|-----------------------------------------------------|
| Control             | 4.0145                   | 10                           | 0.069                                             | 0.17                                                |
| FDA Silicone Rubber | 4.0175                   | 10                           | 1.32                                              | 3.1                                                 |
| Control             | 3.477                    | 10                           | 0.08                                              | 0.23                                                |
| VINYL-BUNA N Rubber | 3.477                    | 10                           | 0.33                                              | 0.99                                                |
| Control             | 4.9                      | 10                           | 0.08                                              | 0.18                                                |
| EPDM Rubber         | 4.9                      | 10                           | 0.12                                              | 0.27                                                |
| Control             | 5.33                     | 10                           | 0.14                                              | 0.26                                                |
| Polyurethane        | 5.33                     | 10                           | 62.85                                             | 117.93                                              |
| Control             | 5.097                    | 10                           | 0.11                                              | 0.21                                                |
| Cast Acrylic        | 5.097                    | 10                           | 6.61                                              | 12.98                                               |
| Control             | 5.15                     | 10                           | 0.15                                              | 0.29                                                |
| Nylon 6/6           | 5.15                     | 10                           | 61                                                | 119                                                 |
| Control             | 5.42                     | 10                           | 0.08                                              | 0.16                                                |
| UHMW Polyethylene   | 5.42                     | 10                           | 0.12                                              | 0.22                                                |
| Control             | 4.827                    | 10                           | 0.06                                              | 0.13                                                |
| Polypropylene       | 4.827                    | 10                           | 0.09                                              | 0.19                                                |
| Control             | 5.11                     | 10                           | 0.15                                              | 0.29                                                |
| Polystyrene         | 5.11                     | 10                           | 0.37                                              | 0.72                                                |

STERIS Corporation (2002): Material compatibility with vaporizes hydrogen peroxide (VHP®) Sterilization, Publication ID #M2331EN.2002-04, Rev. A

Bioquell UK Ltd (2010): Hydrogen peroxide vapour material compatibility: Issues and facts for Bioquell technology. TECHNICAL REPORT HPV Compatibility 146/10

# Bacterial endospore inactivation caused by outgassing of vapourous hydrogen peroxide from polymethyl methacrylate (Plexiglas<sup>®</sup>)

P.A. Baron<sup>1</sup>, C.F. Estill<sup>1</sup>, J.K. Beard<sup>2</sup>, M.J. Hein<sup>1</sup> and L. Larsen<sup>2</sup>

National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
 U.S. Army Dugway Proving Ground, Dugway, UT, USA

Conclusions: H<sub>2</sub>O<sub>2</sub> can be absorbed into plastic and released after an extended period of time (weeks), allowing a sufficient concentration to accumulate in small volumes to inactivate spores. Outgassing the plastic or coating the surface with an impermeable layer are potential solutions to reduce spore inactivation.

Baron, P. A.; Estill, C. F.; Beard, J. K.; Hein, M. J.; Larsen, L. (2007): Bacterial endospore inactivation caused by outgassing of vapourous hydrogen peroxide from polymethyl methacrylate (Plexiglas®). In: *Letters in applied microbiology* 45 (5), S. 485–490.

### Radl et al. (2011):

Aufnahmekapazität und innere Diffusion von Wasserstoffperoxid





Radl, S.; Larisegger, S.; Suzzi, D. and Khinast, J.G.(2011): Quantifying Absorption Effects during Hydrogen Peroxide Decontamination. J. Pharm Innov

### Raumfahrt-Standard: ECSS Q-ST-53-C

 Verlust von H2O2 aufgrund Absorption in PU, Zellulose und PA

# Mission ExoMars ist unterwegs zum Roten Planeten Am Montag um 10.31 um hat die Esa in Kooperation mit Russland ihre bisher ambitionierteste Reise zum Mars gestartet

### Space product assurance

Materials and hardware compatibility tests for sterilization processes



Raumfahrt-Standard: ECSS Q-ST-53-C: Hintergrund: Planetary protection!





### Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Hintergrund



Prozessdauer in h:mm:ss

→Aufgrund der H<sub>2</sub>O<sub>2</sub>-Absorption von Materialien während der Begasung und der verzögerten Desorption während der Belüftung ist die tatsächlich notwendige Zeit (rot) der Dekontamination oft signifikant länger als der theoretische Wert (blau)

Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas

Hintergrund





Prozessdauer in h:mm:ss

# Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Hintergrund

- Auswahl geeigneter Materialien für:
  - schnelle Dekontaminationszyklen
  - $\rightarrow$ Materialien mit geringer Adsorption und schneller Desorption von  $H_2O_2$ -Gas
  - Während der Dekontamination: Sicheres Erreichen der notwendigen H<sub>2</sub>O<sub>2</sub>-Gas-Konzentration auf allen Oberflächen.
  - Katalytische Effekte sind zu vermeiden!

### Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Testmethode: VDI 2083 Blatt 20 (draft)

Emissionszelle und Verrohrung komplett aus PTFE und PFA





# **Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Testmethode: VDI 2083 Blatt 20 (draft)**





### Berechnung des k-Werts



| K-VALUE                                    | $H_2O_2$ adsorption and desorption kinetics: Classification                                                                                               |  |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| < 5 min                                    | Non-adsorptive                                                                                                                                            |  |  |  |  |
| 5-15 min                                   | FAST                                                                                                                                                      |  |  |  |  |
| 15-60 min                                  | Medium                                                                                                                                                    |  |  |  |  |
| > 60 min                                   | SLOW                                                                                                                                                      |  |  |  |  |
| Not determinable due to catalytic activity | Cleanroom Suitable Materials  Cleantec GmbH Report No. CT 0908-123  Material ABC H <sub>2</sub> O <sub>2</sub> desorption kinetics k-value: 10 min (fast) |  |  |  |  |

Große Unterschiede zwischen den Materialien:



Große Unterschiede zwischen den Materialien (Zoom):



### Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas Materialien mit katalytischem Effekt für H<sub>2</sub>O<sub>2</sub>

k-Wert ist nicht bestimmbar: katalytisch aktives Material (AeroLaser)



### Absorption/Desorption von H<sub>2</sub>O<sub>2</sub>-Gas



 Ergebnis: Keines der Materialien zeigt eine stark zeitverzögerte Emission von Wasserstoffperoxid nach erfolgter Begasung

# Zusammenfassung: Ganzheitliche Bewertung eines Betriebsmittels für die aseptische Fertigung





### Ergebnisdarstellung auf www.ipa-qualification.com



### Kontakt

### Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA **Reinst- und Mikroproduktion**

Udo Gommel | Phone +49 711 970-1633 | udo.gommel@ipa.fraunhofer.de

Markus Keller | Phone +49 711 970-1560 | markus.keller@ipa.fraunhofer.de



#### **ADRESSE:**

Nobelstr. 12, D-70569 Stuttgart

#### **INTERNET:**

www.ipa.fraunhofer.de/cleanroom

www.ipa-qualification.com

www.tested-device.de