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A generalized lattice Boltzmann model to simulate free-surface is con-
structed in both two and three dimensions. The proposed model satisfies
the interfacial boundary conditions accurately. A distinctive feature of the
model is that the collision processes is carried out only on the points occu-
pied partially or fully by the fluid. To maintain a sharp interfacial front,
the method includes an anti-diffusion algorithm. The unknown distribu-
tion functions at the interfacial region are constructed according to the
first order Chapman-Enskog analysis. The interfacial boundary conditions
are satisfied exactly by the coefficients in the Chapman-Enskog expansion.
The distribution functions are naturally expressed in the local interfacial
coordinates. The macroscopic quantities at the interface are extracted from
the least-square solutions of a locally linearized system obtained from the
known distribution functions. The proposed method does not require any
geometric front construction and is robust for any interfacial topology. Sim-
ulation results of realistic filling process are presented: rectangular cavity
in two dimensions and Hammer box, Campbell box, Sheffield box, and Mo-
torblock in three dimensions. To enhance the stability at high Reynolds
numbers, various upwind-type schemes are developed. Free-slip and no-slip
boundary conditions are also discussed.

Key Words: lattice Boltzmann models; free-surface phenomena; interface boundary con-
ditions; filling processes; injection molding; volume of fluid method; interface boundary

conditions; advection-schemes; upwind-schemes.

1. INTRODUCTION
Numerical modeling of moving interfaces between immiscible fluids is important
for many industrial applications. Solving the incompressible Navier-Stokes equa-
tions for two-phase flows is a difficult problem since pressure and velocity derivatives
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2 GINZBURG AND STEINER

may have discontinuities at the interfaces. In addition, a description of the inter-
face motion itself represents a complicated task. Existing methods to treat sharp
interfacial problems belong to two main categories: surface tracking, a Lagrangian
method, and surface capturing, an Eulerian one. The former approach explicitly
treats the interface as a discontinuity and often the computational mesh directly
tracks the interfaces. The latter one does not consider the exact interface position
in the discretization of the governing equations, but takes it into account during
the interface advection. These two methods can be combined together in some
way when the grids are aligned with the interface (e.g., [16, 21, 42, 54, 56, 74]).
Excellent overviews on various methods to treat interfaces are given by Unverdi
and Tryggvason [81], Sussman and Smereka [79], Rider and Kothe [68], Kothe [47],
Rudman [69, 70], and Scardovelli and Zaleski [75].

Free-surface phenomena are ubiquitous in nature and in many industrial applica-
tions. Metal casting is such an example. In this case, the density ratio between the
melt metal and the air is of such a disparity that the influence of the air on the melt
metal can be ignored. Hence the problem of two-fluid flow with interfaces reduces
to the problem of one-fluid flow with free-boundaries. The formulation of the free-
boundary flow avoids the steep variations of physical quantities in the interfacial
region. Several methods to treat the free-surface problem have been developed.
Among volume tracking methods, the most popular one is a volume of fluid (VOF)
method due to Hirt and Nicholls [34]. This method has been successfully applied
to simulate mold filling with regular grids [1, 2, 35, 53], and has been extended
to unstructured grids (e.g., [16, 60, 61, 65, 80]). The free Lagrangian method of
Fyfe et al. [14] and the grid free smoothed particle hydrodynamics (SPH) methods
[10, 58] are representative examples of the extension of front tracking methods to
treat free-surface problems. In the former case, the computational grid itself is
advected by the Lagrangian equations. Whereas in the latter case, the interface is
represented by a set of particle positions. A front tracking technique has also been
applied to strongly deformable geometries by Galaktionov et al. [15]. A review
on free-surface methods based on their applicability to the simulations of the mold
filling process is given by Kothe et al. [48].

Intended for solving the Navier-Stokes equation, the lattice Boltzmann (LB) mod-
els [32, 38] do not involve any global linear or nonlinear systems of equations. Their
locality and linearity with respect to computational mesh are absolutely essential
for the applications of interfacial problems where the conventional CFD solvers may
fail to because of the stiffness and/or large dimensions of the problem. Furthermore,
the kinetic nature of the LB method provides the physical basis to deal with such
complicated physical phenomena as fluids segregation, diffusion, wetting, evapora-
tion, etc., in a elegant manner. A comparison of two-phase Lattice Boltzmann and
VOF methods is available in [76]. An extensive literature on the LB multi-phase
and multi-component models can be found in [8, 31, 55, 71, 72].

One early LB model for immiscible fluids has been proposed by Gunstensen and
Rothman [27]. In this immiscible lattice Boltzmann (ILB) model, the collision and
propagation rules are modified on interfacial grid points in order to introduce the
desirable interfacial behavior. The ILB model of Gunstensen and Rothman has
been originally designed to simulate flows of two immiscible fluids differentiated
only by their colors. In addition to the usual collision and advection steps, the ILB
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model has an additional “recoloring” step, which preferentially redirects each fluid
to the neighboring sites of the same color. This step is accomplished by computing
the gradient of the local mass fraction. The “recoloring” step must also preserve
the conservation laws. This “recoloring” scheme actually mimics a mechanism
of segregation among the two components marked by their colors. Owing to the
explicit nature of the LB algorithms, the LB models has difficulty to deal with fluids
with large density ratio. In addition, the effective interface boundary conditions
implicitly imposed by the LB multi-phase methods have not been given sufficient
attention in the past (cf. [18]). The purpose of this paper is to propose a new
volume tracking LB method to simulate hydrodynamics with free-surfaces. It can
be seen as a modified immiscible lattice Boltzmann model in which one species is
the fluid and the other one is considered as vacuum. The proposed LB method is
applied to simulate the process of filling a die cavity in metal casting [16, 28, 53],
which is a crucial step in casting process since it determines the quality of the final
product.

The new LB method is different from the existing LB multi-phase and multi-
component models because the collision only occurs on the “active” cells which are
fully or partially filled with fluid. The mass fraction of a cell filled with fluid, which
is between zero and one, is an additional variable used in the method. A “recoloring
operator”, similar to that in the ILB models, determines the redistribution of fluid
mass carried by each particle population. The macroscopic variables propagate to-
gether with the particle distribution functions in the advection step, according to
the usual LB evolution equation. The unknown particle distributions at the front
of free-surfaces, which cannot be obtained by the usual LB method, are constructed
by using the first order Chapman-Enskog expansion of the distribution functions.
The free-surface boundary conditions are directly met by matching the coefficients
of the series solutions of the distribution functions with the boundary conditions.
Due to the rotational invariance, the first-order Chapman-Enskog solutions of the
distribution functions are naturally expressed in a local coordinates which are nor-
mal and tangent to the free-surface. Therefore the curvilinear interfacial boundaries
can be handled easily without reconstruction of mesh geometries.

The solutions for the distribution functions at free-surface are completely spec-
ified by the local hydrodynamic variables, i.e., the fluid density and velocity, in
two dimensions. In three dimensions, derivatives of velocity tangential to the free-
surface are also needed to determine the solutions. The hydrodynamic variables at
the free-surface nodes are not determined, however, until all the distributions in a
given cell are obtained. The idea here is to derive the hydrodynamic information
at free-surface locally, from the known populations arriving at a given front node
from the neighboring active nodes. In such a way, the resulting solution for un-
known distributions at front nodes is implicitly expressed in the form of a linearized
function of the known distributions. We obtain unknown quantities from the lo-
cal least-square solution of a linearized system. This approach follows the basic
philosophy of the local second order boundary (LSOB) method [19] where all first
and second order momentum derivatives, necessary to impose Dirichlet boundary
conditions, are extracted from locally known populations. Therefore, the proposed
method is entirely based on a self-consistent kinetic theory, the Chapman-Enskog
analysis being consistently applied in the solid and interface boundary regions.
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The lattice Boltzmann equation used here is based on the framework of the
generalized lattice Boltzmann equation (GLBE) due to d’Humieres [38]. In this
approach, the collision operator is computed in the space spanned by a basis in
momentum space. The basis is presented in a unique form [20], and is suitable for
any DdQb model in d dimensions with ¢ velocities [67]. In particular, we present
the method in this paper using D2@Q9 and D3@Q15 models as examples in two and
three dimensions, respectively. The boundary conditions at fluid-solid interfaces
are realized by using local reflections of the distribution functions in the spirit of
the bounce-back scheme for the no-slip boundary condition. Because the effective
accuracy of bounce-back and specular reflections to model no-slip/free-slip bound-
ary conditions (or their combination) depends on the actual choice of all eigenvalues
of the collision operator [17, 39], we pay a special attention to address this issue.
We also pay special attention to the stability of the LB method [51]. Like any LB
model, the method develops instabilities at high Reynolds numbers, even if the free
eigenvalues are chosen to improve the stability (cf. [51]). This leads us to design
schemes with better stability characteristics. Although upwind approach is widely
used in finite-difference/finite-elements schemes, it has not yet been adapted for
Lattice-Bolzmann methods. Indeed, one of the merits of the LB methods is that
their numerical diffusion (at least at second order) is already accounted in the dif-
fusion coefficient. We show using linear convective-diffusion problem as an example
that higher order terms in Chapman-Enskog expansion can introduce negative nu-
merical diffusion into the scheme. In order to compensate it, artificial numerical
diffusion can be added. In so far, various upwind LB schemes are constructed in
[22], in analogy to one-dimensional upwind [9], full-upwind, and streamline-type
multi-dimensional upwind schemes [3]. In the present work, we use the most crude
but robust explicit upwind approach for free interface simulations at high Re num-
bers.

The paper is structured as follows. In Section 2, the LB framework and basic
macroscopic relations are given. In Section 3.1, first order Chapman-Enskog expan-
sion at interface is presented. In Section 3.2, interface advection with recoloring step
is discussed. Reconstruction of unknown populations at the interface is described
in Section 3.3. Brief outline of the numerical algorithm is given in Section 3.4.
Boundary conditions are discussed in Section 4. Overview of the algorithm is in
Section 5. Explicit upwind scheme is discussed in Section 6. Section 7 considers
the different aspects of the algorithm using 2D cavity filling and benchmark 3D
simulations in injected molding. Concluding remarks are in Section 8. Details to
implementation of generalized LB equation are sketched in Appendix A.

2. BASIC THEORY OF LATTICE BOLTZMANN EQUATION

2.1. Lattice Boltzmann Equation
The lattice Boltzmann equation (LBE) is often written in the following form [78]

b
Ni(rat) = Ni(rvt) + ZAij[Nj(Tvt) - N;q'(T7t)] + t;(cz : F) ) (13')

7j=0
Ni(r+C;,t+1) = Ny(r,t) , i€4{0,...,bn}, (1b)
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where N; is the population of the particle moving with D-dimensional velocity

C,; (Cy is a zero vector), A is the collision matrix, F' is an external force; weight
coefficient ¢ depends on the discrete velocity set C;, and the index p is equal to
c2, (¢ = ||C;]|?). Equilibrium function N®® is introduced by equation (10) and
the coefficients ¢} are given in Table 1. They satisfy the following equations:

b
doCr =1, Ya=1,...,D, and t5=3-) t5. (2)
i=1 p#0

There are two essential steps in Eq. (1a): collision (a) and propagation (b).
Density p and momentum j are defined as

bin
p(’l‘,t) = ZNi(rat)a (33')
b
jrt) = T+ gF, J=3 Nir0Ci. (3)

The reason to modify the momentum in the presence of the forcing term is discussed

in Section 4, and can also be found in a number of references [4, 17, 39, 49]. The
mass and momentum conservation laws impose the following conditions on the
collision matrix A:

A-1=A-Ca=0, VYa=1,..,D. (4)

where 1 = {1,...,1}, and the (b, + 1)-vector C, is built from the components of
the (b, + 1) population velocities in direction «.

TABLE 1

Equilibrium weights t; and rj

* * * * * * * *
Model to tl t2 t3 To T o T3
4 1 1 3—5¢3 el °z
D2Q9 3 3 12 3 5 32 12 5
2 1 1 3="Tcg lcg cs
D3Q15 3 3 24 3 3 24

The collision matrix is fully determined by the choice of its non-zero eigenvalues
and the corresponding eigenvectors. To satisfy the linear stability conditions [32],
the non-zero eigenvalues must lie in the interval | — 2,0[. Mass vector 1 and the
vectors C,, are the eigenvectors associated with the zero eigenvalues — they are
the conserved modes in the model. Let {e;}, k =0, ..., by, denote the orthonormal
basis in momentum space, constructed as the polynomials of the vectors C,. Let
us assume that this basis represents the set of the eigenvectors of the matrix A,
associated with the eigenvalues {Ar}. Following [38], we rewrite Eq. (la) as its
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projection on this basis

b

Ni(r,t) = Ni(r,t) + > Ae(N = N e )ex; + £5(C, F) (5)
k=0
Ni(r +Cit +1) = Ni(r,t), i€ {0,...,bpn}. (6)

Note that Eq. (5) replaces the explicit use of the collision matrix A. The eigenvalues
can also be easily adjusted during computations, if necessary, provided that they
satisfy the stability constraints. When all non-zero eigenvalues {A;} are set to be
equal to —1/7, equation (5) reduces to the lattice BGK model [7, 67]:

Ni(r 4+ Ci,t+1) = Ny(r,t) — =(N; = Nj*) + t5(C;, F) . (7)

N

In the case of the lattice BGK equation (7), p and J are conserved provided that
the equilibrium function satisfies the following conditions

(N—N® 1)=0, (N—N C,) =0, Va=1,..,D. (8)

The labeling of the discrete velocity sets for D2Q9 and D3@Q15 models in this
paper, their basis vectors and associated eigenvectors are given in Section A.1 and
Section A.2, respectively.

2.2. Hydrodynamics Equations
The solution for the population function N; is usually obtained in a perturba-
tive form of Chapman-Enskog expansion [13] in the powers of small perturbation
parameter € = 0, /L ( L is the characteristic length):

Ni(r,t) = N{U(r,t) + N (r,t) + NP (r,6) + O(P) i =0,y . (9)

The equilibrium population N;%(r,t) can take a form (see [67, 62])

, UgUg J .1
qu :T;p-f-t; [JaCia +p 9 (3CiaCi6 _5a6)] , U= ; s J=7- §F7
(10)
Parameter 7 is related with ¢, as
= t;cg when p 20 and rg=1-— Zr; , (11)

p#0

where ¢; is the sound speed of the model, which is to be discussed later. The first

order correction to the equilibrium, Ni(l)7 in standard coordinate system is given in
details in Section A.5). One crucial ingredient is that eN(!) is isotropic (rotational
invariant) and can be written in any orthogonal coordinate system {z', ¢y, z'} (2 is
omitted in two dimensions) as

L

1 9ju
N(l) _ o
€ ~

TN, op

Qia’ﬁ’ + (v ])E;m ) {alaﬁl} € {xlvylvzl} ) (12)
2

2
where  Qiqrpr =t <cmrcwl - %(sw> cand B =S g (13)

PD p
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Projection of the vectors N4 of equation (10) and eN() of equation (12) written
in the standard coordinate system on the basis vectors e are given by formulas
(A.4) and (A.10). The hydrodynamic equations for p and j derived from the model
are

Op+V-5=0, (14a)

0§ + V- (%) = —EVp+ V(WG + V(Y vej) + F,  (14b)

where the kinematic viscosity v and the bulk viscosity viscosity v¢ are related to
two non-zero eigenvalues of the collision matrix

1/:—(7‘——)7 T=—"T, (153')
ve=p2=-30)+¢, §=-(C-c)(—+3), (15b)

and for D2Q9 and D3@Q15 models, the coefficient C is given by

D+2
= —. 1
¢ 3D (16)
For the athermal LBE models, the pressure P is given by the equation of state for

an ideal gas,
P=¢cp.

By introducing characteristic LB velocity U and assuming the density fluctuates
about its average, po, the pressure can be rescaled in the following dimensionless
form:

(P—-PF) .
P-}W P():Cf.po. (17)
Using the following scalings
z—z/L, t—tU/L, u—u/U, (18)

we can write the hydrodynamic equations in the following dimensionless form

M?9,P+V -pu =0, (19a)

1
Opu+V - (pu@u) =—pVP + %V - (V(pu))

Ve g, L

FV(EV - (pu) + o (19D)
where the Reynolds number Re, the Froude number Fr and the Mach number M
are defined as the following

Re=-">, Fr=—, M=—. (20)
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Accordingly, the density can also be written in terms of the dimensionless pressure:
p=po(l+MP). (21)

If we choose to neglect the density fluctuation, which is second order in the Mach
number M, as indicated in equation (21), we obtain the incompressible Navier-
Stokes equations

V-u=0, (22a)
Ll L
Ou +u Vu+VP—ReV u+Fr. (22h)

In particular, Stokes equation can be obtained by omitting the nonlinear term in

the equilibrium population of equation (10). The sound speed is a free parameter
in the equilibrium. The restriction ¢? < C comes from the condition £ > 0 (see
equation (15b)). Based on linear stability analysis, the choice of ¢? = 1/3 is the
optimal choice (see [51]) and it also corresponds to the LB models derived by
another approaches (cf. [30, 43]). Small Mach number M means that U << ¢;.

2.3. Interface boundary conditions
In absence of surface tension between two fluids, one heavy and one light, the
balance of momentum at the interface according to the Navier-Stokes equation
(14Db) leads to the following equation at the interface

. .1 . .
[2vDj-m — Pn]ls =0, Dj= 5(6a]5+65]a) . (23)
If the density ratio among the two fluids is so disparate so that the dynamic viscosity

of the light fluid (e.g., gas) is negligible, the above equation (23) reduces to the
following free interface conditions for the heavy fluid (e.g., liquid)

Ajn _
P—2V%—P0, (24:3.)
9jr | Ojn _
on + or = 0, T € {Tl,Tz}. (24b>

Here j, and j, = {j,jr } are the normal and tangential momentum components
of the viscous (heavy) fluid; and P and P, are the pressures of the heavy and the
light fluids at the interface S, respectively.

3. LATTICE BOLTZMANN MODEL FOR FREE INTERFACE

The populations {N;(r,t)} and the total mass of one fluid py(r,t) represent the
main independent variables of the LB free-surface algorithm. In empty cells, pf = 0;
in the cells fully filled with fluid, m; = p and in partially filled cells, 0 < py < p.
The collision step is performed only in the “active” cells where py # 0. Similar to
the VOF method, gravitation force is computed in proportion to current occupation
of the cell:

F= "’7" (pog) - (25)
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The unknown populations at nodes adjacent to interface, which cannot be deter-
mined from the lattice Boltzmann equation, are constructed by using Chapman-
Enskog analysis up to the first order in the expansion in e.

3.1. First order expansion of N; at interface

Here we write N(1) given by the relation (12) in the interface coordinate system
{«',y',2'} = (n,71,72), such that

1 _ - il

eN;” = o (% an )er + w( an Q”T) (26)
\% .7 im

+ b\ Ez 5 TE{Tl,Tz}. (27)

In the above equation, the non-diagonal components of the strain-rate tensor Dj are

in the prefactor of Q,,. From the boundary condition (24b), the terms involving
Q. should be set to zero at the interface. By substitution of the divergence
condition %]T* =V-j-— 3]—" and Q;rr = —Qinn, we obtain the first order solution
of N; at the interface

2 Ojn

1
Ni:N;q' Aw ann+v .7<_

im L . 2
Ao E; )\d} ann) + 0(6 ) ) (28>

in two dimensions. In three dimensions, we first write

i, 5., 1/, 9,
] Q2T1T1 '] QszTz = 5 < J - J ) (QiT1T1 - QiTsz)

(97'1 (97'2
0jr, 8]7—2
= QiT1T1 QiT2T2 : 2
<(9T1 + 87’2 ) ( + ) ( 9)

Then using the divergence condition

6jT1 asz _ . 8,771
on + Oty =V on’

and the Qiry 1y + Qiror, = —Qinn, We obtain

o 3 3]n 1 0jr 0jr
N; = Ni4 inn L — 2 i1 — WiteT
(3 + 2)\¢ Q 2/\¢ < 67’1 87'2 (Q 171 Q 272 )

1 a]n 6.]7'2 1 im 1 ) 2
<(9T2 + 67‘ ) Qz-rl-rz + V. J ()\5 Ei 2)\w ann) + 0(6 ) (30)

in three dimensions. Since V - j is of order O(M?), it can be neglected in the
above equations for incompressible flows. Then using equation (24a) for BL the
equations (28) and (30) become

(P - R)

Ni=N;* + v Ay

Qinn + 0(62> ’ (31>
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in two-dimensions, and

. 3P - D) 1 Ojr.  Ojr.
— €d = 2 V0. (O — 0. 1 YJT2
Nl Nz + 4A¢V ann + 2/\¢ (QlT1T1 QszTz) < 67'1 67’2
1 6.7.7'1 aj‘rz 2
iT1T2 ) 2
+MQ <8T2+8T1>+O(€) (32)

in three dimensions.

The values of the known populations, which propagate from the neighboring ac-
tive points to the front nodes, are used to compute unknown macroscopic quantities
(p, 7, and the derivatives of j tangential to interface) from the above equations by
solving the linearized system by means of least square fitting. We refer to local
computing of unknown populations at front nodes as reconstruction step which is
further discussed in Section 3.3.

3.2. Recoloring step

In order to describe two phase behavior, ILB models [27] include two type (color)
populations: {R;(r,t)} and {B;(r,t)}. Indeed, ILB operates only on their sums:
Z?*:”O R;(r,t) and E?’:"O Bi(r,t). We represent then the ILB model in an equivalent
form [23], by using only populations N;(r,t) and the total mass of the fluid py(r,t)
(or mass fraction of one fluid my = pg(r,t)/p) as independent variables. Here,
N;(r,t) can be interpreted as a sum of R;(r,t) and B;(r,t). Local quantity of
the another fluid is equal to p(r,t) — py(r,t). Recoloring algorithm is employed to
advect the quantity py between the cells by keeping a sharp front. The operation
tends to send as much as possible fluid phase into direction of its bulk. For this
purpose, one has to find the solution, denoted R® (7, ¢), which maximizes the post-
collision color flux F[R] along the normal n to the interface, with

bm bm
FR)=> RiCi-n, > Ri=ps(rit), 0<R;<Ny(r,t). (33
=0 =0

The solution is constrained by mass conservation. Note that, due to the above
inequality, this solution exists only when the post-collision populations are positive.
Also it is on common unproven belief that this also is required for stability. Below,
we call “good” cells where the post-collision populations N;(r,t) in Eq. (5) are
positive. The way we treat other cells is described in Section (3.3). In a simplest
way, one can find the solution to (33) as follows. Starting from the population
whose velocity is the closest to the normal direction (has maximal (C; - n) value)),
one goes down to those which has the minimal value and put R; equal to the
maximal possible value (R; < N;). The procedure stops when no more color is
available (Zi.’go R; = py). Additional efforts can be required to keep the symmetry
of the solution. The new value ps(r,t +1) is equal to the sum of all incoming fluid
quantities R} (r — C;, t):

b
pr(rit+1) =Y Ri(r—Cit). (34)
=0

Since py(r,t+1) can be updated immediately after recolouring steps in neighbouring
nodes, no additional storage is needed for the solution R®(r,t) and this algorithm
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reduces the ILB memory requirement by almost a factor two. We compute n similar
as in VOF methods [52, 68, 84]

n~ Vg, (35)

with the following central difference approximation

b

n:ZSiCimf(r+C,-) . (36)
i=1
where
[ 1/4%{2,2,2,2,1,1,1,1}, for D2Q9 |
“ 1 1/8x{4,4,4,4,1,1,1,1,1,1,1,1} , for D3Q15.

Following [63, 68], the method for normal estimation which reproduces a line (a
plane) exactly regardless its orientation with respect to fixed coordinate system is
referred to as second order method. With this criterion, approximation (36) which
is done separately for each cell is only first order accurate. This is confirmed by
simple advection tests in Section 7.1. The possibility to have wetting/non-wetting
condition at solid boundary is controlled by the following assignment: p;(r*°'d) =
pr X w, w > 0 in wetting case and w < 0, otherwise. In computations below we
assume mostly that interface is perpendicular to solid boundary: (n,n®) = 0. Here
and below, (n®, 7¢,75) denote the normal and the tangential vector components
with respect to the solid wall. In order to model this condition with the relation
(36), we define py(r*°i?) at smooth enough walls as

pf(r + Cj) = pf(’l‘ + Cz) R (37)
if r+C; =7t Cj,e = —Cipe, and Cj o = Cj 7o .

Indeed, the condition (37) uses the same pairs of populations as a specular reflection
(55) sketched in Fig. 1b.

3.3. Reconstruction step

According to our algorithm, cell is active if its py value is positive. We define
an interface cell as a cell where the populations are separated into two sets: known
and unknown. Known populations are those which arrive from already active cells.
Unknown populations are those which would arrive from the non-active cells. We
distinguish then two types of interface cells: interface (I) cells are those which have
been already active at the previous time step; new interface (N) cells are those
which have not been active at the previous time step. Let us denote as I (1)
the set of indices of locally known (unknown) populations N (N,
The numbers s and s~ of known and unknown populations are related by

respectively).

sT 45" =bp+1. (38)
One can represent the population expansions (31) and (32) as

{pjori} 205
Ojry _ 0jry Bz Ojry

A (39)
{pv.]wv]yv.]ZvW - O72 ' 072 + 11 }7 3D .

N:BX+b,X:{
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FIG. 1. Left to right: non-local specular reflection, local specular reflexion, 2D corner. In

last case, in 2D: N; = N{;, N2 = N4, N5 = %(Ns + Ng), Ng = %(Nﬁ + N7), Ng = %(Ng =+ N7)

Vector X contains n, = 3 unknown macroscopic quantities in 2D and n, = 6
unknowns in 3D. When we do not neglect the term V - 5 in Egs. (28) and (30), we
include it into the list of variables X. The elements of the matrix B depend upon
the linearization of the equilibrium (10).

Linearization with respect to momentum approximates the nonlinear terms
puqug in (10) as

PuaUg = joug™ . (40)

Approximate velocity (ug*) and density (p*) values are discussed below. Let us
introduce Q;q:
ug*
Qia = zﬁ: 5~ (3CiaCis —bap) . Va=1,...D. (41)

Then for the D2Q)9 model the coefficients in (39) are

!
Biyx =1, + ;EQinn ) (42a)
By =t (Ciz + Qix) , (42b)
Biz =t5(Ciy + Quy) , (42¢)
11 1., ps
b; = _;EPOQinn - gt;p—*Po(Chg) . (42d)



LATTICE BOLTZMANN MODEL FOR FREE-SURFACE FLOW 13

and for the D3Q15 model:

Biy =1, + %innn ; (43a)
Biz = t)(Ciz + Qiz) , (43b)
Biz =t5(Ciy + Quy) , (43¢)
Bia = t(Ciz + Qi) , (43d)
Bis = Qiriry — Qirars (43e)
Bis = Qirrs (43f)
b; = _f_V$POQinn - %t;%po(civg) : (43g)

Approximation to force-term (25) appears in b since we consider here j and not
J as an unknown variable in X (cf. (10)). The linearized equations to find X
correspond to S* known populations N;:

Binj:’l"i7’l"i:Ni+—bi,Z.€I+. (44)

One can introduce further constraints on X. We considerably improve stability

and accuracy when the solution is required to fulfill approximate density definition
(3a) in a form:

p= D NI =D N (45)

iel— ielt

Substitution of the population expansion (39) into (45) for N, yields an additional
equation:

ZBP7]X] =Tp, (463.)
J
B,y=1-Y Bi1, (46D)
icl—
Byk=— > Bir, ,k=1,...n, (46¢)
iel—
ro= Y N+ > b (46d)
eIt icl~

This completes assembling of the matrix B and the vector b. Different from the
relation (40) linearizations of the equilibrium can be proposed.

Linearization with respect to density, in particular, treats the non-linear term
as

pugup = pugug” . (47)

In case (47), one can take J itself as a component in X. This avoids approximation
of the density (cf. (42a)- (43a)). In 2D, for example, relations (42a) are modified
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as follows:
Cg 1 U *UB*
By =1+ 7EQM +t %; “T(:acmcw —6a) (48a)
Bisz =t3Ciy , (48c¢)
11
b; = _;EPOQinn , (48d)
X = {p7 Jwv Jy} . (486)

Linearized system of equations (44), (45) contains m = s* + 1 equations:
2 < m < by + 1. The number of variables n, is equal to the number of compo-
nents of the vector X. When n, < m, we solve the linear system by using fast
least-square method with permutations. Single Value Decomposition Method [66]
can be used as well but it has been found to be much slower for linear systems used
here. If the linear solver detects that the system is singular, or when n, > m, we
use extrapolations for unknown populations from neighbor “good” active points (as
defined in Section 3.2). Similar procedure is employed when appear negative pop-
ulations after the reconstruction or after collision. We show below that the relative
part of “bad” situations is very small in stable calculations. When combinations
of tangential derivatives in 3D are not included to X (39), one does not need then
to construct tangential vectors 71 and 72. Moreover, this reduces the number of
singular cases since the number of unknowns decreases from n, = 6 to n, = 4. No
important impact on the solution was detected because of this approximation.

Approximate values p* and u* are obtained as follows. In already active I-cells,
the previous time step solution is used. In new interface N-cells, an extrapolation
from the active cells lying as close as possible along the normal n is employed. At
least one neighbor active node always exists by the definition of N-cell, otherwise it
would not be activated. Since the collision, and hence update of p and wu, is done
first in B- and I- cells, reconstruction step in N-cells can use current solutions in
neighbor “good” nodes for extrapolations (see the steps 6, 7, 8 of the algorithm
below). Additionally, other successful N-cells can be used for extrapolations.

The summary of the local reconstruction procedure reads:

. Compute . When necessary, compute 71 and Ts.

. Extrapolate (in time or space) velocity and density values.
. Compute B and b.

. Solve linearized system.

U = W N =

. Compute unknown populations in a form (39).

One can then iterate the steps 3 — 5 by using velocity /density values obtained at a
previous sub-iteration for approximations. We detect, however, only weak influence
of this procedure on the accuracy/stability.



LATTICE BOLTZMANN MODEL FOR FREE-SURFACE FLOW 15

3.4. Brief Outline of the Numerical Algorithm
We initialize first p; in all liquid cells at ¢ = 0. The populations are then
initialized to their equilibrium values, and first collision step is performed in active
cells where py > 0. We refer to active cells as A(t)—cells below. Subsequent steps
at time ¢, £ =0, .., are:

1. Compute ps(r,t + 1) in all cells by recoloring technique.

2. Divide all cells into active/non-active cells:

(ryt+1) € A(t+1) if pg(r,t + 1) > 0; otherwise it is non-active.

3. Propagate populations from A(t) into A(t + 1) cells.

4. Classify known/unknown populations in A(t + 1) cells: N;(r,t + 1) is marked
as known population if (r — C;,t) € A(t). Otherwise it is marked as unknown
population.

5. Divide A(t + 1) cells into B/I/N-cells:

e (r,t+1) is marked as B(bulk)-cell if it has obtained only known populations.

e (r,t+1) is marked as I(interface)-cell if it has obtained at least one unknown
population and if (r,t) € A(¢).

e (r,t+ 1) is marked as N(new interface)-cell if (r,t) ¢ A(t).

6. Perform collision in B-cells.

7. Perform reconstruction and collision in I-cells.
8. Perform reconstruction and collision in N-cells.
9.t=t+1; Goto 1.

This completes the short description of the LB free interface algorithm.

4. BOUNDARY CONDITIONS
4.1. No-slip boundary conditions
While applying the method in very complex geometries, we currently accept its
“step-wise” cell-centered discretization on the regular rectangular grids. We apply
at boundary nodes the bounce-back rule (b.b.) where the populations leaving the
fluid return to the node of departure with the opposite velocity:

N_i(r,t+1)=Ny(r,t), if r+C;esolid, C_;j=-C;. (49)
Let us first consider the condition (49) at order O(e?), i.e. when
N (r t) = Ni%(r,t) . (50)
and therefore, momentum projection on the link C; should vanish at r:
(- Ci)r,t)=0. (51)

Substitution of the first order expansion (12) written along a link C; into the b.b
condition (49) holds

[(G-C)+AxV(-CHCr,t) =0+ 0(2) + O(M?) + ..., A = % C(2)
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Closure relation (52) locates the walls in the middle between the current node r
and the neighbor node r + C;. So, at order O(e'):

(G- Colr +5C01) =0. (53)

Condition (53) is exact for linear flow only, similar as its generalizations [12, 59],
which annihilate (7 - C;) at a given distance AC; between 7 and r + C;. When
second order Chapman-Enskog expansion is substituted into b.b. condition, i.e. the
second order momentum derivatives are taken into account, the analysis [17, 20, 39]
shows that effective wall location depends on the choice of the whole set of the
eigenvalues. So far, it depends on the kinematic and bulk viscosities values. It
depends also upon wall inclination with respect to the lattice. Modification of
momentum definition by 1 F' [cf. Egs. (3b) and (10)] enables us to analyze obtained
closure relations independently on the force term in Eq. (5) since b.b holds:

force
1., =, 1, 1.,
_itp(C“F) + tp(Ci,F) - gtp(cl,F) - —itp(c_i,F) . (54)

In general flows, effective precision of the b.b. rule is something between first
and second order. It is only first order accurate, however, in inclined channels as
shown in [19]. In order to improve the precision of the b.b. boundary conditions, we
apply magic solution for eigenvalues (A.13)-(A.15a). This solution fulfills exactly
closure relation (53) for Poiseuille flow for channels parallel to z, y or z lattice
axis. Relation (A.13) represents a particular case of the solution [39], since here
all eigenvalues associated with the even (odd) order polynomial basis vectors are
set equal between them. The solution (A.13) provides viscosity-independent wall
location for Stokes flow in any geometry. When Ay — —2, the first order collision
(A.16) is not as precise as the magic collision for b.b rule but is still acceptable,
since in the limit ¥ — 0, the influence of second order terms on the effective wall
position goes to zero.

4.2. Free-slip boundary condition

Free-slip boundary condition has not been so intensively studied as the bounce-
back condition for the LB models. Following Maxwell [5, 57], specular reflections
are used in the LB methods to model it: when the population arrives on the solid
from a boundary node, it reflects into the node symmetric with the respect to the
normal to the wall (see Fig. la). Using first order Chapman-Enskog expansion
[6, 11, 26], one can show that specular reflection at a solid wall provides free slip
boundary condition

aj‘rs 6.]n5
ons + ors

Jns =0; =0, 7" = {7-1877-28} . (55)

Formally, condition (55) holds up to O(€?) only when the flow is invariant along a
wall. In general then, local specular reflection (see Fig. 1b) has approximately the
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same accuracy. We implement it in a form:

N_i(r,t+1)=Nj(r,t), if {r+C;r+C;}esolid
and C_ins = —Cjns N C_iTs = Cst . (56)

Relations (55) mean that all populations return into the node of departure. Unlike

to bounce-back, force addition in (5) is not consistent with the condition (55) when
F is parallel to the wall. To improve this, one should either omit the corresponding
force addition to leaving populations Nj (r,t), or to implement specular reflection
in its classical non-local form, when the populations are reflected into the neigh-
boring nodes. In geometries more complicated than the point near a solid wall, the
solution for an unknown population should involve more than one post-collision
population. For instance, in the case of “2D” corner (see in Fig. 1c), we compute
unknown “corner” populations, both in 2D and in 3D, as an arithmetical mean
of specular reflections with respect to both walls forming the angle. This provides
free-slip condition (55) approximately on the both sides. Useful test of free-slip
boundary conditions is a uniform Stokes flow in an infinite (periodic) channel. This
solution is maintained exactly by the relations (55) in 2D case and by using men-
tioned above reflections in corners, in 3D case. Similar, free interface algorithm
should provide exact solution with density and velocity equal to those at the inlet
when constant flux comes into a channel. Linear combination of free-slip/no-slip
boundary conditions with some factor p/(1 — p) enables us to model intermediate
friction behavior.

4.3. Inlet boundary condition

Inlet boundary condition is not trivial even in the case of a constant incompress-
ible flux j** = pOUm entering the domain. Indeed, the density pi(r,t) at the inlet
is not equal to its initial value py because of the pressure gradients. So far, pi*(r,t)
is a priori unknown. Moreover, since mass flux j performs the py-transport for
the recoloring algorithm, j should be proportional to the effective p™ value and
therefore can not be set equal to j. In order to compute p™, we use the same
idea as for the reconstruction step: all populations are expressed as a first order
Chapman-Enskog expansion where the velocity is set equal to its inlet value. Known
populations, arriving at the inlet from the bulk, are used to derive the unknown
quantities. In particular, when the velocity derivatives at inlet are negligible (e.g.,
constant profile) and continuity condition (19a) is assumed, eNi(l) (12) written in
non-inclined coordinate system becomes becomes:

1 8p, .
eNi(U:E%U;”QM, i€{0,... b} . (57)

Assuming an approximately hydrostatic (linear) pressure distribution at inlet
c20p/0z = pog, the populations take the form

N,' = pB,' + bi B (58)
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where

* | gk in Ué‘nUén Pog 1 in 1
Bi =rp+t, |Uy ' Cia + 5 (3CiaCig — 6ap)| » bi = CTEUQ Qiaz_ipogciz :

s

Computing a sum of known populations )+ N;', we write then equation (45)
for density:

_ Dier+ N+ Y- bi
p= 1 B, . (59)
= 2ier- Bi

When p is computed, incoming populations are imposed in the form (58). In
case of not uniform inlet profile, the same approach has to include the first and,
if necessary, second order momentum derivatives into Chapman-Enskog expansion
for inlet populations.

5. OVERVIEW OF THE ALGORITHM

We apply our method to simulate filling processes. The scaling procedure is
based on the equality of the Reynolds number Re and Froude number Fr to those
of the experiment (see (20)). The magnitude of the inlet LB velocity U, U =||
U™ ||, determines the scaling factor between the LB and the physical velocities.
Characteristic length L is set equal to some inlet distance. Consider some regular
grid which covers the computational domain. Let the number of its liquid cells be
equal to V and their number at inlet be $. The number of LB time steps to fill the
boxis T'* = V/(S™"U'). Since the computational time is the inverse of proportional
to U, its value must be as high as possible. On the other side, the conditions Ul <
1 and U < ¢, should be met. Moreover, M? = U”’Z/cg should be small enough
to avoid high compressibility error. For instance, in case when nearly hydrostatic
regime VP’ ~ Fr ™! is attained in a box of a height H, the density difference p — po
between the top and the bottom is about [pg/c2]g!H. When the physical velocity
increases in [ times but the same inlet velocity is used in different LB simulations,
g'® and density variation decreases as [2. So far, simulations corresponding to
high physical velocities are easier for the method from the point of view of the
compressibility effects caused by the gravitation.

In simulations below, we mostly use U < 0.1 and ¢? = 1/3, i.e. M? < 0.03 at
inlet, at least. According to von Neumann analysis of the linearized stability [51,
77, 83], the minimal stable viscosity value ™" increases with U'®. When U = 0.1,
the LB method without free interface approaches its stability boundary somewhere
at 7™ & 0.5078 in 322 and 642 periodic boxes. This data corresponds to first
order collision (A.16) according to our stability analysis. In case of simulations
with free interface and U'® ~ 0.1, we detect a loss of stability at approximately
this range of 7 values, i.e. at moderate Reynolds numbers (Re =~ 200 — 500 for
typical inlet length L' ~ 10l.u). The development of instabilities manifests itself,
for example, in appearance of a large number of negative populations after the
reconstruction. In fact, local velocities overhead the inlet velocity several times in
real-life simulations. The non-linearity of the flow (see [83]) and the presence of
free boundary can shift the stability bounds to greater viscosity values as well.
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When the grid is refined by a factor p, i.e. V — p*V, § — p?S, and U" is
reduced by a factor k, k > 1, T increases as p x k times and the total com-
putational efforts increase accordingly by a factor about p* x p x k. Since Mach
number decreases as k?, one should not expect decreasing of the compressibility ef-
fects when k = 1 even if the grid is refined. The stability should improve, however,
b increases by a factor p/k. In reality, !* should take so small values for
high Reynolds number simulations that it appears to be un-practical to improve
the stability only with a help of the refining procedure. In order to analyze the
problem, two approaches have been investigated. The first one is to study dif-
ferent reconstruction strategies, including higher order extrapolations, iteratively

since v

improved linearizations, explicit /implicit time approximations, etc. In spite of some
improvement, no important gain in stability has been obtained unless some numer-
ical diffusion is introduced into the scheme. This represents our second approach
to stabilize the LB method as discussed in the next section.

6. UPWIND APPROACHES

So far three possibilities have been explored in [22]. As a first (explicit upwind)
approach we add numerical diffusion explicitly as shown below. In the next ap-
proach, in order to reduce crosswind diffusion of such an explicit upwind scheme
in multi-dimensions, we represent the equilibrium function of the LB equation in
such a form that derived macroscopic equations may include different corrections
to diffusion tensor. In this way, we introduce LB analogs of full upwind scheme
and different streamline type upwind schemes. As a last possibility to damp the
small-scale fluctuations, the simplest turbulent (Smagorinsky) model was consid-
ered similar to [37): v — v + vr,vr = C?||D||. The intrinsic locality of the LB
method is maintained in almost all new schemes since all components of strain-rate
tensor Dj = pD are derived from non-equilibrium part of the population solution.
When a spectrum of global evolution operator is improved for the first and third
approaches, the LB method becomes robust and stable. Ezxplicit upwind scheme
has been found to be the most robust for free interface simulations. Robustness
means here that very different realistic problems can be modeled using nearly equal
upwind parameters without loss of stability.

The idea of Pe-dependent numerical diffusion borrowed from the framework of
the conventional approaches in case of 1D convection-diffusion problem (see [9]):

9¢
llayl2 - UHa—yl

=0,U>0,0<y' =y/H<1,¢(0)=1, ¢(1)=0. (60)

The exact solution is

ey’ — ek UH
—_ k=—. 1
1—ek v (61)

oy") =
Exact LBE solution to Eq.(60) is discussed in [29]:

. Xj_Xn 1+ Pe Uh H
o =il =T X ope Pem g, e I =0 (62)
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This solution will coincide with the solution (61) if

k/n _q Uh exp®/™ +1
n __ k . eff _ eXp . Eff o eXp
= e P == - i =— 63
X" =expt, Le Pe(r™) expk/n +1"’ ve 2 expk/n —1 (63)

Relation (63) means that the effective LB viscosity should be changed (v — v¢/7)
to obtain exact solution for linear convection-diffusion problem. In other words,
high order terms in this flow population solution add the negative diffusion to the
viscosity coefficient v, computed from the first order Chapman-Enskog expansion.
In order to compensate it, one can introduce artificial numerical diffusion ™%

prum — Veff —v

expPe1 1

— ux P __ 0
. e(exp2Pe—1 Pe

)

1 k
= v x Pex f(Pe), f(Pe) = coth(Pe) — Po’ Pe = " (64)
Relation (63) means that when exactly the same quantity of the numerical diffusion
(“optimal rule”) as for finite difference methods [9] is added, LB solution to the
problem (60) becomes exact.
With the “explicit upwind approach”, we adjust locally Ay so that v becomes
equal to v¢f7:

peff — Y e — g, F(Pe) 7 F(Pe) — (' x Pe x f(Pe) . Pe = || g Hh{65)
14

Here, the local Peclet number Pe (or grid Reynolds number) controls the quantity
of the numerical diffusion; || u || is magnitude of local velocity; space step h is equal

nwm

to 1 L.u; C is some free parameter. In order to reduce v at least at small and

intermediate Pe numbers, we introduce modified critical approzimation (cf. [3]):

Pecrit.

f(Pe) =0, Pe < Pe " and f(Pe) = (1 — ), Pe > Pe™™ _ (66)

We assume here, that an estimation obtained from the stability analysis for max-

imal stable Peclet number Pe™% enables us to fix Pec " value, Pef"t: < Pe™av,
Let v°" (]| u ||) corresponds locally to Pec"it: v = || u ||h/2Pe"®. Then we
can rewrite relations (65), (66) as

v O,I/E‘f‘f(l/>:l/,ifl/>llcrit'7
Vnum(y) — (Vcrit. _ V)[C % Pecrit.] , and (67)
I/Eff(l/) = [C x Pecrit.]ycrit. +[1-C x Pecrit.]y if v < perit.

Relations (67) mean that the numerical diffusion manifests itself only when the
kinematic viscosity is less than critical viscosity value at a given velocity. Effective
viscosity (67) is represented as a linear combination of v°"% and v. Its magnitude
depends on a product of two values: Pe™® and C. When C x Pecrt: =1, peff
takes its minimal value v°"% (v). We study results obtained with a help of explicit



LATTICE BOLTZMANN MODEL FOR FREE-SURFACE FLOW 21

FIG. 2. Advection of 2D bubble with U = (0.05,0.1). Top to bottom: 322, 642, and 1282
grids.

upwind scheme in case of one phase examples (1D convection-diffusion, driven cav-
ity) and benchmark free interface simulations (see in [22]). Based on these results,
we conjecture that the choice Pe™ = D and C = 1/D is close to limit of the
admissible numerical diffusion on fine enough grids. In this way, v*/7 approaches
critical approximation [3] to solution [9] in 1D case. Note that in case U'® = 0.1,
choice Pe® = 3 corresponds to 7 = 0.55 > Tyin- The assumption that the LB
stability limits can be estimated in terms of Pe number is currently under study.

7. NUMERICAL RESULTS
7.1. Advection tests.

As a simple advection test of the recoloring algorithm, we advance a bubble with a
given constant velocity U by using free interface LB method for grids with different
resolution. Figure 2 demonstrates that the bubble shape is maintained. Initially,
the active points are those lying inside the bubble (py = pp). In all active points,
the population solution stays equal to Stokes equilibrium N;%(py,U) after each
propagation step. Consequently, the density p and velocity w stay equal to their
initial values pp and U. For the convergence study, regular grids (2*)?, n > ng are
used. Space step is set equal to 1 Lu. for every grid. The initial radius of bubble
is 7 x 2(m=m0) Lu, ny = 5 and its initial position is 7o = (2 1)P. The position
of bubble center R(t) is approximated as py/p-weighted sum of the active cells
centers. The error err in bubble center position is computed as the arithmetical
mean of its coordinate values:

err =20 S S (Ral) ~ REO) ||, R () =Ro +ut . (68)
a=1,....D t

Error is measured in discrete time moments t = {10 x k x 2(*=m0)} k=1, 7.
consequently refined grids. Linear (quadratic) convergence should correspond to
rel(n) = v/2 (rel(n) = 2), respectively. Results obtained in case of different advec-
tion velocities and D3@15 model are found in Tables 2 and 3. Convergence rates
between first and second order are agree with the prediction of Section 3.2. As it
could be expected, the error is anisotropic. Similar results are obtained for other
U values and for D2Q9 model. More complicated advection tests defined by Rider
& Kothe [68] are in study [46].

The norm of the difference rel(n) = is computed for each pair of the

7.2. Filling in 2D cavity
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TABLE 2

Error norm in 3D for bubble advection in case (36).

velocity U 323 643 1283
U =(0.1,0,0) 0.2464 0.0603 0.0168
U =(0.1,0.1,0.1) 0.2011  0.0696 0.0321
U = (0.05,0.1,0) 0.2489  0.1031  0.0301
U = (0.05,0.1,0.05) 0.2727 0.0923  0.0271

TABLE 3

Convergence results for data in Table 2.

velocity U 32 —-64 64—128
U =(0.1,0,0) 2.0216 1.8953
U =(0.1,0.1,0.1) 1.7001 1.4733
U = (0.05,0.1,0) 1.5537 1.8509
U = (0.05,0.1,0.05) 1.7186 1.8443

FIG. 3. LB simulation of filling of a 2D cavity at Re = 0.2. The figure shows the time-
evolution of the velocity magnitude distribution in the cavity (left to right then top to bottom,
t=0.11s, 0.27 s, 0.32 s, 0.43 s, 0.54 5, 0.59 s, 0.75 5, 0.92 5, and 1.02 s). Physical parameters
are: U = 100 cm/s, v**P = 1.0 cm?/s, T = 1.08 s, and L*®*P- = 2 cm. The number of cells is
86,240. The parameters used in the simulation are: U'® = 0.00625, v'® = 1.25, 7 = 4.25, L'® = 40,
and T'0 = 344,960. No-slip boundary conditions are applied at walls, and the magic collision
of Eq. (A.13) is also used. Colors: yellow (214 — —232 cm/s), red (125 — —143 cm/s), and blue
(< 71 cm/s).
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FIG. 4. LB simulation of filling of a 2D cavity at Re = 2. The viscosity is #°*P = 0.1 cm?/s
(7 = 0.875). Other parameters and conditions remain the same as in Fig. 3. Colors: yellow
(157 — —171 cm/s), red (100 — —114 cm/s), and blue (< 43 cm/s).

R ——

m

FIG.5. LB simulation of filling of a 2D cavity at Re = 50. The viscosity is #**? = 0.04 cm? /s
(1 =0.74), U'* = 0.1 and T*®* = 21, 560. First order collision (A.16) is used. Other parameters and
conditions remain the same as in Fig. 4. Colors: yellow (196 — —232 cm/s), red (125 — —143 cm/s),
and blue (< 71 cm/s).

FIG. 6. LB simulation of filling of a 2D cavity at Re = 500. The viscosity is v¢*P =
0.004 cm?/s (7 = 0.524). Friction factor p is set to 1/2. Other parameters and conditions remain
the same as in Fig. 5. Colors: yellow (196 — —232 cm/s), red (125 — —143 cm/s), and blue
(< 71 cm/s).
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FIG. 7. Pressure solutions in 2D cavity at ¢ = 0.65 s with different space resolutions (left
to right, space step is: h = 0.2¢m; h = 0.1em; h = 0.05¢m) and different Re numbers ( top to
bottom, Re = 0.2, 2, 50, 500). Reference pressure of gas phase at interface is Pp = 1013 mBar.
Colors: Re= 0.2, yellow (3622 ——4096 mBar), red (2673 ——2910 mBar), and blue (< 1724 mBar);
Re= 2, yellow (1327 — —1356 mBar), red (1213 — —1242 mBar), and blue (< 1099 mBar); Re= 50,
yellow (1048 — —1040 mBar), red (1036 — —1033 mBar), and blue (< 1025 mBar); Re= 500, yellow
(1078 — —1073 mBar), red (1048 — —1043 mBar), and blue (< 1033 mBar).

We consider first filling simulations in 2D cavity with expansion 1 : 5. Inlet
section is 2 cm x 7.8 cm, the cavity is 10 cm X 20 cm; inlet velocity is equal to
100 cm/s, ﬁlling time T is 1.08 s. Gravitation is absent: g = 0. Density of fluid
pe®P-is 1 g/cm®. We vary Reynolds number Re with viscosity. No special efforts
to maintain the symmetry is done. We show the obtained results in Figs. 3-6 for
Re = 0.2, 2, 50, 500, respectively. In whole, filling patterns are in agreement
with the theoretical and the numerical analysis [1]. At Re= 0.2, the “mound
filling” is observed. At Re= 2, the filling behavior is changed and “disk pattern”
develops. Relatively small LB velocities are used in both cases in order to decrease
LB viscosities and therefore, to improve an accuracy of boundary conditions.

At intermediate and high Re, when inertia dominates, filling patterns change
drastically and so called “shell” type filling is obtained at Re= 50 and Re= 500. At
Re=50, viscous boundary layers are rather thick (see in Fig. 5). At Re= 500, the
boundary patterns are much thinner and they develop almost parallel to adjacent
wall, in according to the analysis of inviscid flow [1]. Similar solution are obtained
at Re> 500, when we use explicit upwind scheme (67) with C' = 1 and Pe® i =1,
When this scheme is applied in case Re= 50, no influence on the solution is de-
tected since the actual Pe-numbers are less than Pe"*. We conclude then that for
chosen parameters of the upwind scheme, the quantity of the numerical diffusion is
acceptable.

The convergence behavior of the algorithm with respect to the space resolution is
checked by considering three consequently refined grids. In so far, the solution above
corresponds to finest grid of the sequence. The results are displayed in Fig. 7 for
pressure solution. At given Re number, equal inlet LB velocities are used for simula-
tions at every grid. Then the CFL value is constant (CFL= U A#?® /Axz!> At® =1,
Az!® = 1) and the value of time step in physical units decreases together with the
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space step when the grid is refined. Figure 8 displays point-wise difference Ly, 25 (%)
between the solution obtained on the grid with step 2h and its projection from the
finer grid, measured in Ly norm: Lp, 25 (t) =|| fr(t)— f2rn(t) |- Projection is set equal
to an arithmetical mean of the four fine cells lying inside one coarse cell. The solu-
tion is put equal to zero in non-filled cells. The results are given for pressure(mBar),
velocity(cm/s) and phase-distribution variable ps/p: f = {P,|| w ||, ps/p}. The last
figure in each row plots the error ratio Ly 25 (t)/Lop, ap(t) for these variables. The
error is measured each 5% of filling. Mean ratio value is about 2 what corresponds
to first order convergence. Table 4 displays integrated over the whole period of
filling time convergence rates Ly 2 = Y, Ln2n(t) vers Lopan = Y, Lonan(t).

The results for convergence rates reflect quite well main features of the current
algorithm with respect to mesh refinement. First, only first order convergence is
observed. In 2D case, since no tangential derivatives are neglected, second order
accuracy is met by Chapman-Enskog expansion at interface as well as in bulk.
However, we can not expect effective second order behavior from the boundary
conditions at solid walls used here. Also, the advection scheme and the calculations
of the normal are only first order accurate. Second, the difference between the
solutions obtained on three grids is smaller for intermediate Reynolds numbers,
Re= 2 and Re= 50. At Re= 0.2, i.e. at high 7 values (r > 1), the difference
between coarse/fine solutions at the stagnation point is quite significant. We relate
this to inaccuracy of the boundary conditions which grows together with v (see
[17, 39]). For Re = 500, if equal parameters of upwind scheme (Pe" =1, C' = 1)
are used on every grid, the numerical diffusion on coarse grids becomes excessive.
This can be understood from the relation (67): since Pe and U values are
equal at all grids, "% values are also close, whereas the imposed viscosity values
v increases with the refinement. This implies higher v
values, i.e. for coarse grids. One could assume then that the parameter C' should be
reduced together with v. The calculations on the bottom of the Fig. 7 are performed
with increasing C values (C' = 1/4,1/2,1), from coarser to finest grids. The results
improve then according to our predictions (see at the end of the Section 6). We
note, however, that some thickening appears when the boundary flux drains into
the inlet column (see the bump at the left of the inlet on right bottom picture in
the Fig. 7); this thickening continues to travel with the fluid (see the left bottom
pictures in Figs. 5 and 6). We conjecture that this is related to coupling of the
populations which carry fast and slow momentum values at interface cells. This
effect is less visible on coarse grids (see bottom pictures in Fig. 7) due to excessive
numerical diffusion and/or lack of space resolution. Similar results are obtained
with the SPH approach by J. Kuhnert and S. Tiwari [44]. We suppose that adding
surface tension would smooth the solution.

crit.

num yalues for smaller v

Compressibility study is performed for Re=2 when inlet velocities varies:
U% = 0.1 x2™ n = 0,1,2,3,4. In two first cases, i.e. at high 7 values
(r = {7.5,3.5}), the solution is neither accurate nor stable. In the three other
cases, we compute mean density value p(t) over all active points and compare it
with the reference value pg. We plot in Fig. 9a obtained results for dp value,
8p = (p— po). In order to check if 5p(n) scales as U™, we rescale dp with respect
to its value at n = 4. Figure 9b displays 4, values, 6, = (p — po) X 44" When
n=4,U%=01/2*, M?> ~ 1.2 x 1074, §p ~ 0, i.e. incompressible regime is practi-
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FIG. 8. Left to right, magnitude of error value for pressure, velocity magnitude and fluid

quantity py/p between coarse-middle and middle-fine grids in 2D cavity simulations. The last
figure in each row plots the error ratio (coarse-middle to middle-fine) for these variables. Top to
bottom: Re = 0.2, 2, 50, 500. Data correspond to previous picture.
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plotted for LB inlet velocities U'® = 0.1 x 2", where n = 2,3,4. Accordingly, v!® = 2 x 277,
7 =1{2,1.25,0.875}. a: dp = (p — po). b: 05, = (5 — po) X 41-m,
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TABLE 4

Error norm Lp,2n/L2h,sr in 2D cavity.

Re Pressure(mBar) || u || (cm/s) prlp

0.2 1295.9/553.4 49.44/41.7 0.705/0.51
2.0 330.7/180.4 28.45/16.5 0.39/0.22
50 496.9/282.5 89.6/48.6 0.57/0.33

500 654.68/311.5 144.1/69.09 0.98/0.36

cally reached. After rescaling, density deviations (52(71) approaches to zero, similar
to the results for n = 4. This confirms that the compressibility errors scales as M?,
in agreement with the theoretical predictions.

7.3. Three-dimensional simulations.

Benchmark simulations: Hammer box [36] , Campbell box [73] and Sheffield
box [2] are presented. The influence of inlet velocity on the compressibility is
considered in “Motorblock” simulations. Density of fluid p®®?- is 1g/cm3 unless
specially indicated. Since very high Re numbers are modeled, free-slip boundary
conditions are mostly used. No-slip boundary conditions correspond to high local
velocities in narrow channels and lead to further increase of the compressibility.
Filled volume is computed as a sum of vof-type value my = py/p. The deviation
of the obtained filling state in time from the exact linear solution is controlled. In
benchmark simulations below, corresponding compressibility error lies within 5%.

Regular computational grids used here include from 10° to 2 x 10° liquid cells.
Similar results are obtained by using both linearizations discussed in Section 3.3.
The code is parallelized using Dynamical Load Balance strategy [45]. Since the
non-local operations (compared with one phase LB method) are concentrated at
interface cells only (e.g calculation of normal vectors, advection of fluid mass, ex-
trapolations), the method keeps its advantages for parallelization.

Hammer box [36]. We show in Figs. 10 and 11, pressure and velocity fields
during mold filling simulations of steel hammer head casting at Re=53,417, Fr =
5.1. LB simulations at U'® = 0.1 are done with explicit upwind scheme (67), where
Pec™ = 3 and C = 1/3. The filling sequence agrees quite well with the other
results [36, 53]. The stream reaches first the right wall at a the point which lies
approximately at a height equal to 2/3 of the distance between the runner and
the bottom. The jet of failing steel attains the velocity 250 — 260 cm/s, then it
slows down at the bottom and raises slow into the casting box. During the rise,
the pressure reaches the hydrostatic distribution. When the numerical diffusion
increases and viscous/gravitation effects prevail over the inertia, the stream comes
into the runner and falls down (see in [22]). In so far, this test can be used as a
measure of the effective Reynolds numbers. Also, because of very small LB viscosity
values used in this experiment, local Pe numbers take mostly high values. Indeed,
Pecm = 3 corresponds to || u || &~ 7 x 1073 in this experiment. One can assume
that numerical diffusion can be switched on at higher Pe"® numbers. For instance,



28 GINZBURG AND STEINER

FIG. 10. Filling sequence of pressure distribution in Hammer Box, close to symmetry plane,
at Fr = 5.1, Re = 53,417 (left to right and top to bottom, 1.25%, 7.5%, 25%, 35%, 50%, 100% of
exact filling). Physical parameters are: U = 122.859 cm/s, v¢%P = 6.9 x 107 m?2/s, T = 15 s,
LewP- = 3 cm. Grid: 110,573 liquid cells. LB: U'® = 0.1, v = 1.1 x 107%, 7 = 0.500034, L!* = 6,
T = 36,858. Colors: yellow (1339—1366 mBar), red (1203—1230 mBar), and blue(< 1122 mBar).

the results at Pe" = 150, C' = 1/3 (i.e. 7{if,, = 0.501) are still similar to
those presented in Figs. 10 and 11. On the other hand, the stabilization is not
strong enough when Pe" = 103, i.e. T|'|:£\i|t'=o.1 = 0.50015 ). This agrees with
the stability values mentioned above. The work in progress should help to estimate
a-priori effective 7 and/or Pe stable values in function of other physical parameters.

Analysis of the algorithm is applied to current example. The number of
interface points is of order of several thousands at each time step (see Fig. 12a).
Figures 12b- 12d display the number of points where at least one unfavorable sit-
uation mentioned at caption happens. The number of “bad” cases is negligible
compared with the total number of points where the reconstruction takes place.
Extrapolations of populations from neighboring “good” cells are performed when
situations b), ¢) or d) happen. Figures 12e-12f display the number of such points.
If no such neighbor is found, the point is deactivated. The total number of deacti-
vated nodes over the whole period of filling is equal to six in this example. Due to
the stabilizing scheme, no negative population after collision appears. Otherwise
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FIG. 11. Filling sequence of the velocity magnitude distribution in Hammer Box. Param-
eters are the same in Fig. 10. Colors: yellow (257 — —279 cm/s), red (150 — —171 cm/s), and blue
(< 86 cm/s).

the number of negative populations after the reconstruction and after the collision
increase drastically when 7 approaches its limit value 7 = 0.5.

Campbell box [73]. Numerical and experimental results in this geometry (see
in Figs. 13 and 14) have been discussed at VII Modeling of Casting and Welding
Processes Conference. We model the mold casting by using constant inlet velocity
which corresponds approximately to the prescribed filling time. Simulation results
at Re = 3.2 are shown in Fig. 13. They agree well with the polymer flow predictions
[73]. Filling sequence at Re = 165 is plotted in Fig. 14. Here, the sprue develops
fast along the bottom of the runner, then impacts to the nearest side of the gate
and expands first to the left. Then the sprue fountains quickly to the right. Later,
two vortices appear on the either side of the main filling stream. In this way, the
simulations reproduce the main features of the experimental results [73]. Note that
the kinematic viscosity of the aluminum (and hence Re number) is reduced here,
since no turbulent modeling is used in the simulations.
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FIG. 13. Velocity magnitude in Campbell Box at Fr = 5.56, Re = 3.2 (left to right and top
to bottom, ¢ = 0.14 5,0.24 5,0.28 5,0.33 5,0.38 s, 0.47 s.) Physical parameters are: U = 88.6 cm/s,
verP =4 %103 m2/s, T =1.88s, L¢*P- = 1.44 cm. Grid: 216, 546 liquid cells. LB: U!® = 0.0125,
vl = 0.047, 7 = 0.641, L!® = 12, T = 111,049. Free-slip boundary conditions. Colors: yellow
(214 — —232 cm/s), red (125 — —143 cm/s), and blue (< 71 cm/s).

Sheffield box [2]. The simulations at Re= 24,717, Fr = 10.7 in Sheffield box
are displayed in Fig. 15 in case when U = 145 cm/s. They correspond to physical
parameters of water. Flow comes from left to right and the variation in inlet velocity
results in different values of maximal height of the jet column in the right gate. Our
results at inlet velocities U = 80 cm/s, 95 cm/s, 105 cm/s, 145 cm/s agree well
with the available experimental data [2] and the numerical simulations [53]. For
all inlet velocities, we use the same upwind parameters: Pe™ = 3, C = 1/3.
When C increases to 1, however, right water jet does not reach the top wall at
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FIG. 14. Velocity magnitude in Campbell Box at Fr = 5.965, Re = 165 (left to right
and top to bottom, ¢ = 0.09 s, 0.18 s, 0.227 s, 0.32 s, 0.35 s, 0.45 s). Phys1ca1 parameters are:
U =91.75 cm/s, v°®P = 8 x 10~° m2/s, T =1.815s, L¢*P- = 1.44 cm. Grid: 216, 546 liquid cells.

LB: U = 0.05, v!® = 0.047, 7 = 0.641, L' =12, T'® = 27,762. Free slip boundary conditions.
Colors: yellow (314 — —371 cm/s), red (200 — —229 cm/s), and blue (< 114 cm/s).

U = 145 cm/s, indicating that the gravitation and viscous forces dominate over the
convective ones (see in [22]). Similar to the jet behavior in the Hammer box, this
test is a good indicator of the excessive numerical diffusion.

Filling sequence in “Motorblock” at Re = 26, 507, Fr = 2.36 is shown in Fig. 16.
The results are obtained with strong upwind parameters Pe" = 1 and C = 1.
The compressibile effect is much stronger here than for the Hammer and Sheffield
boxes when the same inlet velocity (U!® = 0.1) is used. It causes, in particular, a
quite noticeable delay in filling time. The filling state (in percent of full stand) is



LATTICE BOLTZMANN MODEL FOR FREE-SURFACE FLOW 33

FIG. 15. Velocity magnitude in Sheffield box at Fr = 10.7, Re = 24,717 (left to right
and top to bottom, t = 0.06 s, 0.17 s, 0.23 s, 0.4 s). Physical parameters are: U = 145 cm/s,
veTP = 1.17 x 1076 m? /s, T =2.31 s, L°®P: = 2 cm. Grid: 1,270,420 liquid cells. LB: Ut =o0.1,
VI = 8.1 x 1075, 7 = 0.500243, L'* = 20, T'® = 33,432. Free-slip boundary conditions. Colors:
yellow (393 — —464 cm/s), red (250 — —286 cm/s),blue (< 143 cm/s).

plotted as a function of time in Fig. 17a for U!® = 0.1 and U'® = 0.025. Figure 17b
displays the error in filling state divided by factor 4 for U = 0.1. Since both
solution are close we can conclude that the error in filling time scales with M rather
than with M?. Note that even for U'® = 0.025, the pressure in narrow channels (see
inlet channels at two last pictures in Fig. 16, for instance), is still too high. The
compressibility of the method is controlled by the choice of the LB characteristic
velocity at the inlet: while reducing U'®, pressure solution improves and correct
filling time approaches. Nevertheless, an efficient strategy to maintain reasonable
Mach numbers in realistic calculations needs still to be found.

8. CONCLUSION

A general approach for free interface Lattice Boltzmann method has been de-
scribed. This approach is based on a first-order Chapman-Enskog expansion of the
population at interface nodes. Boundary conditions at curvilinear interfaces are ex-
actly met by the coefficients of the series. Interface advection is performed with help
of locally mass conserving and anti-diffusive recoloring algorithm. Since no stage of
the algorithm involves geometrical interface constructions, the method is robust to
any interface topology and can be regarded as a surface capturing method. In bulk,
second order LB accuracy in space is maintained. At the interface, formal second
order accuracy is kept by the expansion. At solid boundaries, actual accuracy of
local reflections is something between first and second order. Boundary method
[19] can be incorporated for further improvement. Least square minimization pro-
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FIG. 16. Pressure distribution is shown at Motorblock at Re = 26,507, Fr = 2.36 (left
to right and top to bottom, ¢t = 0.3 s, 2.5 s, 7.52 s, 15 s, 20 s, 25 s; accordingly, 1.25%, 10%,
30%, 60%, 80%, 100%.) Physical parameters are: U = 83.23 cm/s, v°%P = 9.42 x 1076 m? /s,
T = 30.08 s, L¢P = 3 cm, p®P = 7 g3 /em3. Grid: 625,817 liquid cells. LB: U = 0.025,
v =6.0 x 1076, 7 = 0.500017, L = 6, T'® = 200, 261. Free-slip boundary conditions. Colors:
yellow (2181 — —2500 mBar), red (1765 — —1863 mBar), and blue (< 1438 mBar).
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cedure [63, 64] could bring second order improvement of the normal calculations on
regular grid. From the point of view of the numerical efficiency and adaptation to
parallel calculations, the method is not essentially different from the ILB methods.
In so far, locality of its main operations and linear increase of the computational
efforts with space refining are advantageous for realistic calculations. Since no com-
plicated discretization/advection/solution procedure is needed, the method can be
easily implemented by the LB users and novices. First-order Chapman-Enskog ex-
pansion of the populations, which contains in itself all components of the strain
tensor, allows local and simple incorporation of viscoelastic effects into the model.
In particular, we combine the LB filling algorithm with the regularized Bingham
model [1]. First results [23] are found in good agreement with the theoretical and
the numerical predictions.

Besides other straightforward extensions of the method, for instance to other
LB velocity models or to two (or more) fluids, several problems remain. The first
one is related to intrinsic compressibility of the method. Robust applications of
the method in complex geometries require to develop adaptive strategy for dy-
namic change of the LB parameters and introduce variable space resolution into
the model. The second difficulty is observed in filling simulations at very small
Reynolds numbers, e.g processing of metal alloys. We conjecture that the reason
lies in inaccuracy of first order Chapman-Enskog approximation and/or bound-
ary conditions in the limit of high LB viscosities (7 > 1). Although the problem
can be avoided by restriction of the LB viscosities to their reliable interval, the
corresponding reduction in LB velocities slows the method. Finally, effective and
accurate design of LB upwind schemes needs further investigation. Despite these
difficulties, the method seems very promising for real-life simulations in injected
molding provided that the conditions on its accuracy are met by a proper choice of
the numerical parameters.

APPENDIX: GENERALIZED LATTICE BOLTZMANN
EQUATION

In the first two sections, we present basis vectors and eigenvalues for D2@Q)9 and
D3@Q15 models. This is followed by common remarks and particular solutions for
free eigenvalues in Section A.3. Details to implementation of collision step are
discussed in Section A.4. First order term eNi(l) is obtained in Section A.5 using
notations of current paper.

A.1. MODEL D2Q9

Let nine velocities of the D2Q9 model be ordered as following: (0,0), (1,0),
(0,1), (-1,0), (0,-1), (1,1), (-1,1), (—1,-1), (1,—1). Orthonormal basis vectors
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for D2@Q9 can be chosen in the form (cf. rel.(12))

1 1 1
= {7} = —{Ci}, = —{Cy},
€1 3{ 1}7 €2 \/6{ } €3 \/6{ y}
, 1.

€1 = G{t*CmC,’y} 5 €5 — 3{t*(CZ — —C;)} 5

= V3{t}(C}, — 3C:C3, )}, er = V3{t}5(C} — 3C:,C2)} (A1)
eg = Hiimn , Eim = 5 o _ r}, | E= = 6\/(41 — 138¢2 4 117¢%) |
ey = IIT R To=4(1-3c%), Ty =13 —21c2 , Ty = 24¢2 — 14,

D
| Tp || = 64/(41 — 138¢2 + 117c%) . (A.2)

where vector T}, has constant value T}, for each p-class. Basis vectors (A.2) are
similar to those in [24, 25, 38, 51], except the two last vectors. Let us refer here to
two alternative, ¢2-independent, basis vectors as E and H:

E; = {3C} -4}, H; = {9C},C}, — 6C} + 4},

2 36 :
Ez:—ﬁ(_Z‘f‘?)C )98+ ( 5+9C§>e9’
| Eim || I Ty |l
(=54 9c%)es + (<24 3c2)e (A3)
i = = (— s)€8 - s/%9 - )
T E | | Ty |l

The eigenvalues associated with basis vectors (A.2) are

£0,0,0, 357, X592, Ao, Mgy Aey Mi } (A.4)

When A\, = \;, the system of basis vectors (A.2) is equivalent to those which use
the vectors (A.2) with the corresponding equal eigenvalues. When /\ZB = A3%,
the projection of first order population expansion (10), (12) in standard coordinate
system on the basis (A.2) yields the coefficients of the decomposition as (see first
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eq.

terms for (N, e;) an last term for (Ni(l),ek), respectively):

(Neen) = 3o (Noew) = 22 (Noey) = 22
(Noe) = Bl o (G
(Noes) = - = )+ 5 (B~ 22
(N,e6) = \/in , (N,er)= \/z]y , (A.5)
o) =asp iy BBy L (e Oy

ag = —ﬁ(:&gc‘; —43c2+12), By = —ﬁ(ﬁei -9),
(N, e) =a9ﬂ+5ng

g = ! (4—6¢%), Bg = 5 (32 —1). (A.6)

[T R Y R

When ¢ = 1, the data is: || E™ || = Y2, || T, || = 12V2, E; = 3v2(es — ey),
Hi = —3V2(es +eg), as = —¥2, fs = L2, ag = Y2, fy = 0.

A.2. D3Q15 MODEL.

Let 15 velocities of the D3@Q)15 model be ordered as following: (0,0,0), (1,0,0),
(0,1,0), (-1,0,0), (0,—1,0), (0,0,1), (0,0,-1), (1,1,1), (-1,1,1), (—1,-1,1),
(1,-1,1), (1,1,-1), (-1,1,-1), (-1,—-1,-1), (1,—1,—1). Orthonormal vectors
are chosen in the form (cf. rel.(12)), written in standard coordinate system

1 1 1
e = — CO N ey — —— ey = —
1=l e 4

1
Cia ) = —{C; ) Ci. )
Vi vigiCieh e = g5t Vi<
€5 — Gﬁ{t;CwCly} 5 € — Gﬁ{t;C,wa} 5 er = Gﬁ{t;Cwa} 5

9 . 1 . 3 . .
eg = m{tZ(CiZz - 505)} , €9 = i{t;(cizy -C2L)},
1 3 . .
el = %{t;C’mCiniz} , e = \/—1—0{%(20@% =305 (C}, + C))}

3 ‘ ‘
e = \/—1—0{%(2@3@, = 3Ciy(Ch + CL))} (A7)

3 ,
e = B gim ey | = L /(7270 = 66600 T 793807)
Y ER vp " 36 : o
T
els = m , To=2(5—21c¢%) , Ty =25 - 57¢2 |, Ty = —20 + 48¢2 ,
P

|| Tp || = +/30(235 — 1110¢2 + 1323¢%) . (A.8)
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Here again, the constant multiple before the lattice vector corresponds to inverse
of the norm of this vector. Basis vectors (A.6) are similar to those in [41], except
the two last vectors. Let us refer here to two alternative, c2-independent, basis
vectors as E and H:

1
E;={C} -2}, H; = 5{15C} - 55C} + 32} ,

1
EBi=——— (=549 - ——— (=114 272
ERETE oy B Y R
5 A 120 A
H; = W(_ll + 2705.)614 + m(-f) + 905.)615 . (Ag)
p

Basis vectors (A.6) are associated with the following eigenvalues
{0,0,0,0, X7, X3 AG7 XS NS Npyzy Aoy Azs Aay Aey i} (A.10)

Same remarks as for (A.2) are valid here. In case )\ZB = Ay%, the coefficients of the
decomposition on the basis (A.6) are related with the macroscopic quantities as

. Jy J:

=L e) = — e3) = — ey) = —
(N7el)— (Na Z) \/E, (N7 ) m? (Na 4) \/E,

3v5 '

Jaly 1 1 0j.  9jy
N,e;) = +——— + 2y,
(N, es) 2v2p  6V2 A¢( dy 6x)
JyJz 1 1 9jy , 05
N, eg) = (Y 7
(N, es) 2V2p  6v2 Aw( 5 T3y
JaJz 1 1 9js  0j.
N, e;) = —
(N, er) 2v2p 6\/§A¢(8z o)
22 -Gi+id V3, 0j. 05,  Oj.
(N, es) = ey %(2 o (B_y +5.0) (A.11)
(2-42 11,985, 0j
N Yy J= - - (Y ZIE
(N, &) 2p +3)\¢(8y 82)’
7J. 7J 7J
N7 = 07 Na = —= ’ »€12) = = ’ Na = = )
(N, e1o) (N, e11) Wits (N, er2) 6710 (N, er3) 610
B (i +34y +33) 1 1 8j.  djy  9j-
(N, e14) = aiap + P T | )\—e( or Toy T o )
1 1
= (441t + 72— 2 =——— (57 -2
Q14 72” Elm ||( CS + 7 35365) ] ﬁ14 72” Elm || (57Cs 5) s
-2 -2 -2
Je Ty T2
(N,e15) = aisp + 515% )
a5 = ———(5 — 11¢2) , Bi5 = 10 (3¢2 —1) (A.12)
P, ] T Y ' '

Similar as above, vector N — N°®? has no projection on first four vectors, corre-
sponding to mass and momentum and the corresponding terms can be omitted in
summation in Eq.(5). When ¢? = i, the data is | E™ || = ‘/Ti, || Tp || = 6V10,
E; = —2y2e1s + V10615, H; = —10v2e1s — 4v/10e15, a1q = —32, Biy = \/Tiv
Qa5 = %51_07 P15 = 0.
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A.3. REMARKS ON CHOICE OF THE FREE EIGENVALUES

The basis vectors above are mainly chosen among the polynomial vectors coming
into Chapman-Enskog expansion. In case of more general model considered in [24,
25, 38], the eigenvalues )\ZB and A3* can differ under condition that the equilibrium
function is modified in order to recover the correct stress-tensor term in the derived
Navier-Stokes equations. Similar generalization [20] is done for D3@Q15 Model. In
this paper, we assume )\ZB and A% to be equal and denote them as Ay. Eigenvalues
Ae and Ay enter as the coefficients into first order expansion (cf. (12)) and therefore,
determine the transport coefficients (15a) and (15b). Other eigenvalues are free.

“Magic solution” for free eigenvalues relates the eigenvalues associated with
the odd order polynomial eigenvectors (Ao = {2, Azy-}) to those associated with
the even order polynomials (Ag = {Ay, Ae, \i}) through “magic” condition

Ae +2
Ae +8°

Ao(Ae) = -8 (A.13)

Its properties are discussed in Section 4.1. When the non-linear term is present
at equilibrium (10), the solution (A.13) is not more exact for Poiseuille flow until
“free” projection aH is introduced into the equilibrium function

N°% — N4 4+ oH . (A.14)

Here, « is some constant and H is given by relation (A.2) for the D2Q9 Model and
by relation (A.8) for the D3Q)15 Model. Important here that equilibrium projection
on H does not influence the derived Navier-Stokes equations. The coefficient o can
be used to annihilate the contribution of a non-linear term in eNi(l). In particular,
when

1., .

a = E(j£+jj), for D2Q9, (A.15a)
| P

a = —ﬂ(j§+j§+jj), for D3Q15, (A.15b)

such a term vanishes when j has only one non-zero component, e.g. Poiseuille
flow. In terms of equilibrium weights, solution (A.15a) means that the projection
of equilibrium in a form (10) is doubled in 2D: (N°® + oH, H) = 2(IN*?®, H). This
coincides with the solution obtained with another approach by D.d‘Humiéres [40].
In 3D, we have (N*® +oH, H) = 4(N°%, H). Numerical computations confirm that
when aH is added to equilibrium, momentum definition (3b) is used, and magic
solution (A.13) is employed for free eigenvalues, Poiseuille profile in a channel of
given width is obtained exactly, likely as in case of linear equilibrium function.
“First order solution” for free eigenvalues puts all eigenvalues except Ay
equal to —1:

Ay =Ae = Agyz =N = —1. (A.16)

In this case, only the projection on second order polynomial basis vectors associated
with Ay does not vanish after collision. This becomes especially transparent when
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the collision is written in the equivalent form:

b
Ni(r,t) = N%(r,6) + D (14 M) (N = N ey ey, - (A.17)
k=0

While using Chapman-Enskog expansion at reconstruction step, we neglect O(€?)
and O(M?) terms associated with the eigenvalues \. and free eigenvalues. Assuming
that first order collision could dump the oscillations in these terms, we often use it
for calculations in this paper.

A.4. IMPLEMENTATION OF COLLISION

Equation (5) is formulated in terms of the normalized basis vectors in order to
simplify the notations. It is much more numerically efficient to represent basis
vectors as the vectors with integer components, say eik“t. This enables us to com-
pute easily all equal linear combinations which come into projection and into the
decomposition: ¢y, = 1/ eln® |]2 x (N, el"") and Y, ¢pel™, accordingly. Moreover,
computing the generalized collision (5) does not require the evaluation of equilib-
rium function in a form (10). Following idea [40], one can represent it in a form of
equilibrium projection. The collision reads then

b
N(r,t) = N(r )+ > Me{or — ot et | ¢pd = (N4 ef™) . (A1)
k=0

Since ¢ " can be computed analytically (see (A.4) and (A.10)), the computational
efforts reduce drastically (at least at factor two) and become quite comparable with
the BGK collision where the equilibrium (10) should be computed. Nevertheless,
when the equilibrium is computed for some other purpose as well, first order collision
is relatively fast. A particular fastest choice A\, = —1 is employed in [82]. In case of
convergence to stationary state, however, a proper choice of the eigenvalues reduces
drastically the number of time steps without loss of the accuracy.

A.5. FIRST ORDER EXPANSION

We precise here how we obtain first order correction to equilibrium eNi(l) in
the form (12) in the standard coordinate system. Following [13], Chapman-Enskog
expansion (9) 9; = €0y, +€20;, , 0, = €0z leads to e!-accurate macroscopic relations:

O p+V' i jo =0, (A.19a)
Oty ja +05Pap = 0, Pap = cipéag + puqug . (A.19b)

Correction NV satisfies first order Taylor development of the Eq. (5):

(3

bm
O N3O + Cia0aNg" = ST AGNY | i€ {0,... b} (A.20)
j=0
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Substitution of the relation (10) into (A.20) yields with help of the relations (A.19a),(A.19b)
and when O(u?) and O(e?) terms are neglected:

=0
—_——
8t1N;q' + Cmé)deq' = C’,-at;[atlja + cgé)ap] + rl*,ﬁtlp + 6ﬂ’ t;ClaCig
02 dj cz
= Vgt =)+ ai; £5(CiaCis = Ebas) (A21)
By using the definitions in (12), relation (A.20) becomes
b 9j
ezAijNg‘” ngaﬂ +V-jE™. (A.22)
j=0

Replacing {a, 5} by {a', '}, the derivation in any other coordinate system follows
exactly the same lines. Relation (A.22) takes then more general form

a.a . 7im
ZA”N(U— 8]5,erﬁl+v GE (A.23)

Since the vectors {Qiq/ '} are fully decomposed on the second order polynomial
basis vectors associated with the eigenvalue )y and vector EI™ is chosen to be a
basis vector associated with the eigenvalue A, relation (A.23) takes a form (12).
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1. D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for
Compressible Flows

We derive a new class of particle methods for conserva-
tion laws, which are based on numerical flux functions to
model the interactions between moving particles. The
derivation is similar to that of classical Finite-Volume
methods; except that the fixed grid structure in the Fi-
nite-Volume method is substituted by so-called mass
packets of particles. We give some numerical results on a
shock wave solution for Burgers equation as well as the
well-known one-dimensional shock tube problem.

(19°S., 1998)

2. M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application
of Hilbert Transform and Multi-Hypothesis
Testing

In this paper, a combined approach to damage diagnosis
of rotors is proposed. The intention is to employ signal-
based as well as model-based procedures for an im-
proved detection of size and location of the damage. In a
first step, Hilbert transform signal processing techniques
allow for a computation of the signal envelope and the
instantaneous frequency, so that various types of non-
linearities due to a damage may be identified and classi-
fied based on measured response data. In a second step,
a multi-hypothesis bank of Kalman Filters is employed for
the detection of the size and location of the damage
based on the information of the type of damage provid-
ed by the results of the Hilbert transform.

Keywords:

Hilbert transform, damage diagnosis, Kalman filtering,
non-linear dynamics

(23'S., 1998)

3. Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Mullti-
Hypothesis Algorithms: Application to
Rotating Machinery

Damage diagnosis based on a bank of Kalman filters,
each one conditioned on a specific hypothesized system
condition, is a well recognized and powerful diagnostic
tool. This multi-hypothesis approach can be applied to a
wide range of damage conditions. In this paper, we will
focus on the diagnosis of cracks in rotating machinery.
The question we address is: how to optimize the multi-
hypothesis algorithm with respect to the uncertainty of
the spatial form and location of cracks and their resulting
dynamic effects. First, we formulate a measure of the
reliability of the diagnostic algorithm, and then we dis-
cuss modifications of the diagnostic algorithm for the
maximization of the reliability. The reliability of a diagnos-
tic algorithm is measured by the amount of uncertainty
consistent with no-failure of the diagnosis. Uncertainty is
quantitatively represented with convex models.
Keywords:

Robust reliability, convex models, Kalman filtering, multi-
hypothesis diagnosis, rotating machinery, crack diagnosis
(24 °S., 1998)

4. FE-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer
in Glass Cooling Processes

For the numerical simulation of 3D radiative heat transfer
in glasses and glass melts, practically applicable mathe-
matical methods are needed to handle such problems
optimal using workstation class computers. Since the
exact solution would require super-computer capabilities
we concentrate on approximate solutions with a high
degree of accuracy. The following approaches are stud-
ied: 3D diffusion approximations and 3D ray-tracing
methods.

(23S., 1998)

5. A Klar, R. Wegener

A hierarchy of models for multilane
vehicular traffic
Part I: Modeling

In the present paper multilane models for vehicular traffic
are considered. A microscopic multilane model based on
reaction thresholds is developed. Based on this model an
Enskog like kinetic model is developed. In particular, care
is taken to incorporate the correlations between the vehi-
cles. From the kinetic model a fluid dynamic model is
derived. The macroscopic coefficients are deduced from
the underlying kinetic model. Numerical simulations are
presented for all three levels of description in [10]. More-
over, a comparison of the results is given there.

(23'S., 1998)

Part Il: Numerical and stochastic
investigations

In this paper the work presented in [6] is continued. The
present paper contains detailed numerical investigations
of the models developed there. A numerical method to

treat the kinetic equations obtained in [6] are presented
and results of the simulations are shown. Moreover, the
stochastic correlation model used in [6] is described and
investigated in more detail.

(17 S., 1998)

6. A. Klar, N. Siedow

Boundary Layers and Domain Decomposi-
tion for Radiative Heat Transfer and Diffu-
sion Equations: Applications to Glass Manu-
facturing Processes

In this paper domain decomposition methods for radia-
tive transfer problems including conductive heat transfer
are treated. The paper focuses on semi-transparent ma-
terials, like glass, and the associated conditions at the
interface between the materials. Using asymptotic analy-
sis we derive conditions for the coupling of the radiative
transfer equations and a diffusion approximation. Several
test cases are treated and a problem appearing in glass
manufacturing processes is computed. The results clearly
show the advantages of a domain decomposition ap-
proach. Accuracy equivalent to the solution of the global
radiative transfer solution is achieved, whereas computa-
tion time is strongly reduced.

(24 S., 1998)

7. 1. Choquet

Heterogeneous catalysis modelling and
numerical simulation in rarified gas flows
Part I: Coverage locally at equilibrium

A new approach is proposed to model and simulate nu-
merically heterogeneous catalysis in rarefied gas flows. It
is developed to satisfy all together the following points:
1) describe the gas phase at the microscopic scale, as
required in rarefied flows,

2) describe the wall at the macroscopic scale, to avoid
prohibitive computational costs and consider not only
crystalline but also amorphous surfaces,

3) reproduce on average macroscopic laws correlated
with experimental results and

4) derive analytic models in a systematic and exact way.
The problem is stated in the general framework of a non
static flow in the vicinity of a catalytic and non porous
surface (without aging). It is shown that the exact and
systematic resolution method based on the Laplace trans-
form, introduced previously by the author to model colli-
sions in the gas phase, can be extended to the present
problem. The proposed approach is applied to the mod-
elling of the Eley-Rideal and Langmuir-Hinshelwood re-
combinations, assuming that the coverage is locally at
equilibrium. The models are developed considering one
atomic species and extended to the general case of sev-
eral atomic species. Numerical calculations show that the
models derived in this way reproduce with accuracy be-
haviors observed experimentally.

(24's., 1998)

8. J. Ohser, B. Steinbach, C. Lang
Efficient Texture Analysis of Binary Images

A new method of determining some characteristics of
binary images is proposed based on a special linear filter-
ing. This technique enables the estimation of the area
fraction, the specific line length, and the specific integral
of curvature. Furthermore, the specific length of the total
projection is obtained, which gives detailed information
about the texture of the image. The influence of lateral
and directional resolution depending on the size of the
applied filter mask is discussed in detail. The technique
includes a method of increasing directional resolution for
texture analysis while keeping lateral resolution as high
as possible.

(17 °S., 1998)

9. J. Orlik

Homogenization for viscoelasticity of the
integral type with aging and shrinkage

A multi-phase composite with periodic distributed inclu-
sions with a smooth boundary is considered in this con-
tribution. The composite component materials are sup-
posed to be linear viscoelastic and aging (of the
non-convolution integral type, for which the Laplace
transform with respect to time is not effectively applica-
ble) and are subjected to isotropic shrinkage. The free
shrinkage deformation can be considered as a fictitious
temperature deformation in the behavior law. The proce-
dure presented in this paper proposes a way to deter-
mine average (effective homogenized) viscoelastic and
shrinkage (temperature) composite properties and the
homogenized stress-field from known properties of the



components. This is done by the extension of the asymp-
totic homogenization technique known for pure elastic
non-homogeneous bodies to the non-homogeneous
thermo-viscoelasticity of the integral non-convolution
type. Up to now, the homogenization theory has not
covered viscoelasticity of the integral type.
Sanchez-Palencia (1980), Francfort & Suquet (1987) (see
[2], [9]) have considered homogenization for viscoelastici-
ty of the differential form and only up to the first deriva-
tive order. The integral-modeled viscoelasticity is more
general then the differential one and includes almost all
known differential models. The homogenization proce-
dure is based on the construction of an asymptotic solu-
tion with respect to a period of the composite structure.
This reduces the original problem to some auxiliary
boundary value problems of elasticity and viscoelasticity
on the unit periodic cell, of the same type as the original
non-homogeneous problem. The existence and unique-
ness results for such problems were obtained for kernels
satisfying some constrain conditions. This is done by the
extension of the Volterra integral operator theory to the
Volterra operators with respect to the time, whose 1 ker-
nels are space linear operators for any fixed time vari-
ables. Some ideas of such approach were proposed in
[11] and [12], where the Volterra operators with kernels
depending additionally on parameter were considered.
This manuscript delivers results of the same nature for
the case of the space-operator kernels.

(20°S., 1998)

10. J. Mohring
Helmholtz Resonators with Large Aperture

The lowest resonant frequency of a cavity resonator is
usually approximated by the classical Helmholtz formula.
However, if the opening is rather large and the front wall
is narrow this formula is no longer valid. Here we present
a correction which is of third order in the ratio of the di-
ameters of aperture and cavity. In addition to the high
accuracy it allows to estimate the damping due to radia-
tion. The result is found by applying the method of
matched asymptotic expansions. The correction contains
form factors describing the shapes of opening and cavity.
They are computed for a number of standard geometries.
Results are compared with numerical computations.
(21°S., 1998)

11. H. W. Hamacher, A. Schobel
On Center Cycles in Grid Graphs

Finding "good" cycles in graphs is a problem of great
interest in graph theory as well as in locational analysis.
We show that the center and median problems are NP
hard in general graphs. This result holds both for the vari-
able cardinality case (i.e. all cycles of the graph are con-
sidered) and the fixed cardinality case (i.e. only cycles
with a given cardinality p are feasible). Hence it is of in-
terest to investigate special cases where the problem is
solvable in polynomial time.

In grid graphs, the variable cardinality case is, for in-
stance, trivially solvable if the shape of the cycle can be
chosen freely.

If the shape is fixed to be a rectangle one can analyze
rectangles in grid graphs with, in sequence, fixed dimen-
sion, fixed cardinality, and variable cardinality. In all cases
a complete characterization of the optimal cycles and
closed form expressions of the optimal objective values
are given, yielding polynomial time algorithms for all cas-
es of center rectangle problems.

Finally, it is shown that center cycles can be chosen as

rectangles for small cardinalities such that the center cy-
cle problem in grid graphs is in these cases completely
solved.

(15°S., 1998)

12. H. W. Hamacher, K.-H. Kufer

Inverse radiation therapy planning -
a multiple objective optimisation approach

For some decades radiation therapy has been proved
successful in cancer treatment. It is the major task of clin-
ical radiation treatment planning to realize on the one
hand a high level dose of radiation in the cancer tissue in
order to obtain maximum tumor control. On the other
hand it is obvious that it is absolutely necessary to keep
in the tissue outside the tumor, particularly in organs at
risk, the unavoidable radiation as low as possible.

No doubt, these two objectives of treatment planning -
high level dose in the tumor, low radiation outside the
tumor - have a basically contradictory nature. Therefore,
it is no surprise that inverse mathematical models with
dose distribution bounds tend to be infeasible in most
cases. Thus, there is need for approximations compromis-
ing between overdosing the organs at risk and underdos-
ing the target volume.

Differing from the currently used time consuming itera-
tive approach, which measures deviation from an ideal
(non-achievable) treatment plan using recursively trial-
and-error weights for the organs of interest, we go a
new way trying to avoid a priori weight choices and con-
sider the treatment planning problem as a multiple ob-
jective linear programming problem: with each organ of
interest, target tissue as well as organs at risk, we associ-
ate an objective function measuring the maximal devia-
tion from the prescribed doses.

We build up a data base of relatively few efficient solu-
tions representing and approximating the variety of Pare-
to solutions of the multiple objective linear programming
problem. This data base can be easily scanned by physi-
cians looking for an adequate treatment plan with the
aid of an appropriate online tool.

(14 's., 1999)

13. C. Lang, J. Ohser, R. Hilfer
On the Analysis of Spatial Binary Images

This paper deals with the characterization of microscopi-
cally heterogeneous, but macroscopically homogeneous
spatial structures. A new method is presented which is
strictly based on integral-geometric formulae such as
Crofton’s intersection formulae and Hadwiger’s recursive
definition of the Euler number. The corresponding algo-
rithms have clear advantages over other techniques. As
an example of application we consider the analysis of
spatial digital images produced by means of Computer
Assisted Tomography.

(20°S., 1999)

14. M. Junk

On the Construction of Discrete Equilibrium
Distributions for Kinetic Schemes

A general approach to the construction of discrete equi-
librium distributions is presented. Such distribution func-
tions can be used to set up Kinetic Schemes as well as
Lattice Boltzmann methods. The general principles are
also applied to the construction of Chapman Enskog dis-
tributions which are used in Kinetic Schemes for com-

pressible Navier-Stokes equations.
(24's., 1999)

15. M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations

The relation between the Lattice Boltzmann Method,
which has recently become popular, and the Kinetic
Schemes, which are routinely used in Computational Flu-
id Dynamics, is explored. A new discrete velocity model
for the numerical solution of Navier-Stokes equations for
incompressible fluid flow is presented by combining both
the approaches. The new scheme can be interpreted as a
pseudo-compressibility method and, for a particular
choice of parameters, this interpretation carries over to
the Lattice Boltzmann Method.

(20°S., 1999)

16. H. Neunzert
Mathematics as a Key to Key Technologies

The main part of this paper will consist of examples, how
mathematics really helps to solve industrial problems;
these examples are taken from our Institute for Industrial
Mathematics, from research in the Technomathematics
group at my university, but also from ECMI groups and a
company called TecMath, which originated 10 years ago
from my university group and has already a very success-
ful history.

(39 S. (vier PDF-Files), 1999)

17. J. Ohser, K. Sandau

Considerations about the Estimation of the
Size Distribution in Wicksell’s Corpuscle
Problem

Wicksell's corpuscle problem deals with the estimation of
the size distribution of a population of particles, all hav-
ing the same shape, using a lower dimensional sampling
probe. This problem was originary formulated for particle
systems occurring in life sciences but its solution is of
actual and increasing interest in materials science. From a
mathematical point of view, Wicksell's problem is an in-
verse problem where the interesting size distribution is
the unknown part of a Volterra equation. The problem is
often regarded ill-posed, because the structure of the
integrand implies unstable numerical solutions. The accu-
racy of the numerical solutions is considered here using
the condition number, which allows to compare different
numerical methods with different (equidistant) class sizes
and which indicates, as one result, that a finite section
thickness of the probe reduces the numerical problems.
Furthermore, the relative error of estimation is computed
which can be split into two parts. One part consists of
the relative discretization error that increases for increas-
ing class size, and the second part is related to the rela-
tive statistical error which increases with decreasing class
size. For both parts, upper bounds can be given and the
sum of them indicates an optimal class width depending
on some specific constants.

(18'S., 1999)



18. E. Carrizosa, H. W. Hamacher, R. Klein,
S. Nickel

Solving nonconvex planar location problems
by finite dominating sets

It is well-known that some of the classical location prob-
lems with polyhedral gauges can be solved in polynomial
time by finding a finite dominating set, i. e. a finite set of
candidates guaranteed to contain at least one optimal
location.

In this paper it is first established that this result holds for
a much larger class of problems than currently considered
in the literature. The model for which this result can be
proven includes, for instance, location problems with at-
traction and repulsion, and location-allocation problems.
Next, it is shown that the approximation of general gaug-
es by polyhedral ones in the objective function of our
general model can be analyzed with regard to the subse-
quent error in the optimal objective value. For the approx-
imation problem two different approaches are described,
the sandwich procedure and the greedy algorithm. Both
of these approaches lead - for fixed epsilon - to polyno-
mial approximation algorithms with accuracy epsilon for
solving the general model considered in this paper.
Keywords:

Continuous Location, Polyhedral Gauges, Finite Dominat-
ing Sets, Approximation, Sandwich Algorithm, Greedy
Algorithm

(19 °S., 2000)

19. A. Becker
A Review on Image Distortion Measures

Within this paper we review image distortion measures.
A distortion measure is a criterion that assigns a “quality
number” to an image. We distinguish between mathe-
matical distortion measures and those distortion mea-
sures in-cooperating a priori knowledge about the imag-
ing devices ( e. g. satellite images), image processing al-
gorithms or the human physiology. We will consider rep-
resentative examples of different kinds of distortion
measures and are going to discuss them.

Keywords:

Distortion measure, human visual system

(26 °S., 2000)

20. H. W. Hamacher, M. Labbé, S. Nickel,
T. Sonneborn

Polyhedral Properties of the Uncapacitated
Multiple Allocation Hub Location Problem

We examine the feasibility polyhedron of the uncapaci-
tated hub location problem (UHL) with multiple alloca-
tion, which has applications in the fields of air passenger
and cargo transportation, telecommunication and postal
delivery services. In particular we determine the dimen-
sion and derive some classes of facets of this polyhedron.
We develop some general rules about lifting facets from
the uncapacitated facility location (UFL) for UHL and pro-
jecting facets from UHL to UFL. By applying these rules
we get a new class of facets for UHL which dominates
the inequalities in the original formulation. Thus we get a
new formulation of UHL whose constraints are all facet-
defining. We show its superior computational perfor-
mance by benchmarking it on a well known data set.
Keywords:

integer programming, hub location, facility location, valid
inequalities, facets, branch and cut

(21S., 2000)

21. H. W. Hamacher, A. Schoébel

Design of Zone Tariff Systems in Public
Transportation

Given a public transportation system represented by its
stops and direct connections between stops, we consider
two problems dealing with the prices for the customers:
The fare problem in which subsets of stops are already
aggregated to zones and “good” tariffs have to be
found in the existing zone system. Closed form solutions
for the fare problem are presented for three objective
functions. In the zone problem the design of the zones is
part of the problem. This problem is NP hard and we
therefore propose three heuristics which prove to be very
successful in the redesign of one of Germany’s transpor-
tation systems.

(30S.,2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga:

The Finite-Volume-Particle Method for
Conservation Laws

In the Finite-Volume-Particle Method (FVPM), the weak
formulation of a hyperbolic conservation law is dis-
cretized by restricting it to a discrete set of test functions.
In contrast to the usual Finite-Volume approach, the test
functions are not taken as characteristic functions of the
control volumes in a spatial grid, but are chosen from a
partition of unity with smooth and overlapping partition
functions (the particles), which can even move along pre-
scribed velocity fields. The information exchange be-
tween particles is based on standard numerical flux func-
tions. Geometrical information, similar to the surface
area of the cell faces in the Finite-Volume Method and
the corresponding normal directions are given as integral
quantities of the partition functions.

After a brief derivation of the Finite-Volume-Particle
Method, this work focuses on the role of the geometric
coefficients in the scheme.

(16 S.,2001)

23. T. Bender, H. Hennes, J. Kalcsics,
M. T. Melo, S. Nickel

Location Software and Interface with GIS
and Supply Chain Management

The objective of this paper is to bridge the gap between
location theory and practice. To meet this objective focus
is given to the development of software capable of ad-
dressing the different needs of a wide group of users.
There is a very active community on location theory en-
compassing many research fields such as operations re-
search, computer science, mathematics, engineering,
geography, economics and marketing. As a result, people
working on facility location problems have a very diverse
background and also different needs regarding the soft-
ware to solve these problems. For those interested in
non-commercial applications (e. g. students and re-
searchers), the library of location algorithms (LoLA can be
of considerable assistance. LoLA contains a collection of
efficient algorithms for solving planar, network and dis-
crete facility location problems. In this paper, a detailed
description of the functionality of LoLA is presented. In
the fields of geography and marketing, for instance, solv-
ing facility location problems requires using large
amounts of demographic data. Hence, members of these
groups (e. g. urban planners and sales managers) often
work with geographical information too s. To address the
specific needs of these users, LoLA was inked to a geo-

graphical information system (GIS) and the details of the
combined functionality are described in the paper. Finally,
there is a wide group of practitioners who need to solve
large problems and require special purpose software with
a good data interface. Many of such users can be found,
for example, in the area of supply chain management
(SCM). Logistics activities involved in strategic SCM in-
clude, among others, facility location planning. In this
paper, the development of a commercial location soft-
ware tool is also described. The too is embedded in the
Advanced Planner and Optimizer SCM software devel-
oped by SAP AG, Walldorf, Germany. The paper ends
with some conclusions and an outlook to future activi-
ties.

Keywords:

facility location, software development, geographical
information systems, supply chain management.
(48s.,2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Modelling of Evacuation
Problems: A State of Art

This paper details models and algorithms which can be
applied to evacuation problems. While it concentrates on
building evacuation many of the results are applicable
also to regional evacuation. All models consider the time
as main parameter, where the travel time between com-
ponents of the building is part of the input and the over-
all evacuation time is the output. The paper distinguishes
between macroscopic and microscopic evacuation mod-
els both of which are able to capture the evacuees’
movement over time.

Macroscopic models are mainly used to produce good
lower bounds for the evacuation time and do not consid-
er any individual behavior during the emergency situa-
tion. These bounds can be used to analyze existing build-
ings or help in the design phase of planning a building.
Macroscopic approaches which are based on dynamic
network flow models (minimum cost dynamic flow, maxi-
mum dynamic flow, universal maximum flow, quickest
path and quickest flow) are described. A special feature
of the presented approach is the fact, that travel times of
evacuees are not restricted to be constant, but may be
density dependent. Using multicriteria optimization prior-
ity regions and blockage due to fire or smoke may be
considered. It is shown how the modelling can be done
using time parameter either as discrete or continuous
parameter.

Microscopic models are able to model the individual
evacuee’s characteristics and the interaction among evac-
uees which influence their movement. Due to the corre-
sponding huge amount of data one uses simulation ap-
proaches. Some probabilistic laws for individual evacuee’s
movement are presented. Moreover ideas to model the
evacuee’s movement using cellular automata (CA) and
resulting software are presented.

In this paper we will focus on macroscopic models and
only summarize some of the results of the microscopic
approach. While most of the results are applicable to
general evacuation situations, we concentrate on build-
ing evacuation.

(44's.,2001)



25. J. Kuhnert, S. Tiwari
Grid free method for solving the Poisson
equation

A Grid free method for solving the Poisson equation is
presented. This is an iterative method. The method is
based on the weighted least squares approximation in
which the Poisson equation is enforced to be satisfied in
every iterations. The boundary conditions can also be
enforced in the iteration process. This is a local approxi-
mation procedure. The Dirichlet, Neumann and mixed
boundary value problems on a unit square are presented
and the analytical solutions are compared with the exact
solutions. Both solutions matched perfectly.

Keywords:

Poisson equation, Least squares method,

Grid free method

(19°S.,2001)

26. T. Gotz, H. Rave, D. Reinel-Bitzer,
K. Steiner, H. Tiemeier
Simulation of the fiber spinning process

To simulate the influence of process parameters to the
melt spinning process a fiber model is used and coupled
with CFD calculations of the quench air flow. In the fiber
model energy, momentum and mass balance are solved
for the polymer mass flow. To calculate the quench air
the Lattice Boltzmann method is used. Simulations and
experiments for different process parameters and hole
configurations are compared and show a good agree-
ment.

Keywords:

Melt spinning, fiber model, Lattice Boltzmann, CFD
(19°S.,2001)

27. A. Zemitis
On interaction of a liquid film with an
obstacle

In this paper mathematical models for liquid films gener-
ated by impinging jets are discussed. Attention is stressed
to the interaction of the liquid film with some obstacle.
S. G. Taylor [Proc. R. Soc. London Ser. A 253, 313 (1959)]
found that the liquid film generated by impinging jets is
very sensitive to properties of the wire which was used as
an obstacle. The aim of this presentation is to propose a
modification of the Taylor’s model, which allows to simu-
late the film shape in cases, when the angle between jets
is different from 180°. Numerical results obtained by dis-
cussed models give two different shapes of the liquid
film similar as in Taylors experiments. These two shapes
depend on the regime: either droplets are produced close
to the obstacle or not. The difference between two re-
gimes becomes larger if the angle between jets decreas-
es. Existence of such two regimes can be very essential
for some applications of impinging jets, if the generated
liquid film can have a contact with obstacles.

Keywords:

impinging jets, liquid film, models, numerical solution,
shape

(22 °S.,2001)

28. . Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to
model the filling of expanding cavities by
Bingham Fluids

The filling process of viscoplastic metal alloys and plastics
in expanding cavities is modelled using the lattice Boltz-
mann method in two and three dimensions. These mod-
els combine the regularized Bingham model for visco-
plastic with a free-interface algorithm. The latter is based
on a modified immiscible lattice Boltzmann model in
which one species is the fluid and the other one is con-
sidered as vacuum. The boundary conditions at the
curved liquid-vacuum interface are met without any geo-
metrical front reconstruction from a first-order Chapman-
Enskog expansion. The numerical results obtained with
these models are found in good agreement with avail-
able theoretical and numerical analysis.

Keywords:

Generalized LBE, free-surface phenomena, interface
boundary conditions, filling processes, Bingham visco-
plastic model, regularized models
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29. H. Neunzert

»Denn nichts ist fiir den Menschen als Men-
schen etwas wert, was er nicht mit Leiden-
schaft tun kann«

Vortrag anlasslich der Verleihung des Akademie-
preises des Landes Rheinland-Pfalz am
21.11.2001

Was macht einen guten Hochschullehrer aus? Auf diese
Frage gibt es sicher viele verschiedene, fachbezogene
Antworten, aber auch ein paar allgemeine Gesichtspunk-
te: es bedarf der »Leidenschaft« fur die Forschung (Max
Weber), aus der dann auch die Begeisterung fur die Leh-
re erwachst. Forschung und Lehre gehdren zusammen,
um die Wissenschaft als lebendiges Tun vermitteln zu
konnen. Der Vortrag gibt Beispiele dafur, wie in ange-
wandter Mathematik Forschungsaufgaben aus prakti-
schen Alltagsproblemstellungen erwachsen, die in die
Lehre auf verschiedenen Stufen (Gymnasium bis Gradu-
iertenkolleg) einflieBen; er leitet damit auch zu einem
aktuellen Forschungsgebiet, der Mehrskalenanalyse mit
ihren vielfaltigen Anwendungen in Bildverarbeitung,
Materialentwicklung und Strémungsmechanik tber, was
aber nur kurz gestreift wird. Mathematik erscheint hier
als eine moderne Schlusseltechnologie, die aber auch
enge Beziehungen zu den Geistes- und Sozialwissen-
schaften hat.

Keywords:

Lehre, Forschung, angewandte Mathematik, Mehrskalen-
analyse, Stromungsmechanik
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30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projec-
tion method for simulations of the incom-
pressible Navier-Stokes equations

A Lagrangian particle scheme is applied to the projection
method for the incompressible Navier-Stokes equations.
The approximation of spatial derivatives is obtained by
the weighted least squares method. The pressure Poisson
equation is solved by a local iterative procedure with the
help of the least squares method. Numerical tests are
performed for two dimensional cases. The Couette flow,
Poiseuelle flow, decaying shear flow and the driven cavity

flow are presented. The numerical solutions are obtained
for stationary as well as instationary cases and are com-
pared with the analytical solutions for channel flows.
Finally, the driven cavity in a unit square is considered
and the stationary solution obtained from this scheme is
compared with that from the finite element method.
Keywords:

Incompressible Navier-Stokes equations, Meshfree
method, Projection method, Particle scheme, Least
squares approximation
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31. R. Korn, M. Krekel
Optimal Portfolios with Fixed Consumption
or Income Streams

We consider some portfolio optimisation problems where
either the investor has a desire for an a priori specified
consumption stream or/and follows a deterministic pay in
scheme while also trying to maximize expected utility
from final wealth. We derive explicit closed form solu-
tions for continuous and discrete monetary streams. The
mathematical method used is classical stochastic control
theory.

Keywords:

Portfolio optimisation, stochastic control, HJB equation,
discretisation of control problems.
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32. M. Krekel
Optimal portfolios with a loan dependent
credit spread

If an investor borrows money he generally has to pay
higher interest rates than he would have received, if he
had put his funds on a savings account. The classical
model of continuous time portfolio optimisation ignores
this effect. Since there is obviously a connection between
the default probability and the total percentage of
wealth, which the investor is in debt, we study portfolio
optimisation with a control dependent interest rate. As-
suming a logarithmic and a power utility function, re-
spectively, we prove explicit formulae of the optimal con-
trol.

Keywords:

Portfolio optimisation, stochastic control, HJB equation,
credit spread, log utility, power utility, non-linear wealth
dynamics
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33.J. Ohser, W. Nagel, K. Schladitz
The Euler number of discretized sets - on the
choice of adjacency in homogeneous lattices

Two approaches for determining the Euler-Poincaré char-
acteristic of a set observed on lattice points are consid-
ered in the context of image analysis { the integral geo-
metric and the polyhedral approach. Information about
the set is assumed to be available on lattice points only.
In order to retain properties of the Euler number and to
provide a good approximation of the true Euler number
of the original set in the Euclidean space, the appropriate
choice of adjacency in the lattice for the set and its back-
ground is crucial. Adjacencies are defined using tessella-
tions of the whole space into polyhedrons. InR 3, two
new 14 adjacencies are introduced additionally to the



well known 6 and 26 adjacencies. For the Euler number
of a set and its complement, a consistency relation holds.
Each of the pairs of adjacencies (14:1; 14:1), (14:2; 14:2),
(6; 26), and (26; 6) is shown to be a pair of complemen-
tary adjacencies with respect to this relation. That is, the
approximations of the Euler numbers are consistent if the
set and its background (complement) are equipped with
this pair of adjacencies. Furthermore, sufficient condi-
tions for the correctness of the approximations of the
Euler number are given. The analysis of selected micro-
structures and a simulation study illustrate how the esti-
mated Euler number depends on the chosen adjacency. It
also shows that there is not a uniquely best pair of adja-
cencies with respect to the estimation of the Euler num-
ber of a set in Euclidean space.

Keywords: image analysis, Euler number, neighborhod
relationships, cuboidal lattice

(32°S.,2002)

34. 1. Ginzburg, K. Steiner

Lattice Boltzmann Model for Free-Surface
flow and Its Application to Filling Process in
Casting

A generalized lattice Boltzmann model to simulate free-
surface is constructed in both two and three dimensions.
The proposed model satisfies the interfacial boundary
conditions accurately. A distinctive feature of the model
is that the collision processes is carried out only on the
points occupied partially or fully by the fluid. To maintain
a sharp interfacial front, the method includes an anti-
diffusion algorithm. The unknown distribution functions
at the interfacial region are constructed according to the
first order Chapman-Enskog analysis. The interfacial
boundary conditions are satisfied exactly by the coeffi-
cients in the Chapman-Enskog expansion. The distribu-
tion functions are naturally expressed in the local interfa-
cial coordinates. The macroscopic quantities at the inter-
face are extracted from the least-square solutions of a
locally linearized system obtained from the known distri-
bution functions. The proposed method does not require
any geometric front construction and is robust for any
interfacial topology. Simulation results of realistic filling
process are presented: rectangular cavity in two dimen-
sions and Hammer box, Campbell box, Sheffield box,
and Motorblock in three dimensions. To enhance the
stability at high Reynolds numbers, various upwind-type
schemes are developed. Free-slip and no-slip boundary
conditions are also discussed.

Keywords: Lattice Boltzmann models; free-surface phe-
nomena, interface boundary conditions, filling processes,
injection molding, volume of fluid method; interface
boundary conditions, advection-schemes, upwind-
schemes

(54 S.,2002)
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