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Abstract. Cyber-Physical Systems, such as autonomous vehicles, have
the potential for providing more safety by restricting the impact of po-
tentially unreliable human operators. However, ensuring that the system,
i.e. the CPS under consideration, will behave safely under any conditions
is not straightforward. The complexity of the environment and the sys-
tem itself, causes uncertainties that need to be considered by the safety
measures. The challenge for an autonomous system is to find the optimal
trade-off between safety and utility without human intervention. Conse-
quently, such systems has to be self-adaptive and predictive in order
to forecast hazardous situations and react to them before the happen.
This paper sketches how reachability analysis in combination with game
theory can be used to predict risk of hazardous situations.
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1 Introduction

According to the US National Highway Traffic Safety Administration, driver’s
inattention, distractions, and inadequate surveillance are the main reasons for
human caused accidents on the roads [13]. This indicates that autonomous
Cyber-Physical Systems (CPS)s, such as autonomous vehicles (AV)s, have the
potential for providing more safety by restricting the impact of potentially unreli-
able human operators. Guaranteeing safety of such systems under any conditions
is challenging as a full functional specification of the system and its environment
is infeasible. First, the high complexity of the environment in which the system
operates makes it impossible to consider all factors that influence its behavior.
Second, it might be unknown how the factors affect the behavior of the system.
For instance, the behavior of human traffic participants represent such factor as
their intentions are unknown.

On account of these shortcomings, CPSs have to be self-adaptive. This means
that such systems have to be able to detect hazards and, if necessary, calculate
adequate adaptation steps to counter the hazards on time without human in-
tervention. The self-adaptation process consists of four steps: monitor, analyze,
plan, and execute. The system monitors the environment and analyzes the data
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to extract information needed to understand the current situation. Subsequently,
if necessary, adaptation steps, such as trajectory adaptations, are planned and
then executed. Since the actions of the system have an impact on the environ-
ment, and changes in the environment have an impact on the behavior of the
CPS, there is a feedback loop from the execution step to the monitoring step [1].

In order to plan the adaptation steps on time, and so prevent or recover from
an undesired situation, the situation has to be predicted [2]. This requires the es-
timation of future states of the system, i.e. of the CPS which safe behavior needs
to be guaranteed, and other agents that are part of the system’s environment,
e.g. other traffic participants. For this purpose, the system has to use models
that reflect the behavior of the agents at a higher level of abstraction, making
the required calculations feasible during the run time. After the estimation of the
future states, the risk of a hazardous situation can be quantitatively assessed.
Here, risk is defined according to ISO 26262 as a ‘combination of the probability
of occurrence of harm and the severity of that harm’ [7]. In the context of AVs,
an accident is an example of a hazardous situation.

Unfortunately, the non-determinism of the environment, imprecise measure-
ments and models cause uncertainties that might have an impact on the needed
estimates and so on the decision making of the system. In order to consider the
uncertainties, they need to quantified, while an optimal trade-off between safety
and utility has to be taken into account. On the one hand, an over-cautious
treatment of the uncertainties can cause a significant decrease of system’s utility
and so possibly causing threats to safety. On the other hand, the system must
not be too optimistic since this might cause violations of safety requirements
and hazards such as accidents [14].

In context of AVs, an important source of information will be the Vehicle-
to-X (V2X) communication which will enable wireless exchange of data and
information with vehicles, infrastructures, and pedestrians. Even though com-
munication is more robust against environmental circumstances such as weather
conditions, there are still issues that need to be considered while using data and
information received using V2X communication.

One of the main shortcomings of communication networks is the fact that
the system receiving data has to trust that the information is correct. In partic-
ular, even in the era of 6G, uncertainty provided by the sensors of the sending
system will remain. Further, malfunctioning or deliberate sharing of malicious
data, i.e. in case of a cyber-attack, cannot be fully excluded. Further, it has
to be considered that there will be a phase where cars that are not capable to
communicate via V2X will be present on the roads. Also, intentions of human
drivers, pedestrians, and cyclists either cannot be exchanged via V2X. Therefore,
the risk assessment function has to be predictive and dynamic, meaning that it
has to consider future states of the environment and adapt to the current level
of uncertainty that can vary during run time. This paper presents a sketch of
an approach for dynamic risk assessment that considers the need for a trade-off
between safety and utility of the system while taking into account known and
potentially unknown uncertainties.
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2 Behavior Prediction under Uncertainty

Self-adaptation requires prediction of potentially hazardous events which in turn
requires estimation of future state of the system and the agents in its environ-
ment. This section presents how future states can be calculated under consider-
ation of uncertainties and interactions among agents.

Three types of uncertainties are defined [4]: aleatory, epistemic and onto-
logical. The aleatory uncertainty concerns the randomness of a process, which
is considered to be irreducible. Epistemic uncertainty concerns the discrepancy
between the true behavior of a system and its model. Its impact can be reduced
when more information about the system is known. The ontological uncertainty
is caused by a complete ignorance of a relevant factor in the model. This work
focuses on aleatory and epistemic uncertainties.

2.1 Calculating Reachable States

Systems that exhibit continuous behavior can be described in terms of differential
equations. In case the system can switch between different modes of dynamics,
the system is called hybrid and can be represented by a hybrid automaton where
each mode of dynamics is associated with a separate location [6]. Given the
model, future states of the system can be calculated using reachability analysis
(RA) which is a well-known formal method to iteratively calculate reachable
sets of states within a finite time horizon given an initial state. In classical
model checking, RA is usually used to estimate if the system fulfills some safety
properties. For this purpose, in each iteration step the algorithm estimates if the
currently reachable states intersect with the set of states that do not fulfill the
desired safety properties [6, 12].

R0
t = t0
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t = t2

t = t3
t = t4
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(a) Margin to compensate uncertainty.

t = t0
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t = t2
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(b) Margin for precise information.

Fig. 1: Reachability analysis output for an initial state R0 and the time horizon t = [t0, t4].

Here, the RA is used to calculate the future states of the involved agents. Fig.
1 illustrates an output of a RA. The initial state, denoted by R0, is represented
by a polyhedron and in order to account for aleatory uncertainties, such as per-
ceptual uncertainties, it is over-approximated, meaning that in each dimension
of the state, e.g. position or velocity, a margin is added. The successor states are
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calculate prediction
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ẋ(t) =
f1(x(t), u(t), t)
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current
state

current state
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Fig. 2: Model update based on the level of trust.

then calculated by applying the dynamics to the polyhedron that is considered
in current iteration step. To consider uncertainty propagation and epistemic
uncertainties, in each iteration step an over-approximation is conducted. The
resulting new polyhedron is then used as initial state for the next iteration of
the algorithm. The system has to calculate the reachable sets of states for each
agent within its environment. Based on the estimated future occupancy of the
agents, it can plan its adaptation steps if necessary.

The challenge is to over-approximate the states such that on the one hand,
all relevant states are considered but on the other hand, the over-approximations
are not over-conservative, i.e. the added margin is not too large. In particular,
this is important for finding the optimal trade-off between safety and utility
of the system. The greater the over-approximations, the more cautious are the
predictions, leaving the system less degrees of freedom for adaptations.

One possible way to overcome this challenge is to link the over-approximation
magnitude with the prediction error, i.e. the discrepancy between the predicted
and the true behavior of the particular agent. Fig. 2 illustrates the idea for a
single agent. By sensing, the system gains information about the current state
of the other agent. Given the predicted states from the previous cycle, it can
estimate the prediction error. To calculate the future states of the system, a
hybrid automaton with at least two locations is needed. For instance, one location
might reflect defensive behavior and the second aggressive behavior. Further, for
each location a different over-approximation margin can be defined. In Fig. 2
the automaton has two locations – loc I and loc II – each having different
dynamics ḟ1(x, u, t) and ḟ2(x, u, t) where x is state, u is control and t is time .
As long as the invariant err < tr in loc I is satisfied, i.e. when the prediction
error denoted by err in Fig. 2 is lower than a certain threshold tr, the system
considers loc I and is not allowed to enter loc II due to the transition guard
err ≥ tr that prohibits the switch. The output will then look like in Fig. 1b.
Otherwise, loc II where more coarse over-approximations are conducted so the
output might look like in Fig. 1a. Hence, with more precise calculations the
system will have more degrees of freedom for planning new trajectories.

2.2 Modeling Agent Interactions

The proposed model update process enables the system to adapt its model to the
observed behavior of the corresponding agent. However, using RA all possible
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trajectories of the agents are calculated, including those that might not be de-
sired by a certain agent. Further, a trajectory chosen by an agent might depend
on the trajectory chosen by the system, and vice versa. In order to consider these
dependencies among the agents, dynamic game theory can be applied. Dynamic
games occur when a number of agents interact with each other over time while
each has its own objective function [3, 8].

In order to apply dynamic game theory for the estimation of future trajec-
tories of a number of agents, several challenges need to be overcome. First, the
formulated game need to deal with uncertainties regarding the objective func-
tions of the agents. In particular, each agent might have different objectives
and different preferences over multiple objectives. Both, the objectives and the
priorities, might be unknown. Further, constraints such as traffic rules have to
be respected, however, temporal contempt should be considered since situations
might occur where agents will violate them in order to achieve a higher prior-
ity objective such as collision avoidance. Consequently, temporal relaxation of
constraints should be integrated.

Another problem might be the uncertainty representation in context of reach-
ability analysis. Recall, that the output of RA is a set of polyhedra which would
be the input for the algorithm that uses the game theoretic approach.

Finally, the problem of dimensionality needs to be addressed. In order to
calculate optimal strategies for multiple agents, a system of (partial) differential
equations needs to be solved. Unfortunately, numerical methods suffer from the
curse of dimensionality, meaning that the calculation time increases with the
dimensionality of the system and so the number of considered agents. In recent
years, solving high-dimensional differential equations using machine learning has
received more attention. There is a number of encouraging approaches [5, 9,
10]. In [15] the author illustrated the effectiveness of so called Physics-Informed
Neural Networks [11], however the evaluated examples were theoretical and not
as complex as AVs. Thus, further research in this area is needed.

2.3 Illustrative Example

In order to illustrate the proposed approach potential and the challenges that
lie ahead, a simplistic example is presented. Consider a merging scenario with
two vehicles V1, the ego vehicle, driving on an acceleration lane and vehicle V2

driving on the adjacent lane which V1 wants to enter. A state of a vehicle Vi,
denoted by xi where i = {1, 2}, is defined as xi(t) = (si(t), vi(t), ai(t)), where
t is the time, si(t) is the position, vi(t) is the velocity. Acceleration ai(t) is a
control value, and is the only parameter in the dynamics of both vehicles. In this
example the initial states of the both vehicles are given by

x1(0) =
(
50m, 27.8m/s, 0m/s2

)
and x2(0) =

(
25m, 34.7m/s, 0m/s2

)
, (1)

The ego vehicle is allowed to initiate the lane change if and only if it can maintain
a safe distance to V2. Further, it is assumed that the vehicles cannot communicate
with each other. Hence, V1 does not know if V2 will let it merge in front of it.
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Table 1: Defensive dynamics for V2.

V1

V2
a2 = −2 a2 = 0 a2 = 2

a1 = −2 (-120.3, -394.3) (-70.9, -430.3) (-58.64, -471.5)

a1 = 0 (-103.9, -354.3) (-116.3, -390.3) (-66.9, -431.5)

a1 = 2 (-61.0, -314.3) (-99.9, -350.3) (-112.3, -391.5)

Table 2: Aggressive dynamics for V2.

V1

V2
a2 = 0 a2 = 4

a1 = −2 (-70.9, -263.6) (-52.0,6.6)

a1 = 0 (-116.3, -223.6) (-54.6, -295.6)

a1 = 2 (-99.9, -183.6) (-62.9, -255.6)

The model used by V1 to predict the behavior of V2 consists of two locations,
where in each the following well-known equations of motion are contained

si(t) = si,0 + vi,0 · t+
1

2
· ai(t) · t2, vi(t) = vi,0 + ai(t) · t, (2)

where si,0 is the initial position and vi,0 the initial velocity. The first location
reflects defensive dynamics where V2 respects the road speed limit of 36.1m/s
and its control value a2 is restricted by the interval [−2, 2]m/s2. The second
location reflects aggressive dynamics where V2 does not respect the speed limit
and a2 is within the interval [0, 4]m/s2.

It is assumed that V1 wants to plan its trajectory for the next 2 s. Further, for
sake of simplicity, it is assumed that it has perfect information and so calculation
of future states reduces to evaluation of (2). The objective function of V∈ is given
by

max J2(x1, x2, a1, a2, t) = − (vmax − v2(t))︸ ︷︷ ︸
maximize velocity

−10 · (dsafe − (s1(t)− s2(t))) .︸ ︷︷ ︸
maximize distance

(3)

The first term expresses that V2 wants to maximize its velocity and the second
term expresses that it wants to maximize the distance to V1 is case it follows V2.
The second term is scaled by factor 10 to model priority of safe distance over
optimal velocity. In defensive mode dsafe for V2 is 50m and in aggressive mode
33.3m.

The objective of V1 is to minimize the time until merging so its first objective
is to minimize the function obtained by solving (s1(t) − s2(t))

2 = d2safe for t.
Further, it also wants to maximize its velocity and maintain safe distance which
is always 50m.

Now, a strategic game can be formulated where V1 is the row player and V2

is the column player. The objective functions were formulated such that both
need to be maximized. The goal is to calculate Nash equilibria where neither
player can improve its utility by changing its strategy.

Tab. 1 contains the payoff matrix obtained for the game where defensive be-
havior of V2 was assumed. This game has only one equilibrium that is marked
blue in Tab. 1. As expected, V2 will let V1 merge in front of it, since the best
output for both vehicles is achieved when V1 accelerates while V2 decelerates.
However, the output of the game is different when V1 has the information that
V2’s initial position is at 46.84m. In this case the game has four equilibria indi-
cating that state uncertainty has a significant impact on the output of the game
and sophisticated solution to this problem needs to be found.
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In case aggressive behavior of V2 is assumed, the payoffs contained in Tab.
2 are obtained. This game has again a single Nash equilibria, which shows that
V2 will accelerate and not allow V1 to merge in front of it.

While being simplistic and only considering two vehicles with perfect infor-
mation and limited choices, this illustrative example shows the potential for anal-
ysis and optimization of the proposed approach. Regarding the challenges that
lie ahead, defining scalable models (several vehicles/choices), improving upon
imperfect information by enabling communication to make better decisions, and
modeling uncertainties (e.g., with Bayesian game models), among others, will be
tackled.

3 Risk Assessment

The evaluation of the models will enable timely detection of hazardous situations.
In particular, a collision is detected as soon as the set of reachable states of the
system intersects with a reachable set of states of any other agent surrounding
it. Due to the fact that during the computation of the reachable sets of states
over-approximations are made, the criterion of intersection might be too hard.
Instead, the risk of that intersection should be calculated. This is a relaxation of
the intersection criterion which will avoid over-cautious behavior of the system
and so improve its utility. Consequently, in each iteration step of the RA, instead
of a simple intersection check the risk of that intersection is calculated.

Assume n agents (n ∈ N and n < ∞) in the system’s environment that have
to be considered. Denote the sets of states that are reachable by the n agents
within a time horizon th by Rall. Since RA is iterative, the time is discretized
using a time step size of ts. Hence, for each agent the system calculated m :=
th/ts reachable sets of states. The set that an agent a ∈ {1, . . . , n} will reach at
time tk ∈ {t1, t2, t3, . . . , tm} is denoted by Rtk

a . Then the overall risk R of an
intersection is given by

R(Rall) :=

m∑
t=1

fs

(
n⋂

a=1

Rtk
a

)
· fp

(
n⋂

a=1

Rtk
a

)
, (4)

where fs(·) is a function that estimates the severity of an intersection, fp(·)
is a function that estimates the probability of that intersection. Since for the
evaluation of (4), the system will always consider the current information about
the agents, and the behavior model for each agent can be updated, the system
estimates the risk in a dynamical way under consideration of dependencies among
agents due to the game theoretic approach integrated in the RA approach.

Based on the calculated risk of each trajectory that the system might choose
to proceed with, it can decide which one is the safest. A high level or risk means
that the safety of the system is low, while a low level of risk means a high level of
safety. Hence, risk is inversely proportional to safety. Note that the same holds
for the utility of a system which can also be describe by a function. The higher
the risk of a hazard, the less utility can be achieved.



8 Marta Grobelna

4 Conclusion

This paper proposes an approach that enables CPSs to be self-adaptive and
account for uncertainties while finding suitable trade-offs between safety and
utility of the system. In order to plan optimal adaptation steps on time, the
system has to predict its own and the environments’ states. This requires models
able to approximate the behavior of other agents while being computationally
affordable. Besides aleatory uncertainties, epistemic uncertainties as well as agent
interactions have to be considered. Combining RA with game theory will allow
conducting precise predictions of hazardous situations and so enable the CPSs
to react to such situations on time and potentially in a more sophisticated way.
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