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We consider the problem of automatically screening for man-made objects (MMO)
in infrared (IR) videos and synthetic aperture radar (SAR) imagery. Since hard targets
are often highly reflective in SAR and also have an IR signature that differs from their
surroundings, both problems reduce to finding point-like objects. Thresholding (usu-
ally locally adaptive) only utilizes the radiometric information and ignores the maxi-
mum target size, which means reflection artifacts or large regions are often returned as
false alarms. Recently, a level-set approach has been proposed that takes speckle into
account and reliably separates targets from the background [1]. However, its compu-
tational cost is almost certainly too high for large datasets or real-time video analysis.
An alternative model called the “hotspot transform” was developed for IR Search and
Track applications [2]. This operator (defined in Sec. 1) searches for local maxima
that are entirely surrounded by a ring of darker pixels, thus suppressing bright but non-
point-shaped regions. Its computational cost for N pixels and maximum target size
R is O(N · R · R). We believe this technique to be suitable for screening in both IR
and SAR data and have developed a novel algorithm that reduces its complexity to the
optimal O(N · R). Our sophisticated implementation, described in Sec. 2, avoids re-
dundant computations with a divide and conquer scheme, ensures the working set fits
in caches via pipelining, and achieves an additional 27-fold speedup via vectorization
and parallelization. The attained processing rate of 72 MPixel/s on a single workstation
enables screening entire satellite datasets within seconds (c.f. Sec. 3). Results are given
for airborne SAR images and the MSTAR dataset in Sec. 4. The algorithm is shown
to be suitable for detection of MMO and as a pre-processing step for multi-class target
recognition via support vector machine (SVM).



1 Hotspot Operator
The hotspot operator for extracting point-like regions and suppressing background pix-
els was introduced in [2]. Since the point texture and shape are generally highly vari-
able, template-based pattern matching cannot be applied. Instead our model considers
interest points to be pixels that are (without loss of generality) brighter than their sur-
roundings. With the point size unknown (bounded only by a maximum), we consider
multiple neighborhoods of concentric ‘shells’

S(xc, yc, r) = {I(y, x) | ‖(xc, yc)− (x, y)‖∞ = r}

Their maximum pixel values are compared with the central pixel I(yc, xc). Negative
differences indicate the pixel is surrounded by uniformly darker pixels, thus attesting
to a point region within that shell. The hotspot filter is defined by the largest of these
values for all shells up to a maximum radius R (clamping negative values to zero):

minMax(xc, yc) = min
r=1..R

maxS(xc, yc, r)

hotspot(xc, yc) = max [I(yc, xc)−minMax(xc, yc), 0]

This operator suppresses background pixels and thus enhances freestanding point-
like regions as desired. It is simple and intuitive, requiring no parameters other than R,
which is defined by the target size and sensor resolution. Unfortunately a naive imple-
mentation has complexity proportional to R2. A first improvement takes advantage of
a property of the minimum and clamping operations shown in Lemma 1:

∃b ∈ S(xc, yc, r) > I(yc, xc)⇒ (1)
hotspot(xc, yc) = 0 ∨
minMax(xc, yc) < b ≤ maxS(xc, yc, r)

If a shell contains a pixel brighter than the central pixel, then it will not affect the
hotspot value and the rest of its pixels can be skipped. This optimization yields a mea-
sured (data-dependent) speedup of about 18 versus a naive implementation. While the
worst-case quadratic complexity remains unchanged, it is difficult to construct such
inputs and they will certainly not be encountered in practice. A drawback of this
algorithm is that it cannot make effective use of vectorization due to its reliance on
conditional branches.1

2 Improved Algorithm
We will now build upon related theoretical work to engineer a new and improved algo-
rithm for computing hotspots.

Recall the computation of the maximum of the 8 · r pixels that constitute a shell
of radius r. By maintaining a transposed copy of the image, this operation reduces to

1Accumulating shell maxima via 16-way SIMD only resulted in a speedup of two due to unaligned
memory access penalties and the overhead of copying ranges into registers.



four “Range Maximum Queries” RMQ(i, j) = maxk=i...j A[k] in an array or image
row/column A. Alon and Schieber have shown that such queries (generalizable to any
semigroup) can be answered in O(1) time after O(n log n) preprocessing [3]. The
hotspot operator’s complexity is therefore bounded by O(n log n+n ·R), a significant
improvement versus the previous algorithm’s O(n ·R2) cost.

We refer to [4] for a complete presentation of the RMQ algorithm. The basic idea
is to pre-calculate the maxima of power-of-two intervals. Each query can be split into
two such intervals; the result is the larger of the two maxima. Katriel et al. suggest an
efficient scheme for preprocessing that computes prefix and suffix maxima and inter-
leaves them into a single array [5]. This only requires O(n logR) preprocessing time
and space, since the query lengths are bounded by 2 ·R+1. Bender and Farach-Colton
also describe an scheme that first divides the input array into blocks of size O(log n)
[4]. While reducing the preprocessing time to O(n), this comes at the price of more
complicated queries with separate handling of inter- or intra-block queries. Fischer
and Heun have recently introduced a similar succinct algorithm with optimal space
requirements [6], but its queries are also too expensive in practice.

A disadvantage shared by all of these RMQ-based approaches is their mediocre
locality – both interval length and the query indices affect the location of the prepro-
cessed value, which makes for non-sequential accesses. One alternative would be to
cast the hotspot operator as a stencil computation, maintaining four separate maximum
accumulators for overlapping left, right, up, down intervals. Hotspot values would be
computed as the maximum of these shell components, thus achieving the desired and
optimal complexity of O(n · R). A disadvantage of this method lies in its high space
requirements.

To bridge the gap between the redundant calculations of the existing method and
the practical costs of theoretically motivated approaches, we have engineered a new al-
gorithm that combines ideas from RMQ and stencil computation. The first key change
is to store only a single set of row- and column interval maxima. These are used to
generate all shells of a certain range of sizes and are then combined in-place to yield
intervals of twice the length. Besides folding preprocessing into the main algorithm
and reducing memory use, this also improves locality. The second important step is to
organize the algorithm as a pipeline such that the working set fits entirely into common
L2 caches. We iterate over image rows exactly once; starting from the current row,
previously calculated interval maxima of successively increasing lengths are used to
compute the shells for previous rows. The resulting tentative shell maxima are accu-
mulated into the output buffer. Since only the last 4·R+2 rows are accessed, a cache of
that size can entirely absorb the cost of repeated accesses. The algorithm is described
by the following pseudocode:

Algorithm 1: Hotspot (I 7→ H)

for (x, y) do minMax [y, x] :=∞;
MinMaxima(I);
for (x, y) do
H [y, x] := max(I [y, x]−minMax [y, x] , 0);



Algorithm 2: MinMaxima

// Compute length 2 interval maxima
RM := I,CM := I;
for y := 1 to height do CombineIntervalMaxima(y, 1);
// Pipelined iteration over rows
for wavefront := 1 to height do

row := wavefront;
for L := 1 to dlog2 Re do

IL := 2L // intervalLength
for x := 1 to width do ShellMinMaxima ((row, x), IL)
oldestRow := row− IL/2;
CombineIntervalMaxima(oldestRow, IL);
row := oldestRow− IL · 2;

Algorithm 3: ShellMinMaxima
Input: pos, IL
// Compute minS for interval maxima of length IL
minMax [pos] := min(minMax [pos] ,ShellMax4 (pos, IL));
for r := IL/2 + 1 to IL− 1 do

minMax [pos] := min (minMax [pos] ,ShellMax8 (pos, r));

ShellMax{4, 8} computes the maximum pixel value on a shell from row- and
column interval maxima, as shown in Fig. 1. In this case, r = 2 and IL = 4. Since
a radius-r shell consists of 8 · r pixels and interval lengths are powers of two, it is
easy to see that this scheme applies to all shells of radius r = 2n(n ∈ N0). Each of
the remaining R − log2 R shells requires eight interval maxima – their four sides are
pieced together from the maxima of two overlapping intervals.

r=2

Figure 1: Assembling a shell from four 1-D intervals.

2.1 Analysis
Our new scheme requires 2 · n values of auxiliary storage for the row- and column in-
terval maxima. Since the inputs are copied there and not used afterwards, their storage
can be reused for accumulating the minMaxima outputs. The pipelined nature of the
algorithm enables a further reduction to 4 ·R+2 rows by organizing them as a sliding



Algorithm 4: CombineIntervalMaxima
Input: y, IL
for x := 1 to width do

RM [y, x] := max (RM [y, x] ,RM [y, x+ IL]);
CM [y, x] := max (CM [y, x] ,CM [y + IL, x]);

// Postcondition: IL now doubled

window, but this would come at the price of more complex addressing.
We now examine the running time of the algorithm, which is somewhat obscured

due to the four nested loops: height×dlog2 Re×width× numIM(IL). Note that loop
interchange is possible because the innermost loop does not depend on width, so we
combine that and height into a factor n. The number of interval maxima accesses is
defined by ShellMinMaxima: numIM(IL) = 4 + 8(IL/2− 1) = 4IL− 4, so:

timePerPixel =

dlog2 Re∑
L=1

4 · 2L − 4 = O(R)

The total complexity is therefore O(n · R), which is optimal because the filter must
examine each shell and pixel.

2.2 Further Improvements
While the new algorithm is asymptotically optimal, there remains significant room for
improvement. The RAM (Random-Access Machine) model underlying typical com-
plexity measures has the virtue of simplicity but often mischaracterizes the real-world
performance [7]. With cache misses now two orders of magnitude more expensive
than basic operations 2, these effects can no longer be ignored. We will discuss some
low-level issues in the context of the hotspot operator, but the existence of such tech-
niques and the magnitude of the resulting improvements are likely to be of independent
interest.

The past two decades have seen vast increases in CPU performance by means of
higher clock speeds, better IPC (Instructions per Clock) and larger caches. [9] demon-
strates that this trend cannot continue and that concurrency is already the key to per-
formance. The first such development came in the mid 1990s with the introduction
of vector SIMD (Single Instruction Multiple Data) instruction sets for several general-
purpose microprocessor families [10]. These provide for storing multiple values in
wide (e.g. 128-bit) registers and concurrently applying an operation to each of them.
While rather limited, this form of programming can accelerate straight-line numerical
applications without much cost. A second use for increasing transistor budgets has
been to package multiple logical processors per socket, with quad-core multiprocessor
systems widely available in 2008.

Fully utilizing the available hardware therefore calls for both vectorisation and par-
allelisation. In this work, a combined speedup of 27 has been achieved! Local filters

2DDR3 memory modules’ 60 ns latency equates to 160 CPU cycles at 2.66 GHz [8].



are generally suitable for data-parallel processing, but the hotspot operator is limited by
memory bandwidth due to its numerous and non-sequential memory accesses. Fig. 2
shows the scalability of the new algorithm on three different SMP systems. Parallel ef-
ficiency is only 50 % on a 16-core Intel machine. The memory bottleneck hypothesis is
confirmed by better scalability on an AMD machine with multiple memory controllers
and correspondingly higher bandwidth. Note that such systems have NUMA (Non-
Uniform Memory Access) characteristics, which requires care to ensure each thread’s
working set is in local memory [11].

Figure 2: Scalability of the new algorithm on three SMP systems. Memory bandwidth
is the limiting factor and is more plentiful on the AMD system.

The next step is vectorisation, which is possible because the per-pixel computa-
tions are independent and can be mapped to the SSE2 instruction set. We obtain an
additional speedup of 3.6 via 8-way SIMD, which is helpful but surprisingly low. It
turns out that the cause is a limitation in the Intel Core 2 microarchitecture regarding
the handling of unaligned loads, an issue that will be discussed in depth in Appendix A.
The takeaway is that the new algorithm will benefit from improvements in this area and
the move towards multiple memory controllers, further improving its performance and
scalability.

Another detail that has been considered is the overhead of so-called page walks.
Each memory access requires virtual-to-physical address translation in the memory
mapping unit, which involves examining multi-level page tables. A TLB (Translation
Lookaside Buffer) serves to decrease this overhead by storing the result of the trans-
lation for a small number of recently-accessed memory pages. This specialized cache
has strict latency requirements and can therefore only accomodate a few entries. If it
is overloaded by random accesses in a large memory region, overhead increases dra-
matically since several accesses to memory are needed [12]. One means of avoiding
this problem lies in the use of large memory pages (e.g. 4 MB instead of 4 KB on x86
architectures), thus increasing the coverage of the TLB. However, this turns out to be
unnecessary in the case of the new algorithm as it is designed to operate in-cache and
is therefore insensitive to memory latency.

One final microarchitectural issue that has affected the design of the algorithm is



also cache-related. The Intel i7 and AMD family 10h processors include a shared
L3 cache, while Intel Core 2 CPUs consist of logical processor pairs sharing an L2
cache. In both cases, the caches are unpartitioned; unnecessary evictions can result
from threads stealing each other’s space. Having processors that share a cache work
together on a task is about 7 % faster in some cases due to the reduction in contention.
Even if partitioning strategies are improved, the cooperative scheme has the advantage
of avoiding replication of common data and increasing the effective size of the cache.
For working sets approaching a logical processor’s share of the cache, the cache-aware
method achieves a speedup of 1.45 due to its avoidance of thrashing.

3 Performance
The point of developing a new algorithm for the hotspot operator was to enable near-
real-time processing of large datasets. Its success is determined by a performance
comparison with the previous ‘skip-shell’ algorithm, which depends on the properties
of the input data. To ensure relevant findings, we measure run times3 for a set of
four ‘typical’ high-resolution SAR images of different areas captured by three different
sensors. The results are shown in Fig. 3 and indicate a very satisfying overall speedup
factor of 7.3 (geometric mean). Note that the total input sizes (28.5 to 84.6 MPixels)
do not appear to affect the processing rate. When run on a more recent workstation
with dual W5580 CPUs, our implementation reaches 72 MPixel/s (chiefly due to the i7
family’s higher memory bandwidth and better handling of unaligned memory accesses,
c.f. Sec. A).

Figure 3: Comparison of single-core performance of the new vs. previous algorithm.
The speedup factor ranges from 5 to 13.

4 Results
We show the results of the hotspot filter on a Dornier-SAR image of Kühlsheim (Fig. 4(a)),
a scene containing both man-made objects and vegetation. We are particularly inter-
ested in vehicles and other compact objects. The hotspot filter (radius R = 32) sup-

3System specifications: Xeon X5365 CPU, 32 GB RAM, Windows XP x64, ICC 10.1.689.2008 set-
tings: /Ox /Og /Ob2 /Oi /Os /Oy /GF /EHsc /MD /GS- /GR- /Gd /Qopenmp /QxB
/Qparallel /Qprof use



presses uniformly bright regions, because such pixel’s shells are generally not darker
than the center pixel. After the hotspot transformation, vehicle pixels and the remain-
ing background pixels differ by three orders of magnitude (107 vs. 104). To improve
the visualization, we compute connected components of nonzero pixels and discard
objects smaller than an arbitrary cutoff of 12.7m2. The result is shown in Fig. 4(b).
Subsequent steps in the image processing pipeline examine the candidate regions, e.g.
classifying them via SVM.

(a) Logarithm of input (b) Hotspot-filtered

Figure 4: Airborne SAR image of Kühlsheim (65 cm resolution) and the result of the
hotspot transformation.

5 Conclusion
Automatic screening for man-made objects in SAR or IR datasets entails detecting
compact pixel clusters. The hotspot filter successfully suppresses other pixels, but is
computationally expensive. We have introduced a new algorithm with linear complex-
ity in the pixel count and object size, which is asymptotically optimal. Our sophisti-
cated implementation avoids redundant computations by means of a divide and conquer
scheme and organizes its memory accesses so the working set fits in cache. The overall
27-fold speedup is enabled by parallelization and vectorization. A single workstation
is able to process 72 MPixel/s, which allows rapid screening of large datasets. The
algorithm is used as a pre-processing step for multi-class target recognition in MSTAR
SAR data via support vector machine.

A Unaligned Memory Accesses
It was mentioned that vectorisation of the hotspot operator yields a surprisingly low
speedup and that the cause is related to Intel CPUs’ poor handling of unaligned mem-
ory accesses. Since this issue seriously impacts performance and is likely to affect
other applications as well, we will now delve into the details. An analysis of the Intel



Core 2 microarchitecture has found delays of 12 clocks in SIMD load operations that
cross a cache line boundary [13, p. 83]. This issue is documented in [14, p. 5-38],
which recommends using LDDQU to load two aligned vectors and shift the data into
place, thus avoiding a cacheline split. An unfortunate design tradeoff in the Core 2
microarchitecture has replaced the implementation of this instruction with that of the
architecturally equivalent MOVQDU, which remains affected by splits. The newer Intel
i7 microarchitecture reduces the cost of splits to 2 clocks.

In the meantime, several workarounds have been attempted for the hotspot oper-
ator: substituting two 64-bit loads to decrease the probability of splits is consistently
4 % slower. Using PALIGNR to emulate LDDQU works but requires the misalignment
to be known at compile-time. Realizing that access patterns for each interval length are
fixed, several ShellMax functions were generated via templates and called through
function pointers. This turns out to be 20 % slower, probably due to mispredicted indi-
rect branches. A final alternative lies in manually aligning accesses, which is feasible
because shell maxima computations only require three distinct misalignments. Un-
fortunately the SSE instruction set does not allow variable shifts of full registers and
restricting all operations to the lower halves of registers costs about 25 % performance.
Regardless, the overhead of two aligned loads, two shift and one OR-operation vastly
outweighs the cost of cacheline splits. It appears that straightforward use of MOVDQU
is currently the best option, especially because AMD microarchitectures also handle
unaligned loads with only slight penalties.

We now show the performance impact of cacheline and page splits on Core 2 CPUs
in the context of the hotspot operator. Assuming 2-byte values and 64-byte L1D cache
lines, 7 out of the 32 possible misalignments should cross a cache line boundary. In-
strumentation shows that the actual number is 22.13 %; this slightly higher number
is due to the not quite uniform distribution of the misalignments. Similar arguments
apply for page splits; assuming sizes of 4 KiB, we expect a ratio of 7 out of 2048 and
observe 0.34 %, which is in good agreement. Using the per-split costs of 12 and 224
cycles given in [15] and supposing a 3 GHz processor, we therefore expect 1.42 sec-
onds of CPU time to be lost due to the splits. A variant of the hotspot algorithm that
rounds down all addresses to their natural alignment runs 1.33 seconds faster than the
normal single-core version. This measurement matches the above prediction save for a
slight difference due to the overhead of masking the lower address bits. Cacheline- and
page split penalties have therefore been shown to be responsible for increasing total
computation from 2223 ms to 3641 ms, i.e. a factor of 1.63!

To gain a better understanding of the cause, we have used the VTune profiler to
observe certain CPU performance counters. The first surprising observation is a large
amount of L1D misses despite the fact that these accesses are local. This and a cache-
line split penalty equal to the L2 access latency leads to the presumption that such
loads are simply not serviced by the L1 cache and must go through L2. Page splits
apparently have a different effect because they do not cause an excessive amount of
L2 misses. Instead we note a significant number of DTLB misses even though large
pages are used and working set does not exceeed TLB capacity. This seems to point
towards page splits requiring a page walk, especially because the overhead is similar to
that reported in [12, p. 21]. These findings are in accord with [15].

While the above discussion may be deemed highly system-specific, it is also quite



relevant for real-world performance. It is safe to say that processors will generally
— and perhaps to a surprising degree — penalize unaligned memory accesses. Since
access patterns are intimately tied to the design of algorithms, this issue must be kept
in mind during their design.
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Forschungszentrum Jülich and RWTH Aachen University, Febuary 2008.

[12] U. Drepper. What every programmer should know about memory.
http://people.redhat.com/drepper/cpumemory.pdf, November 2007.

[13] A. Fog. The Microarchitecture of Intel and AMD CPUs. Copenhagen University, January
2008.

[14] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual,
November 2007.

[15] Cache/page lines and LDDQU. http://softwarecommunity.intel.com/isn/Community/en-
US/forums/thread/30244059.aspx, March 2008.


