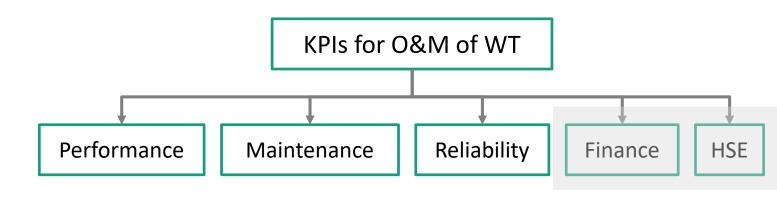
KPIS FOR WIND PLANT PERFORMANCE AND RELIABILITY

20.02.2019 Drivetrain Reliability Collaborative Workshop 2019, Golden

Sebastian Pfaffel, M.Sc. - Sebastian.Pfaffel@iee.fraunhofer.de - +49 561 7294 441

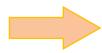

KPIs: What are we talking about?

Key Performance Indicator(s)

- Objectively describe the performance of an observed unit
- Provide information as a decision support
- Are repeatedly evaluated (monthly, quarterly, yearly ...)
- Should be SMART

- Measurable
- Achievable
- Relevant
- Time-bound

Motivation and Scope


Situation in the wind industry (O&M)

- Various standards are available (e.g. IEC 61400-26)
- KPIs are commonly used
- Used KPI systematics and definitions vary heavily

Drawbacks

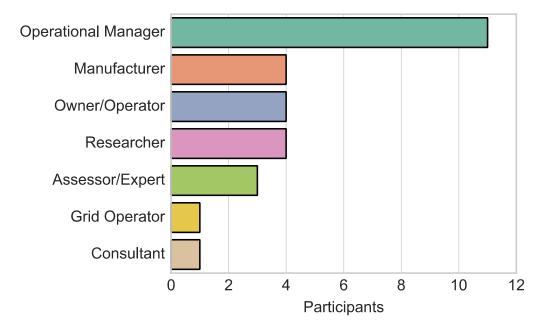
- Additional effort (design, implementation, ...)
- Cross-company benchmarks aren't possible
- Hinders communication and knowledge building
- Makes contracts more complicated

Scope of this work

- Identify and prioritize commonly used KPIs
- Collect and review various definitions
- Propose a set of recommended KPIs including unified definitions

Wind Energy-Information-Data-Pool (WInD-Pool)

- Detailed maintenance data is the next "BIG STEP"
- Application of standards is very important for comparability
- Further Operators are welcome to join the initiative

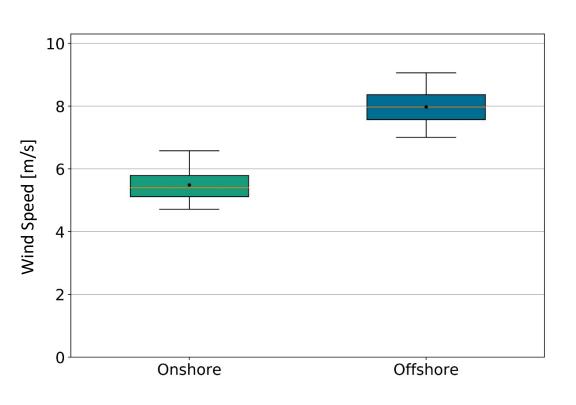

Survey on KPIs

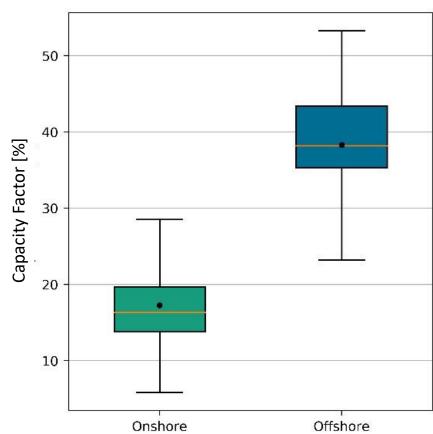
- Survey is part of a standardization task within the FGW e.V.
- 34 different KPIs were considered in the survey
- Survey was open 4th October 2017 till 1st November 2017

What did we ask?

- Is the KPI used in your company?
- Which definition is used?
- Which data serves as a basis?
- How important is the KPI?

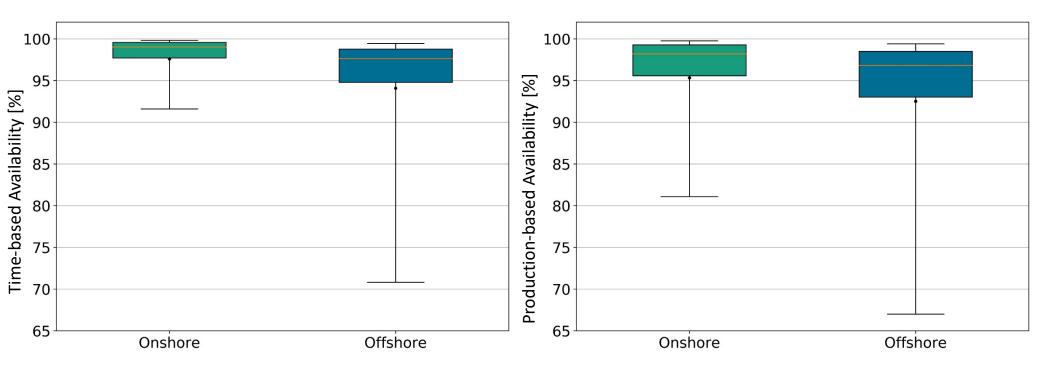
Who participated?


Performance KPIs

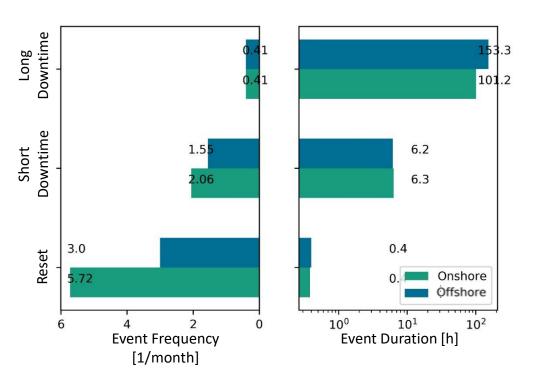

KPI	Answers	Use	Importance (1–5)	Abs. Importance
Power curve	20/20	19/20	4.5	85.5
Wind conditions	20/20	16/20	4.5	72
Average wind speed				
Wind speed distribution				
Wind direction distribution				
Average wind speed/site assessment				
Full-load hours	20/20	18/20	3.5	63
Energy consumption	20/20	16/20	3.1	49.6
Capacity factor	20/20	13/20	3.7	48.1
Data availability	20/20	11/20	4.1	45.1
Remote-resets	20/20	5/20	3.2	16
Site quality				
No. of telecommunication interruptions				
Forecast fulfillment				
Operating hours				
Specific yield				
Market value factor				

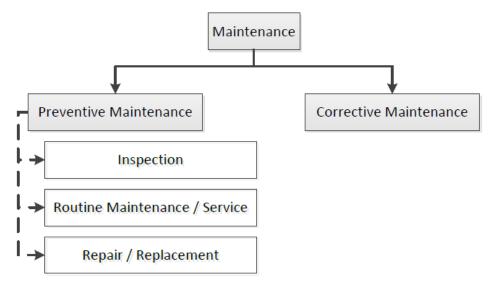
- Power Curves are the most important tool for performance assessment
- Operators use various metrics to describe the wind conditions
- Many more performance KPIs were suggested

Performance KPIs - WInD-Pool results


Maintenance KPIs

_	KPI	Answers	$_{ m Use}$	Importance $(1-5)$	Abs. Importance
	Time-based availability	16/16	16/16	4.7	75.2
1	Production-based availability	16/16	12/16	4.1	49.2
/l	Production ratio				
	Yield losses by cause				
	Monetary-based availability				
/	Maintenance tasks	16/16	7/16	4	28
	Preventive maintenance tasks	16/16	7/16	3.3	23.1
	Number of routine maintenance tasks				
	Number of inspections/visual inspections				
	Number of repairs				
	Reactive maintenance tasks	16/16	7/16	3.3	23.1
	Risk priority number (RPN)	16/16	1/16	5	5


- KPIs are defined in IEC 61400-26
- A new availability definition will be introduced
- Further categorization for maintenance tasks required

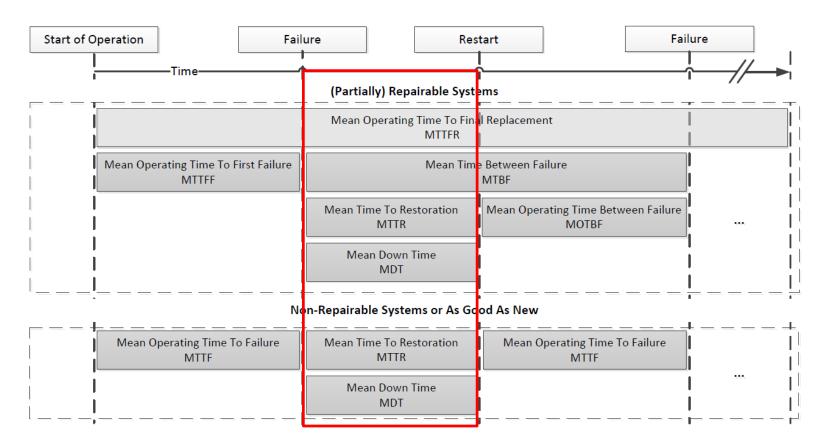


Maintenance KPIs - WInD-Pool results

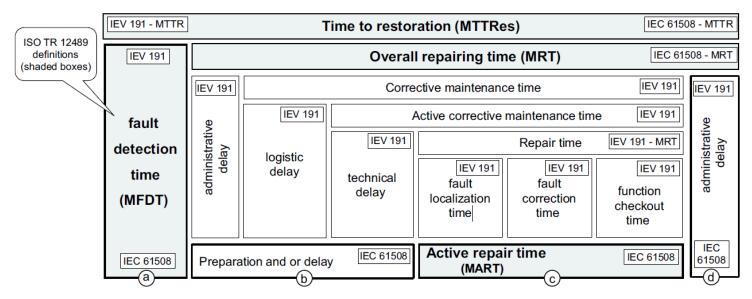
Maintenance KPIs – Events / Maintenance Tasks

Structure to categorize maintenance tasks by the maintenance type and activity according to BS EN 13306 and BS EN ISO 14224

Reliability KPIs


KPI	Answers	$_{ m Use}$	$\begin{array}{c} {\rm Importance} \\ {\rm (1-5)} \end{array}$	Abs. Importance
Failure rate	10/10	8/10	3.6	28.8
Mean time between failures (MTBF)	10/10	7/10	3.6	25.2
Mean time to repair / restoration (MTTR)	10/10	7/10	3.3	23.1
Mean down time (MDT)	10/10	6/10	3	18
Mean operating time between failures (MOTBF)	10/10	5/10	3.2	16
Mean operating time to failures (MTTF)	10/10	5/10	2.8	14
Repair rate	10/10	3/10	2.3	6.9

- Reliability Mean Time Measures are sometimes tricky to differentiate
- Different standards use different naming rules
- MTTR or MTTRes? MTBF or MOTBF?


Unified definitions and naming rules are essential to avoid misunderstandings and mistakes

Reliability KPIs – Reliability Mean Time Measures

Reliability mean time measures for (partially) repairable and non-repairable systems according to ISO and IEC standards.

Reliability KPIs – Reliability Mean Time Measures

Taxonomies of MTTR subcategories from ISO/TR 12489

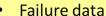
Recommended Practices for Reliability Data

iea wind Task 33

Standards, taxonomies

- ISO 14224
- IEC 61400-25, -26
- RDS-PP, GADS
- ZEUS

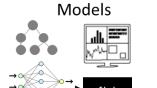
Entries


Entries

- Component designation, ...
- Type of activity, resources, ...
- Failure mechanism, impact, ...
- Functional states, ...

Data Groups

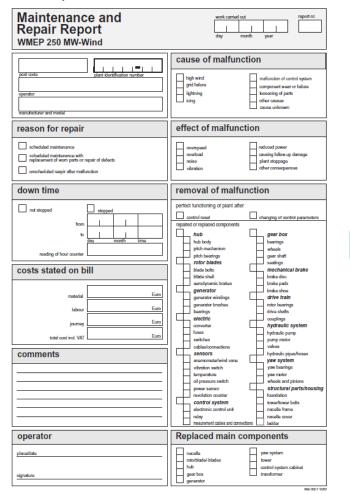
- Equipment data
- Maintenance data

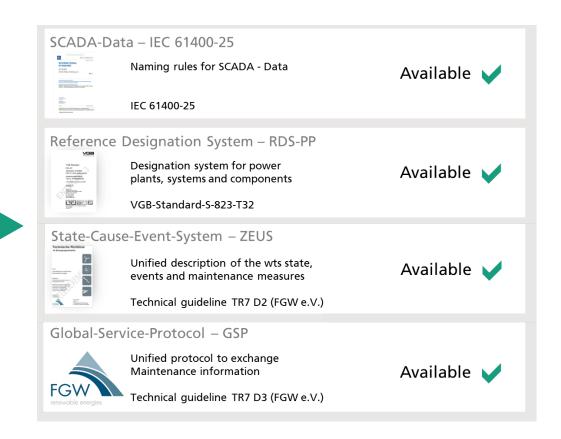


Operating data

Roles

Source: IEA Task 33 RP1


Taxonomies


https://community.ieawind.org/tasks/new-item/task33

Standardization of Maintenance Data

WMEP incident report

Standardization of Maintenance Data From Information → Knowledge

Generator bearing temperatures are rising. Borescope inspections revealed pitting. The bearing should be monitored RDS-PP Code: =MKA12 GA001 -UP001 regularly.

Some corrosion on the tower has been spotted. New protection will be added during the next visit.

RDS-PP Code: =UMD12

Conclusion and Outlook

Conclusion

- Many KPIs and many varying KPI definitions are in use
- Performance KPIs are most important for operational managers
- Current situation can lead to confusion
- A unified set of KPIs makes life easier for everyone
- An international technical guideline would be beneficial
- Standardized maintenance data is needed to achieve comparability
- → Make use of unified KPI and Data definitions!

Outlook

- Starting point for committee work on a technical guideline (FGW e.V.)
- The current list is not complete, further KPIs will be developed
- Further topics like aggregation or uncertainties of KPIs have to be addressed.
- A detailed review of HSE- and Finance-KPIs is still required

Sebastian Pfaffel, M. Sc.
Wind turbine operations analyst
Planning and Operation of Generating Assets
Königstor 59 | 34119 Kassel / Germany

+49 561 7294-441 sebastian.pfaffel@iwes.fraunhofer.de www.iwes.fraunhofer.de