Automotive Applications of Shape Memory Alloys

A. Bucht, K. Pagel, Ch. Eppler

The Conclusive **SFB459** Workshop on Recent Progress and Future Activities in the Field of Shape Memory Technology

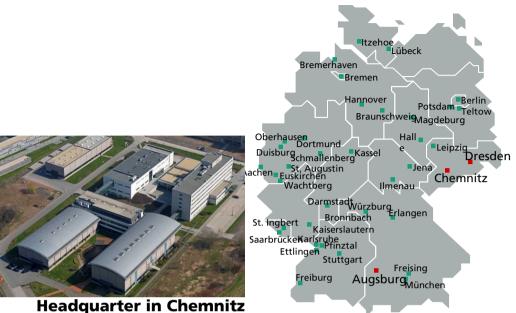
Bochum, 15. September 2011

Automotive Applications of Shape Memory Alloys

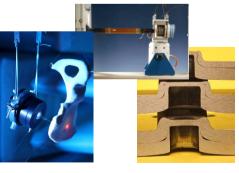
Introduction

- Automotive Requirements
- Application Examples
- A Look Ahead
- Summary

Introduction The Fraunhofer IWU


- Founded July 1st, 1991
- about 450 employees
- Budget: 25 Mio €
- Central topic: **Resource efficient production**
- 3 locations:

Chemnitz (headquarter)


- Machine tools
- Forming technology
- Cutting technologies

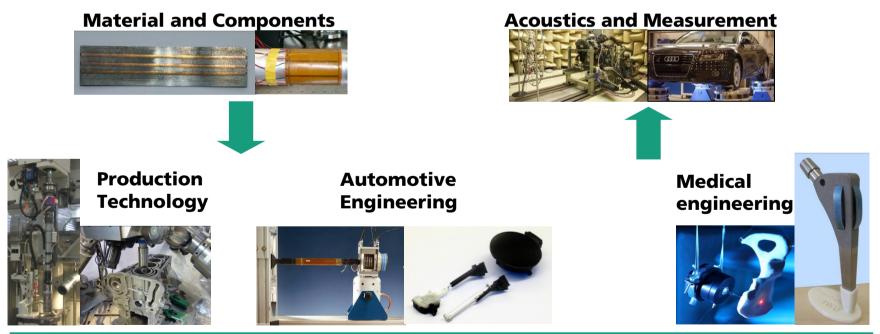
© Fraunhofer IWU Prof. Neugebauer 3

- **Dresden** (since 2001)
 - Adaptronics
 - Joining technology
 - Medical engineering

Augsburg (since 2009)

- Systems engineering
- Processing technology

Introduction


Department Adaptronics and Acoustics

21 interdisciplinary scientists (material, control, design, electronic, acoustic, measurement)

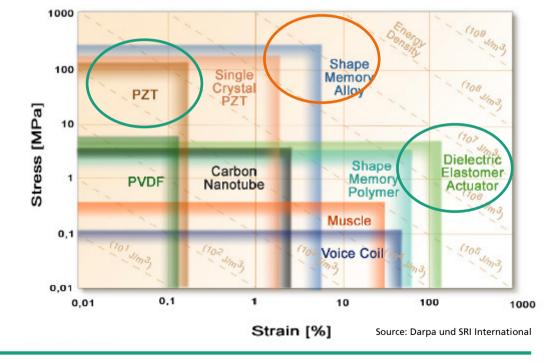
Central topic: Bringing intelligence to passive structures

- Using smart material (SMA, Piezo, MRF, ERF, DEA) for functional integration
- Merging of sensing and actuation functionality

Introduction Thermal Shape Memory Alloys

Reversible phase transformation causes re-arrangement of lattice structure

Martensite Austenite


- →Changes of mechanical and electrical behavior
- →Changes of geometry

Actuation parameters

- High stress (forces)
- Medium strain (deflection)

Special features

- High specific work load
- Sensing and acting capabilities
- Integrate ability
- Thermal activation
- Noiseless

Automotive Requirements On the Way to Electric Mobility

Mechanic age – Combustion engine

Focus: Power, Speed, Comfort

No / minor electrification

Electro-mechanic age – Combustion / Hybrid electric vehicles

- Focus: Comfort, Power, Efficiency
- Partial electrification of vehicle
 - Assisted steering, braking
 - Electrical controlled thermo management

→Increasing number of mechatronic components

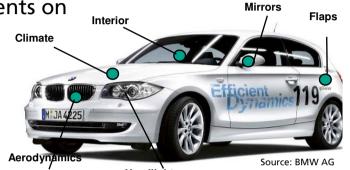
Electronic age – Battery driven electric vehicles

- Focus: Efficiency, Efficiency, Efficiency
- Full electrification of vehicle
 - Electric steering, braking
 - Electric thermo management

Further increasing number of mechatronic component

Source: Audi AG

Source: BMW AG


© Fraunhofer IWU

Prof. Neugebauer

Automotive Requirements State of the Art

- Increasing proportion of mechatronic components on
 - Costs
 - Weight
 - **Cross-section**
 - Energy consumption
- More than fifty drives in modern cars
- Typically applied actuators
 - **DC-drives** → all-round (mirrors, climate control, interior)
 - Solenoid actuators → valves, locks, safety systems
 - **Pneumatic drives** \rightarrow pressure valves engine and emission
- Highly optimized → decades of development
- Modular, all purpose → construction kits
- Well known, often used → design tools

Can SMA-drives become an alternative???

Headlights

DC-stepper drive

Exhaust-gas Solenoid drive return valve

Automotive Requirements What are the benefits?

- Lightweight design by the high specific workload
- Reduction of cross-section due to reduced complexity

Efficiency

- Reduced complexity reducing drive costs
- Increasing of vehicle value by electrification of further functions
 - Economy
- silent drives due to the absence of fast moving parts
- Electrification of further functions due to reduced costs, weight, cross section

Comfort

- Integrated Fail-Safe Functions by thermal activation
- Self diagnosis capabilities by resistance measurement
- Structure Integrated actuators

Functional enhancement

© Fraunhofer IWU Prof. Neugebauer 8

Allal

Automotive Requirements What's the challenge?

Efficiency – power consumption of the whole system

- Efficiency depends on temperature and thermal design
- No Stand-By-Current tolerated \rightarrow mechanical fixing

Temperature dependency – secure operation from -40°C up to 85°C / 120°C

- Limited operation temperature avoids applications close to the engine
- On/Off-Time depends on ambient temperature

Dynamics – deterministic, constant delay times

- Long cooling times for ambient temperatures over 60°C
- High currents for heating up from -40°C
- **Durability ensuring live time operation**
 - Complex interactions between thermal, mechanical and electrical design
 - Protection in case of faulty operation

The sum has to be positive!!!

Automotive Application Examples Petrol Cap Lock

Electric drive with gear head

SMA-drive

Petrol cap release device

Frau	ın	ho [.]	fer
			IWU

Task: Releasing petrol cap

Benefits: Lightweight design, cross section

Drive characteristics: Fast switching

- **Drive parameters:**
 - Reset by spring
 - Force:
 - Deflection:
- 10 N 5 mm
 - → Diameter: 0.3mm 120mm
 - \rightarrow Length:

Parameter	Electric Drive	SMA-Drive
Weight	104 g	10 g
Number of parts	10	3
Cross section	see figure	see figure

→ SMA-Drive completely noiseless

Automotive Application Examples Air Flow Cutting Device

- **Task:** Cutting off the air flow \rightarrow aerodynamics
- **Benefits:** Light weight design, fail safe functionality
- **Drive characteristics:** Switching and holding
- **Drive parameters:**
 - Reset by spring
 - → energy needed for holding end position
 - → Diameter: 3 x 0,5mm Force: 100 N
 - Deflection: 10 mm → Length: 275 mm
 - Force transformation by eccentricity

- · · · · · · · · · · · · · · · · · · ·	and the second second second

Electro-mechanic Drive

Parameter	Electric Drive	SMA-Drive
Weight	190 g	76 g
Number of parts	5	5

- → Weight reduction nearly 60%
- → Thermal fail save function included (electric drive self-locking due to gear head)

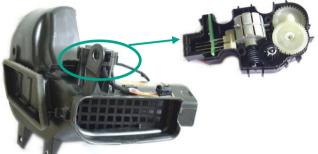
SMA-drive

Automotive Application Examples Climate Control Flaps

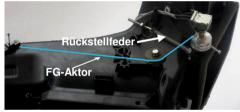
- Task: Control of climate Air mass flow
- **Benefits:** Costs, comfort (acoustics)
- Drive characteristic: Continuously controlled

Drive parameter:

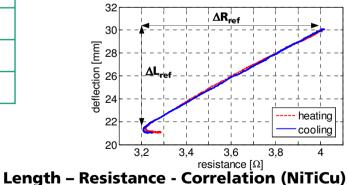
- Reset by spring
- Sensor less control using resistance measurement
- Force: 5 N → Diameter: 0,152 mm Deflection: → Length: 230 mm 9 mm
- **Parameter Stepper Drive SMA-drive Open-close-time** 3 s 2-3 s Cost ca. 5,00 €* ca. 2,50 €** Weight ca. 65 g ca. 20 g Number of parts ca. 20 ca.10


Completely noiseless

- → Integration of actuator in plastic housing
- Cost Electric Drive: Supplier
- Cost SMA-drive: FhG-IWU purchase price of components, no development costs included

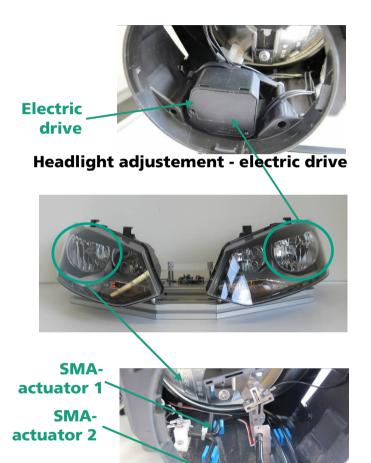

© Fraunhofer IWU Prof. Neugebauer

09-15-2011


SFB459, Bochum,

Electric drive with gearhead

SMA-drive

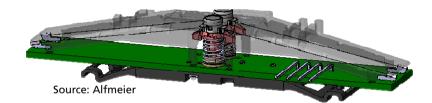

Automotive Application Examples Headlight Range Adjustment

- **Task:** Deviation balance of headlights
- Benefits: Cross-section, weight, acoustic
- **Characteristic:** Continuously controlled
- Drive Parameter:
 - Antagonistic wires → fast acting in both directions
 - Flexible wire arrangement in Bowden-cable
 - Force: 15 N → Diameter: 0,3 mm
 - Deflection:
- 6 mm → Length: 200 mm

Parameter	Electric drive	SMA-drive
Up-Down-Time	6 s	4 s
Weight	ca. 52 g	ca. 35 g
Number of parts	7	7

Completely noiseless

➔ Integration of actuator in the headlight housing


Headlight adjustement - SMA-drive

Automotive Application Examples Summary

- SMA-actuators are able to replace conventional actuators
- The key is the right application
- → Serial Production of valve drive by Alfmeier Präzision AG
- Main Benefits:
 - Lightweight
 - Small
 - Cost effective

- But: the benefits strongly depend on the drive requirements
 - Temperature dependency
 - **Dynamics**
 - No Stand-By-current
 - ...

Nearly everything is technical feasible but does it makes sense?

What is coming next?

A Look Ahead Self-controlled actuation systems

- Thermal activation as unique feature of SMA
 - → SMA works as sensor and actuator

Motivation

- Energy for thermo-management has to be delivered by battery
 - → Compact car in the city (50 km/h, winter):

Heat source

3 kW engine power 3 kW heating power

Objective: Material based thermo management \rightarrow no fluidic circuits, no extra energy

- Material based control of heat flow -> Shape-Memory-Alloys

Application Example: Battery

- High conductivity to prevent over-heating
- Low conductivity to prevent under-cooling

Challenges:

- Thermo-mechanical design methods
- Manufacturing technologies

SMA-Actuator

Heat sink

Demonstrator: Active Controlled Heat Flow

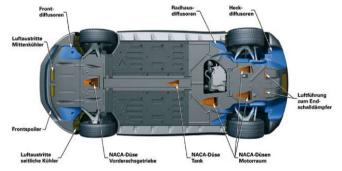
André Bucht, Workshop SFB459, Bochu

A Look Ahead **Intelligent Structures (I) – Composite Structures**

Integrate ability as unique feature of SMA

 \rightarrow The Material is the actuator

Motivation

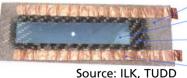

Increasing efficiency by tailored aerodynamics

Application Examples

- Adaptive vehicle underbody -> Air intake
- Adaptive exterior parts -> Rain drain
- Adaptive interior parts Air outlet

Challenges:

- Modeling of SMA-composite structures
- Integration techniques (heating, thermal management)
- Integration technologies



Vehicle underbody

Demonstrator: Active GFRP-composite

GFRP

SMA-sheet

CFRP-heater

CU-foil

CFRP-heater for structure integrated SMA-sheets

A Look Ahead

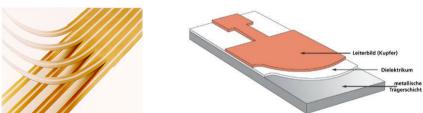
Intelligent Structures (II) – SMA-Metal-Composites

Integrate ability as unique feature of SMA

→ The Material is the actuator

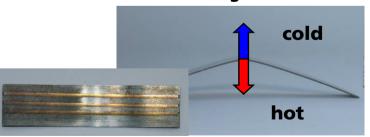
Motivation

- Adaptive car body components for adaptive aerodynamics
- Similar materials, thermal efficient environment


Automotive Applications

- Adaptive spoilers
- Thermo active engine parts
- Passive brake cooling

Challenges:


- Modeling of SMA-composite structures
- Integration techniques (heating, thermal management)
- Integration technologies

Roll clading of NiTi-Wires

Punching/printing of heating elements

Source: TU BAF Demonstrator: SMA-Metal-Composite

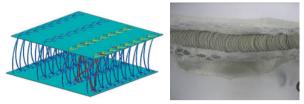
André Bucht, Workshop SFB459, Bocl

A Look Ahead

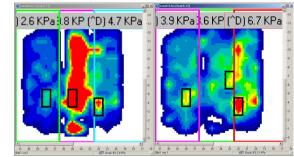
Intelligent Structures (III) – Textile Structures

Flexibility of wire actuators as unique feature of SMA

Motivation


- Variation of geometry and behavior of
 - Textile 2D-structures (woven fabrics)
 - → seat / interior cover layers
 - Textile 3D-Structures (distance fabrics)
 - seat structure

Automotive Applications


- Tactile textile structures
- Morphing textile structures → Adaptive seat side walls
- Variation of stress-deformation behavior

Challenges:

- Modeling of textile-SMA-structures
- Integration techniques (contacting, fixing)
- Integration technologies (production processes)

Adaptive distance fabric

Increasing pressure by integrated SMA-wires

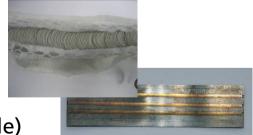
FE-model of textile SMA-structure

Summary

Today

- Many applications show the potential of SMA in the laboratory
- First series production application established
- Interest of OEMs and suppliers is rising, but still an information deficit exist
- → For suitable applications SMA will reach the market

Future


- Actuator integration and thermal activation as unique feature of SMA
 - Active material composites for intelligent structures
 - Self controlled structures
- Future Challenges:
 - Modeling of composite structures (metal, plastics, textile)
 - Integration technologies and manufacturing processes

Laboratory demonstrator


```
Series application
```


SMA-composite materials

Thank you for your attention!

André Bucht

Fraunhofer Institute Machine Tools and Forming Technology

Tel: +49351 – 4772 2344

E-Mail: andre.bucht@iwu.fraunhofer.de

09-15-2011

André Bucht, Workshop SFB459, Boch