
The ASCENS Case Studies: Results and
Common Aspects

Nikola Šerbedžija

Fraunhofer FOKUS

Abstract. This chapter focuses on pragmatic aspects of ASCENS project
illustrating the role and significance of the three major application do-
mains (swarm robotics, cloud computing and e-mobility) that motivate
and pragmatically justify the approach to construct autonomous sys-
tems. A special insight is given into similarities and differences of the
ASCENS case studies and their common abstract characteristics that
led to a general-purpose methodology for expressing, evaluating and de-
ploying knowledge-based, self-aware and adaptive behaviors. From this
perspective selected ASCENS tools and methods to support the system
development lifecycle are further discussed and illustrated on concrete
examples. Finally future plans are given pointing out to the use and
further evolvement of the ASCENS technology.

Keywords: application of collective adaptive systems, service compo-
nent ensembles, software development life cycle, real-life systems

1 Introduction

The application domain, represented by three major case studies, namely swarm
robotics, science cloud and e-mobilioty, played a central role in the ASCENS
project1. They provide a source of motivation for the ASCENS technology and
a treasury of trial examples upon which ASCENS solutions could be tested in
practice. Case studies also served as a gravity for joint work among different
partners and work packages as the whole spectrum of results had to be put
together and applied on the case studies scenarios. This constant interaction
between theory and practice made the ASCENS highly thepretical approach
unified, pragmatic and well suited for a range of the application domains, far
beyond the specific areas of the ASCENS case studies.

The ASCENS project deals with the development and deployment of au-
tonomous systems with a special attention paid on technical awareness and
adaptive behavior of the underlying systems at one side and rigorous and formal
reasoning about the correct system functioning at another. In the early project
phase the development lifecycle for autonomous systems has been proposed (see

1 ASCENS website: http://www.ascens-ist.eu/



the Chapter 1.4.1 of this book) tracing the methodology and the roadmap for
system design and development. A number of distinct phases of the development
process have been identified and many tools have been developed to support the
modelling and development in each of the lifecycle stages. Due to a highly non-
deterministic character of the autonomous systems, whose behavior is dynamic
and sensitive to unpredicted situation, system validation and verification plays
an important role in the project.

Contrary to majority of computing systems now in use, autonomous sys-
tems’ behavior is highly dynamic and reactive to unexpected situation. That
non-determinism makes the system verification process extremely difficult as
the system alters its behavior in run-time replying to the state of surrounding
and the knowledge about its own state. Those circumstances cannot be pre-
dicted in advance and system cannot be fully tested and de-bugged before it
comes to exploitation. Furthermore, when autonomous system is deployed, its
variable behavior is a run-time response to live situation and it is hard to differ
correct from mal functioning. The ASCENS response to such difficulties is to
verify and validate the system in all of its development and deployment phases
applying rigorous methodologies and formal methods, from requirement analyses
and modelling up to the run-time monitoring.

Having all these challenges in mind, ASCENS strategy was to prove its
methodology throughout the development process with the concrete and non-
trivial applications. That makes the role of ASCENS case studies manifold:

– Inspirational
– Experimental
– Verifiable
– Pragmatic

From the very project beginning initial concepts for requirement specifica-
tion, awareness, adaptation and overall system modelling have been taken from
problem-rich application domains of swarm robotics, cloud computing and e-
mobility. Both typical examples from the application domain and concrete trial
scenarios were thoroughly studied. Inspired and motivated by a wide problem
space of ASCENS case studies, a number of new methods have been developed,
almost from scratch, and a number of existing methods were modified to reply to
these challenges. Out of thorough problem specification, a structured knowledge
representation in form of KnowLang [22] approach has been designed allow-
ing for a sound (self-) awareness definition based on knowledge. Further system
modelling could use this knowledge to exercise awareness rich behavior, making
system aware of its functional and non-functional requirements. It furthermore
led to development of a unique adaptation model called SOTA [1] that defines
adaptation as a system journey in a multidimensional space where the coordi-
nates are awareness aspects of the system. By deploying SOTA on case studies
a general-purpose catalog of adaptation patterns have been defined that help
designer express and exercise with adaptive behavior. Further adaptive system
requirements were supported by In order to guide the design of an ensemble-
based system from high-level strategic goals, requirements and patterns to their

2



low-level realization in terms of system architecture (components and ensembles)
we can use the Invariant Refinement Method (IRM) [13]

SCEL process algebra [7] is another ASCENS pillar that allows for system
modelling and reasoning on the system behavior. It offers means for defining a
system as a set of service components and their ensembles extended with lo-
cal knowledge to express awareness and adaptive policies for predicate-based
bindings to express autonomous behavior. The Helena approach [15] has been
further developed for modeling collaborations using a UML-like notation focus-
ing on the description of the behavior at individiual and collective (ensemble)
level. Further design steps from high-level strategic goals (requirements, adap-
tation patterns) to their low-level system architecture realization (components
and ensembles) are supported by the Invariant Refinement Method (IRM) [13]

Experimental significance of the case studies could be seen through numer-
ous pragmatic examples which were used to model and verify corresponding
system behavior. Each concrete problem from the case studies domain has been
modeled, and analyzed by the corresponding ASCENS tool, testing simultane-
ously the expressive power of the tool itself and the pragmatic significance of the
solution. Throughout the project this interaction between theory and practice
contributed to achieve (1) sound and usable methodology and (2) useful prag-
matic results for the application domain and industrial partners. The ASCENS
work has been characterized by this interaction and mutual influence that enrich
both the theory and the practice. Two major means developed from the skretch
and for the project purposes were used to deploy and test ASCENS case studies
in practice: JRESP [12] and JDEECO [14] both based on SCEL abstraction,
integrating numerous other ASCENS tools.

Verifiable significance of the case studies is present at all the development
phases. The case studies offered realistic, pragmatic and complex examples of
use, making the highly theoretical validation/verification means both sound and
pragmatic. Each concept developed within ASCENS has been first validated in
its generic form and then applied on a concrete example from the application
domain for further evaluation. For example, SOTA adaptation patterns allow for
high-level reasoning and proofs for adaptive behavior and appropriate selection
of the adaptation patterns for each of pragmatic problem. High level modelling
led to further reasoning on important system properties like safety (e.g. prov-
ing that e-vehicles will never deadlock each other while using common resources
e.g. parking lots or charging station) and liveness (e.g. proving that the system
will really find the optimal route for a vehicle respecting major constraints e.g.
battery level, timing etc.). D-Finder[4] tool has been used for the compositional
variation. Further examples of validating coordination and collaboration algo-
rithms and optimizing local vs. global goal strategies are taken from a reach
problem space of swarm robotics, cloud computing and e-mobility (e.g. guar-
anteeing that each e-vehicle obtains a park place nearby its point of interest,
taking into account that the garage needs to satisfy needs of hundreds of other
e-vehicles. The ASCENS approach also integrates existing verification tools like
BIP (Behavior, Interaction, Priority) [2] or SBIP (Stochastic BIP) [3] and used

3



them together with ASCENS novel tools to perform statistical model checking
and perform quantitative verification.

The rest of the chapter further elaborates on a mutual influence between
praxes and theory by detailing the application challenges (section 2) that are
used to motivate and develop a common approach (section 3) to model, develop
and deploy autonomous systems. The set of ASCENS generic tools (section 4)
re-visits a wide spectrum of developed means to support the use of ASCENS
approach in solving concrete pragmatic problems illustrating ASCENS results
and solutions in real application deployments (section 5). Finally, the conclusion
(section 6) summarizes the results and discusses a wider pragmatic significance
and influence that the ASCENS project has in the domain of adaptive and
autonomous systems.

2 Application Challenges

A thorough analysis of the application problem space is crucial, both for suc-
cessful application design and development and for proving expressive power of
the ASCENS methods. This dual role of the case studies has been especially
important at the beginning of the project, when the ASCENS approach was
defined and developed. The approach has been to decompose the application
fields to low-level details, provide partial solutions and to compose those solu-
tions into harmonized methodology that defines complete development lifecycle
for autonomous systems.

2.1 Application Overview

To explore the system requirements for autonomous systems, three complex ap-
plication domains have been closely examined: swarm robotics, cloud computing
and e-mobility. The overall strategy has been to analyse separate application do-
mains, findout the charateristics that make these system konwladge aware and
autonomus, and finaly to generalize these characteristics into a possibly common
set of jont features that could be modelled by a general methodology.

Swarm robotics application domain deals with creation of multi-robot sys-
tems that through interaction and coordination among participating simple
robots and their environment can accomplish a common goal, which would be
impossible to achieve by a single robot. The basic idea behind the application
scenario is to organize and control a rescue operation in an emergency situation.
Figure 1 illustrates a multi-robot system containing two types of robots with
circles shawing possible different grouping (ensemble building) among different
or same robot type.

Cloud computing is an approach that provides computing resources to users
in a service-based manner, over the internet. By sharing computing resources by
many users, significant throughput can be achieved leading to energy and costs
savings. This kind of computing calls for novel techniques that would allow for
highly dynamic and secure construction of virtual resources that would maintain

4



Fig. 1. Swarm robotics

the throughput and efficiency high, wile reducing the number of computer used.
This, appreantly contraversial requirements insure enormous reduction in energy
use and computing costs, making powerfull computing resources available to ev-
eryone. Figure 2 illustrates a collection of computing resources brought together
to form a cloud that further offer its services to the users.

E-mobility is a vision of future transportation by means of electric vehicles
network allowing people to fulfill their individual mobility needs in an environ-
mental friendly manner (decreasing polution, saving energy, sharing vehicels,
etc). Due to limited battery capacity, e-vehicles cannot simply pass long dis-
tances, as it is the case with traditional vehicles (and re-filling energy lasts much
longer). The ultimate goal of e-mobility is to overcome that problem by offering
a range of supporting activities that would allow energy-aware passengers to
master distances in required time. Figure 3 illustrates a fleet of e-vehicles with
indicated parking lots and charging stations.

2.2 Common Characteristics

In a closer examination the three application areas, though very different in
nature, have a number of common characteristics.

Unique simple entities with clearly identified individual goals. In swarm
robotics, those are elementary robots with their simple functionality and single
role (e.g. a foraging robot moves and explores the area until it finds the target

5



Fig. 2. Cloud Computing

or come too far away from other robots then it stops). In cloud computing,
elements are specific computing resources with their characteristics (e.g. a CPU
with its energy consumption, execution speed, throughput etc.). In e-mobility,
elements are e-vehicles, parking and/or charging stations and traffic conditions
(e.g. a parking lot has its location, price and availability/occupation schedule).
Obviously, all three applications can be described by a huge number of (1) single
entities with (2) unique individual goals.

Distribution and grouping around global goal In swarm robotics, simple
elements are grouped into multi-robot system in order to perform the function
that individual robots cannot do alone. In cloud computing, more CPUs could
be grouped together to offer more computational power. In e-mobility, multiple
resources like charging station and parking lots can be combined to provide
better overall service. Further characteristics are existance of (3) global goals, (4)
grouping principles to express these global goals and (5) massive interraction that
exploit these principles of sharing and collectiveness in order to (6) coordinate
and harmonize local and global goals.

Awareness and knowledge are characteristics which are pre-conditions for
autonomous behavior. Maintaining the knowledge of own functional and oper-
ational capabilities make both single units and their collections self-aware and
capable of runtime dynamic responsiveness. Multi-robot system is aware of lo-
cation and functionality of neighboring robots so that a group of robots can
coordinate along the common interest. Cloud computing deals with dynamic
(re-)scheduling of available (not fully used) computing resources. Maximal uti-
lization can only be achieved if the cloud is aware of the users processing needs

6



Fig. 3. E-mobility

and the on-going states of the deployed cloud resources. Only with such knowl-
edge, a cloud can make a good utilization of computers while serving individual
users needs. E-mobility can support coordination only if e-vehicles know their
own restrictions (battery state), destinations of users, re-charging possibilities,
parking availabilities, the state of other e-vehicles nearby. With such knowledge
collective behavior may take place, respecting individual goals, energy consump-
tion and environmental requirements. Consequently, (7) self-awareness allows
for knowladge-rich (8) adaptation and (9) optimization within the three case
studies.

Robustness and continuous operation are crucial features of real-life sys-
tems, where an application needs to run non-interrupted, despite the possible
mal-function. A multi-robot system does not stop when one robot is down. The
cloud computing is per definition a set of boundless resources that can overcome
the failure of single component. E-mobility aims at non-stop operation to over-
come the restrictions posed by battery life-time making (10) the robustness a
major aim of the overall concept.

When taking into account all the mention common characteristic it can be
seen that theay all together contribute to make a target system behave (11)
autonomously, which is the ultimate goal of the ASCENS approach. All the
metioned elevengeneric common features (with their interpretations within all
three case studies) are summarized in the table 1.

3 Common Approach

This spectrum of common features serves as a basis for modeling of massively
distributed behaviours leading to a generic framework for developing and deploy-
ing complex autonomic systems [11]. To behave autonomously, a control system

7



Common feature Swarm Robots Cloud computing E-Mobility

Single entities Different types of
robots

Computing re-
sources

E-vehicles , parking
lot, charging station,
infrastructure

Individual goals Find the victim,
carry the obejct, ...

compute, store, ... reach the destina-
tion, charge the bat-
tery, ...

Global goals Build the wall, ... increase throughput,
...

allocate all parking
lots, ...

Grouping principles ”All foraging robots
close to the target”,
...

”Connect idle proc-
cessors”, ...

All available park-
ing lots in radius of
500m of the meeting
place, ...

Massive interaction Among robots, ... Among computing
resources, ...

Among vehicles,
parking lots, charg-
ing stations, ...

Coordination Coordinate search
algorithm, ...

Coordinate free re-
sources, ...

Coordinate park lot
allocation, ...

Self-awareness ”About battery
state”, ...

”About its usage”,
...

”About own loca-
tion”, ...

Optimization Time, energy, per-
formance, ...

Availability, compu-
tational task execu-
tion, ...

Arriving in time, ve-
hicle/infrastructure
usage, ...

Adaptation To changing plans,
single robot mal-
function, ...

To resource failure,
...

To traffic situation,
battery shortage ...

Robustness Sensory noise, lim-
ited sensory range
and battery life, ...

Failing resources,
sudden intense
computing require-
ments, ...

Range limitation,
battery shortage,
infrastructure prob-
lems,...

Autonomous behav-
ior

Run-time plan
change,

Decentralised deci-
sion making, global
optimization, ...

Changing the route,
re-allocate parking
lot, ...

Table 1. Common features of the ASCENS case studies

needs to maintain knowledge about itself (particular objectives, capabilities, ex-
ecution state and restrictions) and about its environment. Such collection of
facts yields awareness of own functionality and effects it has on the environment
which further allows for adaptive behaviour. Being capable of operating accord-
ing to these three principles (knowledge, awareness, adaptation), the system is
able to re-configure, re-tune and act appropriately thus behaving in autonomous
manner.

The ASCENS approach breaks up a complex control problem into its elemen-
tary constituents. It deals with complications at a bottom level, solving issues
at a lower scale and then harmonizing these solutions with more global ones.
Localization and de-centralization is the fourth major principle of the approach.

8



Service components with clearly defined elementary objectives are basic system
elements. They gather in larger symbiosis called ensembles in order to fulfill
collective goals. As the controlled situation changes, i.e. goals are (partially) ful-
filled, re-grouping takes place and the symbiosis re-structures. The criteria to
construct an ensemble of service-components is some joint interest which can be
expressed as a logical sentence, e.g. connect all robots that can carry up to 4kg
and are in the radius of 100m with the aim to cooperatively transport 25kg heavy
object or select all free parking lots in the radius of 300m that have a charging
plug. That makes the communication implicit and predicate-based. The connec-
tions are established at run-time, depending on the live situation at particular
time. These logical rules for highly dynamic grouping are further used for formal
reasoning on optimization and coordination among distributed elements.

The overall system development life cycle consists of the following phases: rig-
orous design (requirement specification, modelling and validation/verification),
deployment (programming) and run-time monitoring (live examination of aware-
ness, adaptation and autonomous behavior). A number of tools have been made
that support the development process at each step, thus guiding and facilitating
the whole development process. Requirement specification is a phase where the
dissection of the problem to be solved takes place (requirement engineering is
des cribed in the Chapter 1.4.1 of this book). Each system element is separately
defined both functionally (what to do) and non-functionally (how to do) yielding
a set of goals that embrace the terms of functioning and description of environ-
ment. The knowledge required for system awareness and adaptation is used as a
major attribute repository for system construction (formal approach to knowl-
adge. awarenes and adaptation is described in the Chapters 1.3.1, 1.3.2, 1.3.3
and 1.3.4 of this book). The SCEL (service-component ensembles language) [8]
has been developed for high-level system modelling with service components and
their ensembles. Both service-components and ensembles have local knowledge
used to express their goals. Knowledge is represented by ontologies that contain
hierarchical and meaningful description of system properties and system goals.
The goals are described as rules i.e. logical expressions with system properties
(the SCEL language, its design, implementation and verification is described in
the Chapter 1.2.1 of this book).

The adaptation phenomenon is formally modeled as a progress in a multi-
dimensional space where each axis represents one orthogonal aspect of system
awareness (facts about its own functional, operational, or any other necessities
defined within requirement specification phase). Adaptation actually happens
when the system state moves from one to another position within the space
according to the pre and post- condition on each of its awareness- dimensions.
Adaptation is a continuous process where a system acts appropriately i.e. in
harmony with own capabilities and the observed environment. The SOTA adap-
tation model is used to extract major application requirements and offer appro-
priate adaptation patterns that effectively control system dynamics with numer-
ous feedback-loops. In order to guarantee correct and timely behavior in such
demanding and highly dynamic circumstances this approach relies on formal

9



methods. The major safety and liveness properties are formally proved using
SCEL process algebra (e.g. prove that two e-vehicles will never block each other
while competing for a free charging station, or prove that the foraging algorithm
of a robot converges in a given time). Further validation and verification of spe-
cific optimization algorithms are performed in order to guarantee correct system
behavior in early design phase (e.g. prove that the optimization method will
deliver the most energy-efficient route for a given multi-routing problem). Once
the system is rigorously modelled and validated, the actual deployment may
take place sewing the system together. The jRESP and jDEECo deployment
tools offer direct Java programming support for the SCEL and SOTA models.
Further modlling tool used to specify deep logical and stochastic functioning
that describe the system behavior is the POEM language [10].The Iliad imple-
mentation of POEM is fully integrated in jRESP and can be used as awareness
engine for SCEL programs.

Due to a seamless functioning of autonomous systems, where system changes
are means for appropriate behavior, possible malfunctions are difficult to dis-
cover. Therefore, a number of tools have been developed for run-time monitoring
where internal system knowledge and topology (ensemble construction) as well
as awareness and adaptive characteristics are observed. For example, the mon-
itoring tools can visualize how the robots, close to the target and with enough
battery-charge are grouped into ensemble to perform joint transport of a heavy
object. Once the task is performed, the ensembles are dismantled freeing robots
for another assignment. Monitoring inspects and displays major system princi-
ples: knowledge, awareness and adaptation, offering a visualization of dynamic
ensemble building criteria, thus directly observing autonomous behavior. If some
malfunctioning is discovered at run-time, a system modification is considered go-
ing back to modelling and design system development phases. The monitoring is
done with the following tools: ARGoS [18], AVis Plug-in2 and POEM, for swarm
robotics, the Zimory cloud platform [24] and SCP for science cloud and jDEECo
and IRM for e-mobility.

The detailed description of ensemble development life cycle and ASCENS
best practice for collective adaptive system is given in the Chapter 1.4.1 of this
book.

4 Generic Set of Common Tools

The set of common features, as described in the previous section, served as a
basis for further work and experimenting in each of the case studies. At the
same time it led to a generic set of common tools that could be used and tested
within scenarios from the case studies domains. The figure 4 shows some of
generic tools which are available in the rich ASCENS tool repository. Most of
the tools are newly developed and/or adjusted for the ASCENS purposes. The
cyclic arrows indicates a multi-level feed back loops - present in all development

2 see the ASCENS User Guide

10



Fig. 4. ASCENS development and deployment tools

phases, as described in the ASCENS development lyfe cycle. At one side, the
project creates a comprehensive list of generic tools that could be used in any
deployment scenario (fully independent from the ASCENS application domain),
at another side, these tools were tested and fine-tuned using complex practical
problems with real data. The ASCENS tools were developed within ACENS
theoretical work packages, making the tools abstract and general-purpose.

The tool integration has been allocated to a separate work package whose
aim was to generate a standard integrated development environment where the
modeling and editing tools are placed together with profiles and debuggers, mak-
ing it possible to ptactically use the whole development life cycle as described
in the previous chapter of this book. All of the tools previously described are
stored in a common repository making it a common place to apply ASCENS
technology and follow ASCENS development life cycle.

All mentioned tools were separately tested in a theoretical context, or us-
ing single problems from the case studies domains. Once fully tested, the tools
were applied on a large scale practical scenarios from the ASCENS case stud-
ies (separate work package). The table 2 list the major ASCENS tools, as they
were used within each of the case study and according to the EDLC (Ensemble
Development Life Cycle).

The ASCENS tool repository with numerous deploymemnt examples plaid an
important and dual role: (1) tools were tested in a real and large scale application
domain - proving a wide applicability and a strong practical orientation of the
ASCENS approach, (2) the end users and corresponding industrial parties could

11



EDLC Phase Swarm Robots Cloud computing E-Mobility

Requirements Engi-
neering

SOTA, Gem, POEM Knowlang, IRM simSOTA, IRM

Modeling/ Program-
ming

SCEL, jRESP, Poem SOTA, SCEL,
KnowLang

SCEL, SCLP

Verification/ Valida-
tion

BIP, jRESP jRESP jDEECO

Deployment ARGoS SCP SPL, Java, Zi-
mory

jDEECo. Java, Mat-
Sim

Monitoring ARGoS, AVI Plug-
In Tool

Zimory, SCP jDEECO/DiSL/SPL
MatSim

Awareness POEM, ARGoS,
AVI

SCP jDEECo

Self-Adaptation ARGoS, AVI,
POEM

Zimory, SCP jDEECo, IRM

Feedback POEM SPL MatSim

Table 2. ASCENS tools used for the case studies development

see the benefits (and challenges) of a fully scientific approach to construct and
deploy large practical systems, insuring their reliable and correct functioning.

5 Application Deployments

From the very beginning, the project theoretical development has been inter-
leaved with practical exercising, taking various examples from the main AS-
CENS application areas. Most of these practical results were reported in the
theoretical project deliverables. Nevertheless, three major applications served as
a pragmatic guideline during the project and they were specified, modeled and
developed step-wise during the project (in a separate work package). The task
structure of the case study work package is similar to the ASCENS development
life cycle and had a following major subtasks:

– Requirements analysis and specification
– Model synthesis
– Integration and simulation
– Implementation and evaluation/validation

In the first project stage (year) a thorough requirement analyses took place, first
in an informal way and then using a rich set of ASCENS tools for knowledge
expression, self-awareness and adaptive behavior. In the second project stage,
major system modelling took place synthetizing most of the modelling techniques
developed within project. The third stage has been characterized by numerous
integration effort, interfacing different tools and languages as well as undertaking
numerous simulations in order to pre-check the system behavior before doing

12



final implementations. In the last project stage, the three ASCENS case studies
were deployed, tested, monitored and evaluated.

This sections only gives a short reference to the case studies developments,
as each of the case study is fully described in the following chapters (1.5.2, 1.5.3
and 1.5.4) of this book. However, one further special example is described here:
a robot race exhibition, presented at the ICT conference in Vilnius in November
2013. The significance of the exhibition was not only to prove pragmatic AS-
CENS techniology by having real robots performing in real-life settings. It also
justified the ASCENS complete ensemble development life cycle as numerous
concrete theoretical tools were demonstrated on a concrete example.

5.1 ASCENS Case Studies

The ASCENS project took three major application domain as a major prgmati-
cal inspiration domain: swarm robotics, cloud comput9ng and e-mobility. Each of
the area is complex per se, up to date and a subject of many other contemporary
research and developments.

Swarrm Robotics The swarm robotics case study deals with a disaster re-
covery scenario. Numerous separate problems from the scenario were separately
specified, modelled and veriifed during the project work. A special attention has
been paid to local vs. global behaviors [23] and distributed algorithms which rep-
resent typical class of problems within swarm robotics theory. An engineering
approach to apply EDLC in designing a multi-robot system is described in [20]
and a a separate chapter (Chapter 1.5.2) of this book has been fully dedicated
to swarm robotics case study.

Science Cloud The science cloud case study deals with a vision of an auto-
nomic cloud, providing a platform-as-a-service computing infrastructure, which
is created and maintained by a free collection of ad hoc connected heteroge-
neous voluntary computers forming a peer-to-peer network. The science cloud
has been developed from scratch fully deploying ASCENS ensemble development
lifecycle [16, 19]. A special focus in science cloud case study is on self* features,
making the cloud fully aware of its functional and operational state, thus au-
tonomously providing resilience, data redundancy, and failover mechanisms. A
separate chapter (Chapter 1.5.3) of this book has been fully dedicated to science
cloud.

E-Mobility The e-mobility case study deals with a vision of a future trans-
portation that will include more and more e-vehicles as transportational means,
posing a whole range of problems that need to be solved in order to insure
the transition and better acceptance of the new generation of e-vehicels. The e-
mobility case study was engineered by strictly applying ASCENS methodology
[21, 6]. A special attention in the case study has been paid to finding optimal

13



energy routes [9], and overcoming the local vs. global goal optimization, using
constraint logic programming techniques [17]. A separate chapter (Chapter 1.5.4)
of this book has been fully dedicated to e-mobility.

Fig. 5. Robot race

5.2 Robot race

The challenges of controlling the robot behavior in performing certain task can
best be understood if seen from the robot perspective. The complexity does not
primarily come from the task itself, but rather from the interaction that goes
on between the robot sensory system, environment and self-directed robot per-
formance. To illustrate that, an exhibition has been organized at well attended
ICT conference (Vilnius, November 2013) where ASCENS autonomous robot
competed with a human-controlled robot3. The task given to the robots was to
find building blocks in a closed area, grab them (one by one), and carry them to
the place where a wall should be constructed. The competion arena4 from ICT
Conference is illustared on figure 5.

The ASCENS robot was fully autonomous and a ”competitor robot” was op-
erated by a joystick which could move the robot left/right; forward/backwards
and instruct it to grab/release the building blocks (the competitor robot had

3 See the ASCENS blog ”Beauty is in the eye of the beholder at: http://blog.ascens-
ist.eu/2013/11/beauty-is-in-the-eye-of-the-beholder/

4 A video clip of the exhibition can be seen at: http://www.aware-
project.eu/2013/ascens-ict-2013/

14



no knowladge on how to find, grab and carry objects and relied on the human
operator fully). Both robots belong to the marXbot robot generation [5], a mod-
ular and easily re-configurable robots equiped with numerous devices that allow
for sensing and acting in the deployed environment. The tasks allocated to the
robots seemed trivial to the audience, so that most of the competitors believed
that ASCENS autonomous robot does not stand a chance, against the robot con-
trolled by a human. That proved to be wrong. Most people lost, only a couple
of young, joystick-virtuous competitors won.

But for those who could outperform the ASCENS autonomous robot, a fair-
play rule has been introduecd: since the robots sensory system is less sophis-
ticated than ours, the vision of the human competitor has been reduced to
the visual system of the robot (a competitor was not supposed to look to the
compeeting arena with own eyes, but rather to the screen which mirror ”what
robot sees” (in the left-upper corner of the Figure 5 a screen shot of the robot
vision is illustrated). That gave the competitors equal chances. When both com-
petitors have exactly the same information about environment, ASCENS robot
performed much better. That shows how seemingly simple assignment (from hu-
man point of view) is actually complex for a fully autonomous robot. Taking
into account relatively primitive robot sensory system, the robot performance
has been quite good and reliable.

Fig. 6. Monitoring tool

Showing ASCENS results at well attended congress with several thousand
visitors provided a great audience for the ASCENS demo which attracted more
than a hundred competitors (people who really competed with the ASCENS
robot). The significance of the demonstration at the Vilnius exhibition has been
multifold:

1. the ASCENS pragmatic approach has been demonstrated in a vivid and
successful error free settings. It has been one of most attended stall at the

15



congress and the ASCENS robots has been running 3 days non-stop from
early morning to late evening

2. ASCENS theoretical work has also been demonstrated through several model
descriptions, simulation and verification tools. The Figure 6 contains three
posters from the conference illustrating the specification, modelling and ver-
ification phase of the robot race demo. It has been a unique situation to
discuss the high-level tools in front of the running example, who used those
tools.

3. ASCENS evaluation and monitoring approach has been illustrated by the
design architecture of the monitoring tool, as shown on Figure 7. The AVI
monitoring can show the internal awareness structures of the running exam-
ple, monitoring and analyzing properties used for ensemble creation.

Fig. 7. Monitoring tool

6 Conclusion

This chapter presents the ASCENS achievements as a continuous balancing be-
tween the theory and practice. At one side, a number of scientists put their
efforts together to make abstract and generic high-level methods and tools to
model, analyze, validate and develop autonomous systems. At another side, prag-
matic and business driven partners kept the ASCENS achievements applicable
and down to deployment terrain . This constant interaction between the theory
and practice have been beneficial for both sides: theoreticians got real problems
and numerous practical data descriptions that they traditionally do not have, so
that their work has been backed with real world problems. Industrial partners,
at another side, were in the position to directly influence the theoretical work
and tailor its soulution towards own pragmatic goals, which could be used to
improve products and achieve results which would not be possible to achieve
without such collaboration.

16



A wider significance and influence of the ASCENS outcomes is expected also
in other application domains. Namely, the ASCENS generic results are applicable
in any areas where autonomic control is needed. Further exploitation activities
like planned summer school and publication of project results at prestigious
scientific journals and conferences should re-enforce already well known ASCENS
methodology. Pragmatic exploitation of ASCENS results is guaranteed by the
project industrial partners and for a wider use, a tool repository (see the Chapter
1.4.3 of this book) and ASCENS user manual are made on-line and available to
any interested party. A close collaboration with other EU projects, especially
within collective adaptive initiative opens further perspective of continuing and
further development and deployment of ASCENS work.

References

1. Abeywickrama, D., Bicocchi, N., Zambonelli, F.: Sota: Towards a general model for
self-adaptive systems. In: Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), 2012 IEEE 21st International Workshop on. pp. 48–53
(June 2012)

2. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: SEFM. pp. 3–12. IEEE Computer Society (2006)

3. Bensalem, S., Bozga, M., Delahaye, B., Jégourel, C., Legay, A., Nouri, A.: Sta-
tistical Model Checking QoS Properties of Systems with SBIP. In: Margaria, T.,
Steffen, B. (eds.) ISoLA (1). LNCS, vol. 7609, pp. 327–341. Springer (2012)

4. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional verification for
component-based systems and application. In: ATVA (2008)

5. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G.,
Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot
opening new perspectives for the collective-robotic research. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 4187–4193. IEEE Press (2010)

6. Bures, T., Nicola, R.D., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N., Mon-
reale, G.V., Montanari, U., Pugliese, R., Serbedzija, N., Wirsing, M., Zambonelli,
F.: A life cycle for the development of autonomic systems: The e-mobility showcase.
2013 IEEE 7th International Conference on Self-Adaptation and Self-Organizing
Systems Workshops 0, 71–76 (2013)

7. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: SCEL: A Language for Auto-
nomic Computing. Tech. rep., IMT Lucca (January 2013)

8. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A Formal Approach to Auto-
nomic Systems Programming: The SCEL Language. TAAS 9(2), 7 (2014)

9. Hoch, N., Zemmer, K., Werther, B., Siegwarty, R.Y.: Electric Vehicle Travel Opti-
mization - Customer Satisfaction Despite Resource Constraints. In: Proc. of IEEE
IVS. IEEE (2012)

10. Hölzl, M.: The Poem Language (Version 2). Tech. Rep. 7, ASCENS (July 2013),
http://www.poem-lang.de/documentation/TR7.pdf

11. Hölzl, M.M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer (2011)

12. jRESP Java Run-time Environment for SCEL Programs (2012)

17



13. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:
Design of Ensemble-Based Component Systems by Invariant Refinement. In: Pro-
ceedings of the 16th International ACM Sigsoft symposium on Component-based
software engineering. pp. 91–100. CBSE ’13, ACM, New York, NY, USA (2013)

14. Keznikl, J., Bures, T., Plasil, F., Kit, M.: Towards Dependable Emergent En-
sembles of Components: The DEECo Component Model. In: WICSA/ECSA. pp.
249–252. IEEE (2012)

15. Klarl, A., Hennicker, R.: Design and Implementation of Dynamically Evolving
Ensembles with the HELENA Framework. In: Proceedings of the 23rd Australasian
Software Engineering Conference. pp. 15–24. IEEE (2014)

16. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl,
J. Bures, T.: The autonomic cloud: A vision of voluntary, peer-2-peer cloud com-
puting. In: Self-Adaptation and Self-Organizing Systems Workshops (SASOW),
2013 IEEE 7th International Conference on. pp. 89–94 (Sept 2013)

17. Monreale, G.V., Montanari, U., Hoch, N.: Soft Constraint Logic Programming for
Electric Vehicle Travel Optimization. CoRR abs/1212.2056 (2012)

18. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Caro, G.D., Ducatelle, F., Stirling, T.S., Gutiérrez,
Á., Gambardella, L.M., Dorigo, M.: ARGoS: A modular, multi-engine simulator
for heterogeneous swarm robotics. In: IROS. pp. 5027–5034. IEEE (2011)

19. Serbedzija, N., Mayer, P., Klarl, A.: Constructing Autonomous Systems: Major
Development Phases. International Journal on Advances in Intelligent Systems
6(4) (December 2013)

20. Serbedzija, N.: Constructing Autonomous Multi-Robot System. In: The Third
International Conference on Intelligent Systems and Applications. Sevilla, Spain
(June 2013)

21. Serbedzija, N., Bures, T., Keznikl, J.: Engineering Autonomous Systems. In: PCI13
Proceedings of the 17th Panhellenic Conference on Informatics. pp. 128–135. The-
salloniki, Greece (September 2013)

22. Vassev, E., Hinchey, M.: Autonomy Requirements Engineering. IEEE Computer
46(8), 82–84 (August 2013)

23. Yamins, D.: Towards a theory of local to global in distributed multi-agent systems
(i). In: Proceedings of the fourth international joint conference on autonomous
agents and multiagent systems (AAMAS’04). pp. 183–190. ACM Press, New York,
NY (2005)

24. Zimory Software: Zimory Cloud Suite. http://www.zimory.com/ (August 2014)

18


