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Zusammenfassung

Die abstandsfähige Detek�on von Gefahrstoffspuren war in den let-
zten Jahren Gegenstand intensiver Forschung und stellt dennoch nach
wie vor ein ambi�oniertes Ziel dar. Zur Lösung des Problems wurden
verschiedenste Methoden vorgeschlagen, unter denen derzeit die erfolg-
versprechendsten zweifellos die laserbasierten Techniken sind.
In dieser Arbeit wird ein augensicheres und abstandsfähiges Infrarot-
spektroskopiesystem für die berührungslose Detek�on von Gefahrstoffen
vorgestellt. Das vorgeschlagene Messprinzip basiert dabei auf wellen-
längenselek�ver Beleuchtung mi�els breitbandig abs�mmbarer Quan-
tenkaskadenlaser (QCL) im langwelligen Infrarotbereich zwischen 7.5 μm
und 10 μm. Dieser Spektralbereich ist Teil des molekularen Fingerabdruck-
bereichs für viele chemische Verbindungen, so auch für Explosivstoffe wie
PETN, RDX, TNT und AN.
In der bildgebenden Variante des hyperspektralen Messsystems wird das
diffus rückgestreute Licht mi�els einer hochempfindlichen Quecksilber-
Cadmium-Tellurid (MCT) Kamera eingesammelt. Durch synchrones Ab-
s�mmen der QCL Emissionswellenlänge wird ein Hyperspektralbild der
beleuchteten Szene erfasst, bei der jeder Pixelvektor dem Rückstreuspek-
trum eines bes�mmten Ortes entspricht. Dieser Pixelvektor wird als
lineare Superposi�on der beteiligten Materialspektren oder Endmember
angenommen, bei der die rela�ven Gewichtungen nicht bekannt sind. Die
Menge aller Endmember im Hyperspektralbild kann im Allgemeinen den
reinen Materialien in der Szene zugeordnet werden. Das Ziel der Materi-
aldetek�on in Hyperspektralbildern besteht darin, bekannte Substanzspek-
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Zusammenfassung

tren in den erfassten Hyperspektraldaten zu detek�eren und zu iden�-
fizieren. Viele bekannte Methoden zur Lösung dieses Problems basieren
auf dem Linearen Mixtur Modell (LMM), dass die lineare Superposi�on der
beitragenden Endmember voraussetzt.
In dieser Arbeit werden Details des Hyperspektralbildsensors disku�ert, die
sowohl Op�mierung der Beleuchtung als auch Erfassung der Messdaten be-
treffen. Mehrere Detek�onsalgorithmen werden auf Ihre Anwendbarkeit
unter den gegebenen Messbedingungen untersucht. Dies umfasst Detek-
�onsalgorithmen, die für die Detek�on vollständig bedeckter Pixel op�-
miert sind wie die Normalized Cross Correla�on (NCC), den Matched Fil-
ter Detektor (MF) und die Constrained Energy Minimiza�on (CEM). Darüber
hinaus werden die weit verbreiteten Subpixelfähigen Detektoren Adap�ve
Coherence / Cosine Es�mator (ACE) und Adap�ve Matched Subspace De-
tector (AMSD) betrachtet.
Der letztgenannte Detek�onsalgorithmus basiert auf der strukturierten
Variante des LMM, das mögliche Hintergrundspektren explizit anhand
der enthaltenen Endmember modelliert. Diese müssen in einem ge-
nerischen Messumfeld aus den erfassten Messdaten extrahiert werden.
In dieser Arbeit wird mit dem Adap�ve Background Genera�on Process
(ABGP) ein zweistufiger Algorithmus zur Extrak�on der Hintergrundspek-
tren vorgeschlagen, der an die spezifischen Randbedingungen des Messsys-
tems angepasst wurde.
Ein weiterer Parameter, der hierfür aus den gewonnen Messdaten ermit-
telt werden muss, ist die erwartete Modellordnung, die im Wesentlichen
von der Anzahl der spektral verschiedenen Materialien in der Szene do-
miniert wird und die Anzahl der zu extrahierenden Endmember festlegt.
In dieser Arbeit wird eine Methode zur Schätzung der Modellordnung
vorgestellt, die auf dem Prinzip der Minimum Descrip�on Length (MDL)
beruht. Dazu wurde die von Wax und Kailath vorgeschlagene MDL Methode
zur Schätzung der Anzahl unabhängiger Signalquellen in komplexwer�gen
Radarsignalen auf die üblicherweise reellwer�gen Signale in der Hyperspek-
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tralbildverarbeitung adap�ert. Obgleich die Methode im Kontext der Hy-
perspektralbildanalyse entwickelt wurde, lässt sie sich direkt auf jede Form
von Mul�-Band Signale übertragen, die sich als lineare Superposi�on sta�s-
�sch unabhängiger Signalquellen auffassen lassen.
Es wird gezeigt, dass die vorgeschlagene Methode, auch im Vergleich zu
konkurrierenden Algorithmen zur Schätzung der Modellordnung wie die
Noise Subspace Projec�on (NSP) oder Second Moment Linear Dimension
(SML), in Simula�onen sehr gute Ergebnisse auf Basis künstlich erzeugter
Hyperspektralbilder liefert. Diese Ergebnisse lassen sich jedoch nicht
auf Hyperspektralbilder übertragen, die mit der vorgeschlagenen Spek-
troskopie Methode gemessen wurden. Eine Analyse der Kovarianzmatrix-
Eigenwerte legt den Schluss nahe, dass sich dies auf Speckle Rauschen
zurückführen lässt. Speckle – ein mul�plika�ves, quasideterminis�sches
Rauschen – wird durch die Kohärenz der Beleuchtung erzeugt und im Hy-
perspektralbildsensor zwar mi�els eines Mul�-Look Verfahrens reduziert,
aber nicht vollständig eliminiert.
Die vorgeschlagene Methode zur Extrak�on der Hintergrundspektren
zeigt sich jedoch unempfindlich gegen eine überschätzte Modellordnung.
Basierend auf diesem konnte daher der AMSD Algorithmus erfolgreich zur
Detek�on von Spuren aller erwähnten Explosivstoffe eingesetzt werden.
Dies wird sowohl für die Detek�on in Hyperspektralbildern gezeigt, die über
kurze Distanzen von ca. 1.4 m gemessen wurden, als auch über lange Mess-
distanzen von bis zu 20 m.
Abschließend wird eine echtzei�ähige Variante der Laserrückstreuspek-
troskopie vorgestellt, die auf einem schnell abs�mmenden EC-QCL beruht.
Dabei wird die Emissionswellenlänge des Lasers mi�els eines Mikro-
Optoelektromechnischen Systems (MOEMS) innerhalb von 1 ms über den
vollständigen Abs�mmbereich von 7.5 μm bis 9 μm durchges�mmt. Dies
ermöglicht eine Aufnahmegeschwindigkeit von bis zu 1 kHz von Rück-
streuspektren mit einer Auflösung von 1 cm−1. Dazu wird das diffus rück-
gestreute Licht von einem MCT Einzelelementdetektor eingesammelt um
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– im Gegensatz zu Hyperspektralbildern – sequenziell Einzelspektren zu
generieren. Es konnte experimentell demonstriert werden, dass sich die
im Rahmen dieser Arbeit entwickelten Algorithmen zur Hyperspektralda-
tenanalyse für die Materialdetek�on in Echtzeit eignen.
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Abstract

Stand-off detec�on of hazardous substances has been subject to extensive
research in the past years and – though several approaches have been pro-
posed – remains to be an ambi�ous goal. Among the suggested methods,
laser basedmeasurement techniques have emerged as themost promising.
In this work we present a stand-off long-wave infrared (LWIR) spectroscopy
system for remote detec�on of hazardous substances. The principle is
based upon wavelength selec�ve illumina�on using External Cavity Quan-
tum Cascade Lasers (EC-QCLs), that are tunable in the LWIR wavelength
range from 7.5 μm to 10 μm. This spectral range is part of the molecular
fingerprint region for many chemical compounds, including explosive sub-
stances like PETN, RDX, TNT and AN.
In the imaging variant of the hyperspectral data acquisi�on system, the dif-
fusely backsca�ered light is collected by a high performance Mercury Cad-
miumTelluride (MCT) camera. Using synchronous tuning of the illumina�on
wavelength, a hyperspectral image is created, where each pixel vector com-
prises the backsca�ering spectrum of a specific loca�on in the scene. Every
pixel vector is regarded as to be a linear superposi�on of few contribu�ng
spectra (endmembers)with unknownmixtureweights. These endmembers
are usually the spectra of the spectrally dis�nct materials in the scene and
possibly one or several target substances of interest. This is mathema�cally
described by the Linear Mixture Model (LMM), on which many exis�ng hy-
perspectral target detec�on algorithms are based on.
In this work, we present details of the hyperspectral imaging sensor that
touch both op�miza�on of illumina�on as well as data acquisi�on and
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analysis. We analyze a variety of well known target detec�on algorithms
for the task of substance detec�on in the acquired hyperspectral image
data. The considered target detec�on algorithms include fast and intui�ve
full-pixel detec�on algorithms like the NCC, Matched Filter (MF) and CEM,
as well as well known and powerful sub-pixel detec�on algorithms like the
ACE and AMSD. The la�er u�lizes the structured LMM variant, that requires
explicit knowledge of the contribu�ng background materials in the scene.
As these are in general unknown the corresponding endmembers have to
be extracted from the available hyperspectral observa�on data using an
endmember extrac�on algorithm. In this work, we present an endmem-
ber extrac�on algorithm, tailored to the boundary condi�ons, induced by
the measurement technique.
An addi�onal parameter that is required for data analysis is the number of
spectrally dis�nct materials in the scene, that essen�ally comprises the re-
quiredmodel order. Wepresent amodel order es�ma�onmethodbased on
the Minimum Descrip�on Length (MDL) principle by adap�on of a method
proposed by Wax and Kailath [63] for es�ma�on of the number of signal
sources in complex radar observa�ons. Whereas the method is developed
in the context of hyperspectral image analysis, it can be readily applied to
signal source es�ma�on in any real-valued mul�-band observa�ons that
comprise a linear superposi�on of independent sources.
Whereas the proposedMDLmodel order es�ma�onmethod competeswell
or even outperforms comparable model order es�ma�on algorithms like
the NSP and SML on ar�ficial data that was explicitly generated using the
LMM, it significantly overes�mates the required model order when applied
to real-worldmeasurement data. Based on observa�ons of the correspond-
ing covariancematrix eigenvalue-distribu�ons, this behavior is a�ributed to
correlated noise, most likely due to remaining speckle. The la�er is caused
by the coherent nature of the illumina�on source and significantly reduced
– though not fully suppressed – using a mul�-look approach.
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The proposed background endmember extrac�on algorithm shows how-
ever, to be robust against model-overes�ma�on. Based on the es�mate
of the background spectra, the AMSD algorithm is successfully applied for
detec�on of all of the men�oned explosive substance residues on various
substrates. This is demonstrated, both for hyperspectral image measure-
ment results obtained by a short-range variant of the hyperspectral image
sensor over 1.4 m, as well as with an extended range setup, opera�onal up
to distances of ≈ 20 m.
Finally, we present an extension of the backsca�ering spectroscopy method
to a real-�me measurement device, based on a rapid wavelength scan-
ning EC-QCL. The la�er swipes the full spectral emission range of the QCL
chip within 1 ms which enables a spectral acquisi�on rate of 1 kHz. The
diffusely backsca�ered light is in this measurement setup collected by a
single-element MCT detector genera�ng single spectra, rather than full hy-
perspectral images. We present an experimental setup capable of fast data
acquisi�on and show, that the developed target detec�on algorithms are
capable of real-�me detec�on in the observed hyperspectral data.
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1 Introduc�on

Within the past years, incidents involving bombs based on homemade ex-
plosives have emerged to be an increasing menace to the public. Instruc-
�ons for producing highly effec�ve explosive substances like Ammonium
Nitrate / Fuel Oil (ANFO) or Tri-cyclic Acetone Peroxide (TATP) are easily ac-
cessible in the internet and can be prepared using common household ap-
pliances. In addi�on, many of the required ingredients are not regulated
and thus can be purchased in public stores.
This has made e. g. ANFO and TATP frequent choices for explosive de-
vices manufactured by terrorist organiza�ons like Al-Qaida and ISIS. Fur-
thermore, as no relevant acquisi�on network is required, extremists like
Anders Behring Breivik (Oslo 2011) have been able to commit devasta�ng
strikes in public sites using home made explosive material. Poli�cally or
religiously mo�vated a�acks might in some cases be preventable by ap-
propriate surveillance of suspicious groups or organiza�ons. However, in
the past years a subculture of bomb builders has developed that are com-
mi�ed to manufacturing explosive devices as a hobby without planning to
use them as weapons. Nevertheless, these illicit bomb-factories comprise
a significant danger to public safety and – as there is no imminent mo�ve –
are extremely hard to be iden�fied by security forces. This has raised pub-
lic demand for systems that are capable of remotely detec�ng residues of
dangerous substances.
Searching for and iden�fying an illicit bomb-factory is a difficult task for po-
lice and security forces. Intelligence data might o�en lead to surveillance
of a specific object like a flat or van equipped with the required appliances.

1



1 Introduc�on

It is then the next step to collect evidence that serves as reasonable ground
for the suspicion. Nevertheless, it might be important to collect the evi-
dence unobserved by the suspects. In this case a mobile, remote detec�on
measurement device capable of trace detec�on of explosives across some
ten meters would be of valuable assistance for security forces.
Airports and airplanes have repeatedly been subject to terrorist a�acks
within the last few years. While luggage and passengers are carefully
scanned for metal objects, exis�ng explosive substance detec�on tech-
niques are applied only at random, as they require �me-consuming swab-
bing. A measurement device that is capable of remotely detec�ng explosive
residues and can be included into exis�ng security rou�nes with a small
footprint could therefore strongly improve air travel safety.
Mobile security force units that secure an illicit bomb factory are o�en
forced to operate under unclear and poten�ally life-threatening condi�ons.
In general the hazardousness of chemical agents in the field can only be as-
sessed using measurement techniques that require physical collec�on of
the substance to be analyzed. Such units could highly benefit from a light-
weight, mobile and real-�me measurement device for non-contact chemi-
cal substance iden�fica�on.
For successful opera�on under real-world condi�ons all applica�ons men-
�oned require high true posi�ve and low false alarm rates. In addi�on, the
system should be able to operate unperceived and must not pose a threat
in uncontrolled environments itself (e. g. by opera�ng high power lasers).
Boundary condi�ons that are likely to be relevant include measurement
speed, mobility and system robustness.
In spite of extensive research effort within the last decade, remote trace de-
tec�on of hazardous substances remains to comprise an ambi�ous goal, to
which laser based methods proved to be among the most promising ap-
proaches. Van Neste et al. proposed a trace explosive detec�on system
based on photoacous�c spectroscopy using quantum cascade lasers [61].
Kendziora et al. follow an approach called photothermal infrared imaging
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spectroscopy that also employs QCLs for spectrally selec�ve illumina�on
[35]. Östmark et al. developed a stand-off imaging Raman spectroscopy
device for detec�on of explosive residues [48], whereas Go�ried et al. em-
ploy laser induced breakdown spectroscopy for the same task [23]. To this
day, none of these approaches were able to solve the task, matching all of
the given condi�ons.
In this work we present a stand-off hyperspectral imaging technique for
trace detec�on of explosives based on tunable infrared laser backsca�ering
spectroscopy that showed promising results. Tunable long-wave infrared
(LWIR) Quantum Cascade Lasers (QCLs) serve as wavelength selec�ve illumi-
na�on sources that cover the molecular fingerprint region between 7.5 μm
and 10 μm. A high performance infrared camera is used to collect the dif-
fusely backsca�ered light, giving rise to a hyperspectral image, where every
pixel vector contains the backsca�ering spectrum of a specific loca�on in
the scene. Hyperspectral target detec�on algorithms are then applied to
detect and iden�fy known backsca�ering spectra of harmful substances..
We present two variants of the remote spectroscopy system: a short range
hyperspectral image sensor for trace detec�on of substances at distances
of up to 5 m and a long-range image sensor that proved successful for de-
tec�on distances up to 20 m. Finally we present a mobile spectroscopy
device based upon the same infrared laser backsca�ering spectroscopy sys-
tem that enables non-contact, real-�me measurements using rapidly tun-
able quantum cascade lasers as illumina�on source.
While much of the research effort was mo�vated by security related appli-
ca�ons as men�oned above, the principle is by no means restricted to this
field. The method can be readily applied to stand-off surface spectroscopy
of any solid substance that shows spectral features in the considered wave-
length range. This opens the door to a vast field of applica�ons including
food processing, industrial process control in the pharmaceu�cal industry
or chemical surface analysis in materials processing.
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This thesis covers the design of the hyperspectral image sensor as well as
implementa�on of data acquisi�on so�ware and algorithms for image pro-
cessing, as combined research effort in these fields is required to achieve
sufficient target detec�on performance. Par�cular focus is put on model
driven hyperspectral target detec�on methods.
Two steps are common to many model driven target detec�on algorithms:
selec�on of a model order and es�ma�on of the probability distribu�on pa-
rameters for the test sta�s�cs. Whereas the la�er is well covered by a vari-
ety of target detec�on algorithms, model order es�ma�on has received less
thorough a�en�on by the hyperspectral image analysis community. Follow-
ing the work of Wax and Kailath [63], we present a parameter-free algorithm
towards model order selec�on, which is based on the well-known Minimum
Descrip�on Length (MDL) principle. We evaluate the proposed method for
applica�on in hyperspectral images that were acquired using the proposed
measurment method.
We present a detec�on performance comparison of several well known tar-
get detec�on methods on simulated data and analyze the impact of various
noise sources on the expected performance and give several trace detec-
�on results of real-world measurements. Finally, an extension towards a
real-�me capable spectroscopy device is presented.

1.1 Contribu�on

The main objec�ve of this disserta�on is op�miza�on of the proposed mea-
surement method and development of hyperspectral image analysis algo-
rithms for the task of remote trace substance detec�on. We aim for a hy-
perspectral image sensor that is capable of detec�on of a known set of
hazardous substance residues on an a priori unknown background mate-
rial with high probability of detec�on and low false-alarm rate. Thus, data
acquisi�on and analysis have to be adapted to observed noise sources and
characteris�cs that are specific to the proposed measurement technique.
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1.1 Contribu�on

The contribu�on of this disserta�on may be summarized as follows:

Image acquisi�on and data pre-processing

The proposed method for hyperspectral image acquisi�on requires careful
implementa�on of data-acquisi�on so�ware and pre-processing steps. The
former includes e.g. correct synchroniza�on of image acquisi�on and laser
emission wavelength tuning. During the pre-processing step, the observed
raw image data requires correc�on of e.g. atmospheric transmission ef-
fects and noise induced by thin-film interferences, which is caused by the
coherent nature of the illumina�on source.

Background subspace es�ma�on

The target detec�on algorithm that is predominantly employed in this work
is based on the structured variant of the Linear Mixture Model (LMM). I.e.
the image background is explicitly described by the pure material spectra
that contribute to the observed signal. This requires an endmember extrac-
�on algorithm that serves to generate the background subspace from the
available image data. With the Adap�ve Background Genera�on Process
(ABGP) we propose a two-step approach to endmember extrac�on that is
based upon the Adap�ve Target Genera�on Process (ATGP) algorithm.

Evalua�on of model order selec�on

As men�oned before, the data-analysis algorithms employed in this work
are based upon the LMM, which explicitly describes the background in
terms of the contribu�ng material spectra that span the background sub-
space. We present and evaluate the performance of a method that aims to
es�mate the required number of dimensions of this subspace. The method
is based on the MDL principle and is obtained by adap�on of a method pro-
posed for analysis of radar signals.
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Evalua�on of target detec�on framework

We present an analysis of measurement specific opera�on condi�ons (e.g.
beam shape, spectral resolu�on, noise level, etc.) on the expected target
detec�on performance, achieved by various data analysis algorithms. Fi-
nally, we present measurement results obtained on real-world samples con-
taining various explosives and precursors (AN, PETN, RDX and TNT)

Extension to real-�me sensing

We present an extension to real-�me sensing based on the measurement
principle. Real-�me capability is achieved using a single element detector
instead of a camera. Fast spectral scanning of the EC-QCL is achieved by
replacing the mechanically tuned gra�ng in the external cavity of the laser
resonator by a Micro Opto Electromechanical System (MOEMS) element. In
this setup a full spectrum is acquired within 1 ms, which renders the mea-
surement principle applicable in dynamic scenes.

1.2 Structure of this Work

We introduce the principle of tunable laser backsca�ering spectroscopy to-
gether with the external cavity tuned quantum cascade laser in chapter 2.
The mathema�cal methods and target detec�on algorithms are described
in chapter 3. In chapter 4 we analyze the problem of model order selec-
�on in hyperspectral images and present an approach based on minimum
descrip�on length. An overview over the exis�ng approaches towards ex-
plosive substance detec�on is given in chapter 5. The short- and long-range
hyperspectral imaging sensor setups are described in chapter 6. A detailed
analysis of performance and real-world measurement results are presented
in chapter 7. Results of real-�me sensing with fast backsca�ering spec-
troscopy are given in chapter 8. We close with a summary and an outlook
to further research in chapter 9.
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2 Fundamentals of MIR Laser
Spectroscopy

In this chapter, we follow Colthup et al. [13] and introduce the fundamentals
of infrared laser spectroscopy as are relevant within the scope of this work.
We give a brief introduc�on on External Cavity Quantum Cascade Lasers
(EC-QCLs) that comprise the system’s core laser source. Sec�on 2.4 presents
the concept of tunable laser backsca�ering spectroscopy for hyperspectral
image acquisi�on. We close with a comment on speckle as noise source,
caused by the coherent nature of illumina�on.

2.1 Infrared Fingerprint Spectroscopy

The mid-infrared (MIR) wavelength range from 2.5 μm to 25 μm is an espe-
cially interes�ng wavelength range for many spectroscopy applica�ons, as
most molecules show highly characteris�c spectral absorp�on behavior in
this range. It is therefore o�en referred to asmolecular fingerprint region of
the electromagne�c spectrum. Hence, several infrared spectroscopy meth-
ods have been developed that exploit the MIR range for various chemical
analysis applica�ons.
A radia�on source is called monochroma�c, if the frequency domain repre-
senta�on of the emi�ed light wave takes the form of a Dirac func�on δ (λp).
In a par�cle view of light, the radia�on source generates photons of wave-
length λp that carries the energy Ep = hc/λp. If this photon energy is ab-
sorbed by a molecule, its energy – i. e. rota�onal, vibra�onal and electronic
energy – is changed by the same amount ΔEm = Ep.
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Figure 2.1: The principle of a�enuated total reflec�on. The incident radia�on travels through a
crystal and is mul�ply reflected from the surface on which the sample is deposited.
The evanescent wave at the points of reflec�on interacts with the sample, leading
to a substance dependent a�enua�on of intensity.

A basic understanding of the absorp�on process can be supported by adopt-
ing a mechanical model of molecular structure, where the inter-nuclear
forces are represented by mass-less springs and the nuclei are represented
by point masses. In this model a molecule’s internal mo�onal degree of
freedom is limited to specific modes of vibra�on and rota�on. Incident
monochroma�c radia�on translates into oscillatory mechanical force of de-
fined frequency upon the nuclei. Depending on the number and masses of
nuclei involved, as well as the spring-coefficients of their connec�ng springs,
the resul�ng coupled oscilla�on is subject to resonances – i. e. certain ex-
cita�on frequencies are more efficient in changing the vibra�onal mode
level and hence the molecule’s energy. Adop�ng a par�cle view of light
again, photons of wavelengths that match the resonance frequencies are
more likely to be absorbed by the molecule than photons of other wave-
lengths, where the interac�on is weaker. Since the distribu�on of reso-
nance frequencies is dependent on the molecular structure, analysis of the
molecule’s absorp�on wavelengths is highly substance specific and allows
for chemical analysis.
In this work our main interest lies in spectroscopy and detec�on of explosive
substances in the solid phase. Among the variety of measurement tech-
niques available for solid phase substances, an important and well estab-
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2.1 Infrared Fingerprint Spectroscopy

lished method is internal reflec�on spectroscopy (IRS) or A�enuated Total
Reflectance (ATR) [13]. The principle is illustrated in figure 2.1. Monochro-
ma�c infrared light travels through a crystal with refrac�ve index n1, such
that the light wave is mul�ply reflected from the crystal surface on which
the liquid or solid sample is deposited. The wave persists beyond the inter-
face of the surface and thus reaches into the sample medium. The pene-
tra�on depth into the sample medium dp of this evanescent wave is deter-
mined by the wavelength λ , angle of incidence to the surface θ , and the
refrac�ve index of the surrounding medium n2 (usually air, hence n2 = 1.0):

dp =
λ

2πn1

√
sin2 θ − (n2/n1)2

(2.1)

The evanescent wave interacts with the sample material, leading to a�en-
ua�on of the total intensity. The a�enua�on of the incident power serves
as measurement signal at the rear facet of the crystal.
Figure 2.2 shows infrared ATR spectra of solid explosive substances in
the MIR wavelength range between 850 cm−1 and 4000 cm−1. All sub-
stances show par�cularly pronounced absorp�on bands in the range be-
tween 850 cm−1 and 1600 cm−1. Addi�onal features can be observed in the
spectral range around 3000 cm−1, showing however considerably smaller
cross sec�ons. In addi�on, we show the characteris�c atmospheric trans-
mission at a range of 8 m in figure 2.2. It can be observed that in several
wavelength ranges, severe absorp�on, predominantly caused by water in
the atmosphere is expected. This is of major importance, considering the
target applica�on of stand-off spectroscopy, especially over long distances.
Based on the atmospheric transmission spectrum in figure 2.2 in combina-
�on with the previous considera�ons on spectral feature distribu�on, we
conclude that the most interes�ng measurement range in the MIR is the
long-wave region between 850 cm−1 and 1330 cm−1.
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Figure 2.2: Typical reflectance spectra of explosive substances. The spectra were measured us-
ing ATR spectroscopy. All substances show most characteris�c spectral features in
the wavelength range between 800 cm−1 and 1500 cm−1. In addi�on, the absorp-
�on spectrum of air shows a high transmi�ance within the measurement region.

We note that infrared spectra of smaller molecules that are of interest in
many gas spectroscopy applica�ons, typically show narrow-band absorp-
�on lines, whereas the resonance modes of more complex molecules give
rise to the broader absorp�on features that are obtained in spectroscopy
of solids. This effect can be observed in figure 2.2: the atmospheric absorp-
�ons caused by water are sharp in comparison to the spectral features of
the explosives. Hence, the demands on spectroscopic laser sources for the
two applica�on are considerably different. While gas spectroscopy lasers
are usually gas-specific and require narrow-band emission for the reasons
stated, this demand is considerably relaxed for spectroscopy of solids. How-
ever, the la�er applica�on – especially if designed to be specific for a wide
range of substances – requires far broader spectral tuning capability.
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Figure 2.3: The measurement signal in diffuse reflectance spectroscopy of powders contains
contribu�ons of mul�ple internal absorp�on and sca�ering as well as specular re-
flec�ons at the surface.

2.1.1 Comparison of Reflectance and ATR Spectra

Whereas ATR is a widespread and well established spectroscopy technique
in many chemical analysis applica�ons, it is for obvious reasons however
not applicable to the stand-off geometry that is aimed for in this work. The
laser backsca�ering technique employed in this work is based on diffuse
reflectance spectroscopy using tunable infrared laser illumina�on. Among
the established spectroscopy techniques, this is best comparable to Fourier
Transform Infrared (FTIR) diffuse reflectance spectroscopy.
The measurement values obtained by ATR spectroscopy can be directly re-
lated to molecular absorp�on effects. This is no longer true for diffuse FTIR
reflectance spectra of powders, as the diffuse reflectance of monochro-
ma�c incident radia�on contains contribu�ons of mul�ple internal absorp-
�on and sca�ering as well as specular reflec�ons at the surface (figure 2.3),
to which no general quan�ta�ve solu�ons exists [59].
Several phenomenological theories have been developed that express the
reflectance in terms of absorp�on and sca�ering coefficients. The Kubelka-
Munk theory [59] is frequently employed for diffuse FTIR reflectance spec-
troscopy. Assuming the sample is opaque – i. e. absorp�on of the sample
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2 Fundamentals of MIR Laser Spectroscopy

is large enough to prevent a second sca�ering contribu�on at the substrate
at all considered wavelengths – the Kubelka-Munk theory states that

K
S
=

(1−R∞)
2

R∞
, (2.2)

where K denotes the absorp�on coefficient, S the sca�ering coefficient and
R∞ the (absolute) reflectance (the subscript ∞ indicates opaqueness of the
sample). In general, both K and S can be wavelength dependent and hence,
the reflectance spectrum matches the absorp�on spectrum, only if the scat-
tering coefficient is constant.
Figure 2.4 illustrates the difference between the observed spectra in the
wavelength range of interest. The ammonium nitrate ATR and diffuse re-
flectance spectra are well comparable, indica�ng that sca�ering is fairly
constant in this case. In contrast, the ATR reflectance peaks are inverted
in the diffuse reflectance spectrum for the case of TNT. The PETN and RDX
diffuse reflectance spectra show mixtures of common and inverted peaks
as well as deriva�on like features that can be a�ributed to predominantly
specular surface reflec�ons [65]. A thorough theore�cal analysis of the
physics causing such effects can be found in [65].
At this point, we adopt a phenomenological posi�on and argue that the
measurement values from diffuse reflectance spectroscopy might not be
caused by molecular absorbance effects alone; however, the absorbance
coefficient is involved causing the resul�ng spectra to be qualita�vely at
least as discrimina�ve as ATR spectra. Other effects might add to the re-
sul�ng signal but can be neglected, as long as they cause no unwanted de-
pendencies of e. g. illumina�on or observa�on angle. We will employ em-
pirical measurement results to support this assump�on. We note however
that this approach comes at the loss of quan�ta�ve analysis capability as
well as a meaningful measurement unit and will use the term backsca�er-
ing intensity rather than reflectance to support this no�on.
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Figure 2.4: Comparison of spectra, obtained by ATR and FTIR diffuse reflectance spectroscopy.
While some spectral features are observed by both measurement methods, others
are inverted or show a deriva�on like appearance.

2.2 External Cavity Quantum Cascade Lasers for
Infrared Spectroscopy Applica�ons

The core element of the spectroscopy devices presented within this work is
the Quantum Cascade Laser (QCL) [8]. The first QCL having been experimen-
tally demonstrated in 1994 by Faist, Capasso, Sivco, Sirtori, Hutchinson and
Cho, QCLs have since emerged as versa�le tunable lasers for a wide range of
mid-infrared spectroscopy applica�ons. Whereas QCLs emi�ng in the THz
regime [1, 62] as well as in the mid-infrared between 3.3 μm and 12 μm
have been reported, main interest of this work lies in the spectral region
between 7.5 μm and 11 μm. QCLs in this wavelength range are InGaAs/In-
AlAs semiconductor devices grown on InP substrates using molecular beam
epitaxy. The emission wavelength range can be tailored to the applica�on
by band-structure and quantum mechanical wavefunc�on engineering.
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2 Fundamentals of MIR Laser Spectroscopy

Figure 2.5: Energy diagram that illustrates the principle of a quantum cascade laser (from [8])

2.2.1 The Basic QCL Principle

In conven�onal bipolar diode lasers, photons are generated by radia�ve re-
combina�on of electrons and holes. Hence, the emission wavelength is di-
rectly dependent upon the energy gap between valence band and conduc-
�on band of the material system.
In contrast, QCLs generate photons by electrons that undergo transi�ons
between quan�zed energy levels within the conduc�on band. Quantum
wells are ar�ficially created in the material system by band structure en-
gineering and define the electrons’ allowed quan�zed energy levels – and
consequently the emission wavelength – independent of the material sys-
tem’s intrinsic energy gap.
Electrons enter the ac�ve region composed of several quantum wells via an
electron doped injec�on region. Assuming the electron’s ini�al energy level
is En, relaxa�on into the next lower energy level will be En−1 and a photon
of wavelength h/(En −En−1) will be emi�ed, with h deno�ng Planck’s con-
stant. As the new energy state is s�ll within the conduc�on band, the elec-
tron can be employed for a second radia�ve recombina�on, by feeding it
into a subsequent ac�ve region. Typical QCLs contain 20 to 35 such stages.
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Figure 2.6: Typical QCL chips that were designed, grown and processed at Fraunhofer IAF. The
chips are soldered on gold plated heat sinks using Indium-solder for op�mized heat
dissipa�on.

Figure 2.5 (le�) shows the conduc�on band profile and quan�zed energy
states of a QCL designed to emit at λ = 7.5 μm, illustra�ng the principle.
The radia�ve transi�ons takes place between energy levels three and two.
To enable lasing the corresponding popula�on inversion �me has to be sub-
stan�ally longer than the life�me of level two. To achieve this, the lowest
energy level is placed just below the lower laser level with a longitudinal
op�cal phonon energy spacing, causing electrons in the la�er state to be
rapidly sca�ered in a non-radia�ve transi�on.
Using band-structure and wave-func�on engineering QCLs can be designed
to offer broad spectral tuning capability. This can be achieved, by split-
�ng the lower laser energy level into several closely spaced sub-levels,
hence spreading possible energy transi�ons in the quantum well. This ap-
proach is called bound-to-con�nuumdesign [14]. In contrast, heterocascad-
ing QCLs achieve broadband tuning capability by combina�on of different
wavelength centered ac�ve regions within a single chip [44].
Figure 2.6 shows typical QCL chips that were designed, epitaxially grown
and processed at Fraunhofer IAF. The laser chips are Indium-soldered on
gold coated heat sinks.

15



2 Fundamentals of MIR Laser Spectroscopy

2.2.2 External Cavity QCL Tuning

QCL chips can be operated as Fabry-Pérot chips by coa�ng the rear chip
facet with a high reflec�vity coa�ng and the front facet with a par�al an�-
reflec�ve coa�ng. In this configura�on the chip facets define a laser res-
onator that allows lasing at several longitudinal modes. Hence, Fabry-Pérot
QCL chips in general show a broad emission spectrum. However, for QCL
opera�on in spectroscopy applica�ons it is eminent to gain control over the
emission wavelength.
A common way of achieving narrow-band lasing at a specific wavelength is
the concept of distributed feedback (DFB) lasers, where a periodic gra�ng
structure is processed in an addi�onal material layer on the ac�ve region
of the laser chip. The periodic structure acts as a diffrac�on gra�ng and
the gra�ng period defines the resul�ng emission wavelength. Wavelength
tuning of DFB QCLs can be achieved to some extent by manipula�ng the
chip temperature, which alters the refrac�ve index and consequently the
effec�ve gra�ng period. Typical tuning ranges from 2 cm−1 to 3 cm−1 are
achievable, if hea�ng by injec�on current is applied. This can be extended
to as much as 10 cm−1 to 20 cm−1, if slower external temperature control
methods are employed [64]. Thermal tuning approaches are frequently
employed in gas spectroscopy applica�ons (e. g. [6]). However, due to the
spectral width of the characteris�c absorp�on features, the tuning capa-
bility achievable using such thermal effects – while acceptable in many gas
sensing applica�ons – is insufficient for spectroscopy of solids.
Lee et al. developed a DFB QCL array that covers the wavelength range
between 8.0 μm and 9.8 μm [39]. The array consists of 25 bound-to-
con�nuum DFB-QCL chips with varying gra�ng periods, such that the chips’
emission wavelengths are 9.5 cm−1 apart. This gap could be poten�ally
filled using the aforemen�oned thermal tuning approach. A comprehen-
sive overview over the impressive advances achieved in the field of DFB-QCL
arrays is given by Rauter and Capasso in [50].
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Figure 2.7: The principle of an external cavity tuned QCL using a blazed diffrac�on gra�ng in
Li�row configura�on. The emission wavelength is selected by choice of the gra�ng
angle α that determines the wavelength which is fed back into the laser chip.

However, whereas the concept of thermal tuned DFB-QCL arrays poten�ally
allows narrow-band tuning over a wide spectral range, it comes at the cost
of extensive technological expense.
As an alterna�ve, an external cavity resonator can be used to achieve broad-
band wavelength tuning of QCLs that leads to the EC-QCL. Figure 2.7 illus-
trates the principle of an EC-QCL in a Li�row configura�on. The rear laser
facet is usually coated with an an�-reflec�on coa�ng to make it transparent
for incident light at the resonator side of the chip and a par�ally reflec�ng
high reflec�vity coa�ng is applied to the chip’s front facet. The light emit-
ted from the rear laser facet is collimated and a blazed reflec�ve diffrac�on
gra�ng serves as spectrally selec�ve feed back element. In Li�row configu-
ra�on the first diffrac�on order wavelength is reflected back into the laser
chip, amplifying the corresponding lasing mode and giving rise to a standing
wave between gra�ng and front laser facet. The output wavelength is de-
termined predominantly by the angle of the diffrac�on gra�ng to the laser
chip axes, and thus follows the gra�ng equa�on:

λout = 2g sin(α) (2.3)

where α denotes the gra�ng angle and g denotes the gra�ng constant.
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Figure 2.8: Typical tuning behavior of an external cavity tuned QCL. The emission wavelength of
the room-temperature operated QCL chip is tunable from 1050 cm−1 to 1400 cm−1

using 100 ns pulses and a repe��on rate of 10 kHz.

We note that equa�on 2.3 comprises an approxima�on that suffices for
the target applica�on, but ignores several physical effects that affect the
emission wavelength and bandwidth [64]. The illuminated number of grat-
ing lines is finite, causing a blurring of the wavelength selec�on func�on.
I. e. the wavelength selec�on func�on is not infinitely sharp but Gaussian
shaped with a typical 2 σ width in the range of 2 cm−1 depending on the
number of illuminated gra�ng periods. This poten�ally causes several adja-
cent wavelengths to be amplified for a specific gra�ng angle. Addi�onally,
in the fixed length external cavity setup employed in this work, the stand-
ing laser wave is subject to the resonator’s geometrical confinement that
allows only specific modes to run – the external modes. Finally, the res-
onator facet’s an�-reflec�on coa�ng is usually not perfect, and thus gives
rise to internal laser modes that are subject to the confinement defined by
the geometry of the laser chip itself. If – as is the case in this work – the QCL
is operated in pulsed mode, the chip temperature and hence the material’s
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refrac�ve index shi�s during the pulse. Depending on the dimension of
the laser chip and the emission wavelength, several adjacent wavelengths
may be excited consecu�vely. Typical QCL chips with an op�cal length of
1 cm show an internal mode spacing of ≈ 0.5 cm−1 and two to three inter-
nal modes are excited within a single pulse. These opera�on condi�ons
limit the effec�ve average emission bandwidth to approximately 1 cm−1.
Figure 2.8 shows lasing spectra of a typical external cavity QCL operated
in Li�row configura�on measured by FTIR spectroscopy [17]. By rota�on
of the gra�ng, the emission wavelength of the considered QCL is tunable
from 1050 cm−1 to 1400 cm−1 at room-temperature using 100 ns pulses and
a repe��on rate of 10 kHz.

2.3 Infrared Laser Backsca�ering Spectroscopy

The basic measurement principle of the remote sensing device presented
within this work is tunable infrared laser based backsca�ering spec-
troscopy: the sample is illuminated by a wavelength tunable EC-QCL and
the diffusely backsca�ered light is observed by a detector. The backscat-
tering spectrum is obtained by measuring the backsca�ering intensity for
several illumina�on wavelengths.
As noted in sec�on 2.1.1, the diffuse reflectance of a non-isotropic, opaque
sample, can be phenomenologically described by the Kubelka-Munk the-
ory; i. e. the observed backsca�ering signal is considered a mixture of
specular and mul�ple internal sca�ering, absorp�on and specular surface
reflectance [59]. However, as we do not require the absolute absorp-
�on coefficients as obtained by ATR spectroscopy, we dismiss the associ-
ated addi�onal complexity induced upon measurement condi�ons and data
analysis. For the task of target detec�on it suffices to adopt the simpler
model of Lamber�an sca�ering [32]. This amounts to collec�ng the various
signal contribu�ons in the Kubelka-Munk theory (mul�ple internal sca�er-
ing, absorp�on and specular surface reflec�on) into a single wavelength-
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dependent coefficient that we showed to be substance-specific. Following
Lambert’s cosine law, the reflectance of an ideal Lamber�an surface is inde-
pendent of the observa�on angle. The measured backsca�ering intensity
is predominantly a func�on of angle of incident illumina�on φ and the illu-
mina�on wavelength λ . Let us assume for now, the illumina�on source is
capable of infinitely narrow emission bandwidth and it’s emission intensity
at λ be I0[λ ]. Ignoring losses due to atmospheric absorp�on the observed
intensity is then expected to be propor�onal to

I[λ ]∼ I0[λ ] ·aM[λ ] · cos(φ). (2.4)

The coefficients aM[λ ] denote wavelength dependent absorp�on effects re-
lated to the structure of molecules that comprise the illuminated material
and are thus the magnitude of interest. The square brackets in equa�on
2.4 indicate that the wavelength λ is considered a discrete quan�ty. During
a measurement – i. e. varia�on of λ – the parameter φ is considered con-
stant. The illumina�on intensity I0(λ ) is laser dependent and its impact on
I[λ ] can be eliminated by a reference measurement of I0[λ ]. Similarly we
account for atmospheric transmission varia�ons τAtmosphere[λ ] and obtain
the measurement signal

aM[λ ]∼ I[λ ]
I0[λ ] · τAtmosphere[λ ]

(2.5)

that yields the backsca�ering spectrum

�a = [aM[λ1], . . . , aM[λp] ]
� . (2.6)

Note that the measured backsca�ering intensi�es aM[λ ] are in general sub-
ject to an unknown (wavelength independent) scaling factor.
This is for the case of an illumina�on source with infinitely narrow emission
bandwidth. However, as stated before, pulsed EC-QCLs in Li�row configura-
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�on are subject to various physical effects that cause emission bandwidth
blurring as well as spectral mode-hopping. The expected spectral resolu-
�on of typical EC-QCLs in pulsed mode is thus expected to be ≈ 1 cm−1.
This determines 1 cm−1 as the lower limit of achievable spectral resolu-
�on of a spectrometer based on such a laser. In addi�on, as the measured
spectra can be considered to comprise convolu�ons of the true backsca�er-
ing spectra with the impulse response of the laser emission spectrum, the
mul�-mode emission of the EC-QCL may be expected to cause difficul�es,
if the bandwidth of the spectral features is in the order of or even smaller
than the laser emission bandwidth. Experimental data suggests however
that due to the broad spectral features this effect can be neglected in spec-
troscopy of solids. This is supported by comparison of spectra obtained by
laser backsca�ering spectroscopy and FTIR reflectance spectroscopy given
in sec�on 6.6. We hence consider the measurement vector�a in equa�on
(2.6) an adequate approxima�on to the backsca�ering spectrum for the tar-
get applica�on.

2.4 Ac�ve Imaging Spectroscopy

The hyperspectral image sensor presented within this work is based upon
the principle of backsca�ering spectroscopy, introduced in the previous sec-
�on 2.3. A tunable long-wave infrared (LWIR) EC-QCL laser illuminates the
surface to be analyzed and – instead of a single element detector – an imag-
ing sensor is used to capture the diffusely backsca�ered light (figure 2.9).
Let the laser be tunable to the target wavelengths of interest denoted
{λ1, . . . ,λp}. To generate a hyperspectral image, the illumina�on wave-
length is set to λ1 and a spectrally broad image sensor collects the diffusely
reflected light. We call this image Iac�ve[λ1].
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Figure 2.9: The general principle of backsca�ering spectroscopy using ac�ve, wavelength-
selec�ve illumina�on. A tunable laser is used to illuminate the scene, while an
image sensor collects the diffusely backsca�ered light.

In a next step, the laser is switched off, and the thermal background image
Ithermal[λ1] is recorded. The difference image

ΔI[λ1] = Iac�ve[λ1]− Ithermal[λ1]

is calculated and forms the image layer corresponding to illumina�on band
λ1 of the resul�ng hyperspectral image. Repea�ng this process for all re-
maining target wavelengths λ2 to λp generates the difference image stack

X = {ΔI[λ1], . . . ,ΔI[λp]}. (2.7)

If the image sensor has M pixel rows and N pixel columns the matrix X
has the dimension R

M×N×p. We call X a hyperspectral image. The M ·N

vectors�xi comprising the matrix X are the backsca�ering spectra of the
corresponding loca�ons of the illuminated scene.
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Figure 2.10: Example of speckle effect caused by coherent illumina�on source (from [22]). Le�:
Speckle-free image taken under incoherent light condi�ons. Center: the iden�cal
scene shows strong speckle under coherent illumina�on. Right: Magnifica�on of
a por�on of the center image.

2.5 Laser Speckle and Beam Shaping

The coherent nature of the illumina�on source in the measurement geom-
etry gives rise to a semi-sta�s�cal effect called speckle that is caused by the
roughness of the illuminated surface. The sta�s�cal surface roughness in-
duces a phase modula�on on the wave-front of the laser wave, causing de-
terminis�c (i. e. reproducible) interference pa�erns at the detector – hence
the term semi-sta�s�cal. Figure 2.10 shows the difference between imaging
under incoherent (i. e. speckle-free) and coherent illumina�on condi�ons.
As speckle is predominantly an effect of coherence, rather than wavelength,
it has been subject to extensive research in various fields throughout the
electromagne�c spectrum and several solu�ons towards speckle suppres-
sion have been proposed. The majority of such are based on the principle
of averaging several different speckle pa�erns. Figure 2.11 illustrates an
example of this approach using mul�ple illumina�on sources. Illumina�on
with a single coherent illumina�on source generates a specific speckle pat-
tern on the sensor. Adding addi�onal spa�ally displaced coherent illumina-
�on sources will add corresponding speckle pa�erns and hence reduce the
speckle noise effect, if the illumina�on sources are mutually incoherent.
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Figure 2.11: Le�: illumina�on with a single coherent illumina�on source causes a specific
speckle pa�ern on the detector. Right: speckle is reduced by a mul�-source solu-
�on, if the coherent illumina�on sources are independent (source [38]).

We note that the la�er condi�on is crucial for speckle reduc�on. If the
sources are dependent, i. e. the incident laser waves have fixed phase re-
la�ons, the addi�onal illumina�on sources will alter the resul�ng speckle
pa�ern while the speckle contrast is le� unchanged.
The speckle noise reduc�on of a mul�-pa�ern approach can be quan�fied
using the sta�s�cs of speckle that were thoroughly inves�gated by Good-
man. Following [22] speckle noise follows an exponen�al distribu�on and
its effect can be measured in terms of the speckle contrast. Let I denote
the irradiance caused by speckle. The probability distribu�on p(I) is then
given by

p(I) =
1
μI

· e− I
μI (2.8)

where μI denotes the mean irradiance. Le�ng σI denote the variance, the
speckle contrast is given by

C =
σI

μI
. (2.9)

Goodman concluded that averaging over M uncorrelated speckle pa�erns
reduces the speckle contrast by a factor of

√
M

CM =
C√
M
. (2.10)
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Figure 2.12: Laurenzis et al. suggested an approach to speckle reduc�on in ac�ve range-gated
images based on a waveguide (from [38]).

Laurenzis et al. suggested an approach to speckle reduc�on in the short-
wave infrared spectral range, based upon the aforemen�oned mul�ple
source solu�on in [38]. A pulsed Nd:YAG pumped KTP Op�cal Parametric
Oscillator (pulse length 9 ns) emi�ng at λ = 1.57 μm serves as radia�on
source and its output beam is focused on the facet of a rectangular waveg-
uide. Traveling through the waveguide the light wave is subject to mul�-
ple internal reflec�ons, each of which giving rise to a virtual illumina�on
source, spa�ally displaced from the loca�on of the true illumina�on source.
A projec�on lens is used to project the intensity distribu�on at the exit facet
onto the scene (figure 2.12). Given the specific waveguide and geometry,
a speckle contrast reduc�on of

√
M > 4.5 is reported [38]. The significant

reduc�on of laser speckle indicates that the virtual sources are incoherent
among each other, which in consequence implies that the coherence length
of the illumina�on source is shorter than the distance of the virtual sources.
This no�on is supported by the short pulse length.
Experiments showed that this approach is not directly transferable to
speckle reduc�on in the mid-infrared range using QCLs as illumina�on
source. This is a�ributed to the fact that the coherence length is signifi-
cantly longer than the distance between the virtual sources. However, a
modifica�on of the approach of Laurenzis et al. has been employed, that
enables speckle reduc�on to a level allowing applica�on of most of the data
analysis algorithms considered in this work.
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3 Hyperspectral Image Processing

In this sec�on we give a defini�on of a hyperspectral image and introduce
the fundamental model of the hyperspectral image analysis algorithms that
are presented in the following. Though there are other approaches for hy-
perspectral target detec�on based on e. g. machine learning, in this work
the focus will be upon model based approaches.
Throughout this work scalars will be denoted by italic le�ers, vectors will
be indicated by an arrow, and matrices by upper-case le�ers. Excep�ons to
this general rule will be indicated.

3.1 Defini�ons

Within the scope of this work a hyperspectral image is defined as a mul�-
channel image comprising p-dimensional real (or in rare cases complex) val-
ued vectors�x ∈R

p that are arranged into a three-dimensional image cuboid
X having M columns and L rows:

X = {�xi, j |�x ∈ R
p, i = 1 . . .L, j = 1 . . .M} (3.1)

In many cases, we will drop the no�on of a three dimensional image stack
in favor of a two dimensional hyperspectral observa�on denoted as

X = {�xi |�x ∈ R
p, i = 1 . . .N},with N = M ·L. (3.2)

Any given hyperspectral image can be converted to match either defini�on
by a simple rearrangement of the observa�on vectors�xi.
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Figure 3.1: The linear mixture model assumes that a pixel contains either of (from le� to right):
homogeneous or heterogeneous background, target material in homogeneous or
heterogeneous background.

The term hyperspectral image can thus be used interchangeably referring to
either one of the defini�ons that is more suitable within the given context.
Physically meaningful spectra are posi�ve valued and hence it seems a nat-
ural choice to s�pulate�x ∈ R

p
≥0. Due to the measurement principle em-

ployed in this work that is based on difference images (sec�on 2.4), nega�ve
values frequently occur in low signal regions of the hyperspectral image. It
is thus in this case reasonable to adopt the more general model formula�on
given in equa�on 3.2.

3.2 The Linear Mixture Model

The fundamental model on which most model based approaches to hyper-
spectral image analysis are based upon, is the Linear Mixture Model (LMM).
The principle is outlined in figure 3.1: the signal measured by a single cam-
era pixel can either be homogeneous or heterogeneous background mate-
rial, or target material embedded into a homogeneous or heterogeneous
background. For an arbitrary pixel vector�xi we thus obtain the mathemat-
ical defini�on:

�xi = S ·�αi +�ni, S ∈ R
p×q,�αi ∈ R

q,�ni ∈ R
p. (3.3)

The matrix S = [�s1 · · ·�sq] is o�en referred to as material or endmember ma-
trix as it contains the set of spectra of the pure materials in the scene from
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which any other spectrum in the image can be generated by linear mixing.
The elements of the weigh�ng vector �αi = [(�αi)1 · · ·(�αi)q]

� are commonly
known as abundances that comprise the mixture weights for the observa-
�on�xi and several target detec�on algorithms aim to exploit the physically
mo�vated boundary condi�on

(�αi) j ≥ 0, ∀ j = 1 . . .q. (3.4)

This condi�on is referred to as non-nega�vity constraint on the model abun-
dances. A second common boundary condi�on o�en applicable to the
weigh�ng elements is the sum-to-one constraint, asser�ng that

q

∑
j=1

(�αi) j = 1. (3.5)

Whereas equa�on 3.5 implies the assump�on that the spectra forming the
spectral matrix are iden�cally scaled to the data in the observa�on matrix X
several target detec�on algorithms like the Fully Constrained Least Squares
Detector (FLCS) and the Non-nega�vity Constrained Least Squares Detector
(NCLS) have been proposed on the basis of such geometrical considera�ons
[29]. The LMM is completed by the addi�ve noise term�ni that accounts
both for possible model errors, as well as for any noise sources induced by
the measurement device, used to acquire the observa�on data.

3.3 Target Detec�on Algorithms

Target detec�on algorithms aim to detect the pixel vectors in a hyperspec-
tral image that contain one or many target spectra. We call the set of target
spectra target library and denote it as matrix T ∈ R

p×t containing the tar-
get spectra as columns, with t deno�ng the number of targets in the library.
Three broader families of approaches can be iden�fied within target detec-
�on algorithms.
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Full pixel target detec�on algorithms

The family of full pixel target detectors can be dis�nguished by the prop-
erty of sub-pixel target detec�on capability. Sub-pixel detec�on capability
is given, if a target detec�on algorithm is able to detect target spectra that
are mixed into the pixel vector under test given a specific mixture model.
Full-pixel target detectors do not require specifica�on of an underlying data
model and are thus expected to yield best detec�on performance for de-
tec�on of pure target material. A well known member of this family is the
Normalized Cross Correla�on (NCC) algorithm (sec�on 3.3.2).
Sub-pixel target detectors are a refinement upon this approach as they aim
to detect the target material in pixel vectors that are only par�ally covered
by the target spectrum and contain spectra of the background material oth-
erwise, thus requiring a mixing model. Most approaches choose the LMM
given in sec�on 3.2. Among the sub-pixel target detec�on algorithms two
fundamentally different model based approaches can be iden�fied.

Structured target detec�on algorithms

Structured target detec�on algorithms require knowledge of the back-
ground spectra in the hyperspectral image to be analyzed. These back-
ground spectra are typically collected as columns forming the background
matrix B ∈ R

p×b. The substance matrix S ∈ R
p×q in equa�on 3.3 is thus

separated into the target matrix T and the background matrix B, which
yields

�x = T ·�αT +B ·�αB +�n. (3.6)

Equa�on 3.6 will o�en be referred to as full model. The es�mated elements
of the target abundance vector �αT and the background abundance vector
�αB are then used to derive a binary classifica�on result for each pixel vec-
tor and target spectrum. A famous member of this algorithm family is the
Adap�ve Matched Subspace Detector (AMSD) described in sec�on 3.3.6.
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Unstructured target detec�on algorithms

In contrast to structured target detectors, unstructured target detec�on al-
gorithms refrain from explicitly characterizing the background subspace.
Instead, the background is modeled as random noise clu�er in which the
target spectra are embedded. In mathema�cal terms, the linear mixture
model reads:

�x = T ·�αT +�n. (3.7)

The Adap�ve Coherence / Cosine Es�mator (ACE) described in sec�on 3.3.7
is a well known target detec�on algorithm from this family.

3.3.1 Formaliza�on

The considered target detec�on algorithms can be denoted and thought
of as func�ons TD that – given a target spectrum1�t ∈ R

p – map the pixel
vectors�xi onto a scalar:

TD : (Rp;�t)→ R (3.8)

Hence, applying a specific target detec�on algorithm upon the elements
of a hyperspectral observa�on {�xi}N

i=1 will produce a set of scalars
{TD(�xi;�t)}N

i=1. The values of TD(�xi;�t) usually relate to the probability of
the pixel vector�xi containing the target spectrum�t, with large values in-
dica�ng a high contamina�on probability. However, for the task of target
detec�on, it is desirable to establish a binary decision for each pixel vector,
whether it contains a specific target or not. This can be achieved by choice
of a threshold value τ ∈R that is applied to the detec�on func�on output.

1 Some of the algorithms are defined to operate on target matrices T rather than target vec-
tors, containing e. g. known spectral variants of the same target material as columns. In this
case the detec�on func�ons take the form TD : (Rp;T ∈ R

p×t)→ R.
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This leads to the target classifica�on func�on ΔD(�x;�t,τ):

ΔD(�x;�t,τ) =

⎧⎨
⎩0, TD(�x;�t)<= τ (background)

1, TD(�x;�t)> τ (target present).
(3.9)

The choice of τ determines a detec�on algorithm’s True Posi�ve Rate (TPR)
and False Alarm Rate (FAR). Moreover, TPR and FAR will in general depend
upon the noise variance and the background interference that might not
be constant at different loca�ons in the image – a highly undesirable ef-
fect in most prac�cal applica�ons. However, there are some algorithms for
which this is not the case. These algorithms are said to have Constant False
Alarm Rate (CFAR) property, as the FAR is independent of noise variance
and background interference.

3.3.2 The Normalized Cross Correla�on Detector

The Normalized Cross Correla�on (NCC) target detector can be considered
the most intui�ve and straight-forward approach towards target detec�on.
As it does not require a specific data model it belongs to the family of full-
pixel target detec�on algorithms.
The detec�on func�on is given by the defini�on of normalized cross-
correla�on and reads:

TNCC(�x;�t) =
1

p−1
(�x −μ�x)� · (�t −μ�t)

γ�x · γ�t
, (3.10)

where p denotes the number of bands, γ�x and γ�t denote the standard de-
via�ons of the pixel vectors under test and the target spectrum and their
means are denoted μ�x and μ�t . The normaliza�on ra�o N − 1 refers to the
sample size of the hyperspectral observa�on {�xi}N

i=1.
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3.3.3 The Matched Filter Detector

The Matched Filter (MF) for hyperspectral target detec�on given e. g. in
[41] is a widely used algorithm from the family of full-pixel detectors. As-
suming mul�variate normal distribu�ons for background clu�er and target
spectrum it takes a sta�s�cal hypothesis tes�ng approach to detec�on of
a target�t in the observa�on {�xi}N

i=1 to discriminate the two compe�ng hy-
potheses:

H0 : �xi =�n, �n ∼ N (�μB ,ΓB)

H1 : �xi =�t, �t ∼ N (�μt,Γt) .
(3.11)

With f (·|·) deno�ng the respec�ve probability density func�ons, the
Neyman-Pearson (NP) op�mum likelihood-ra�o test reads:

LRT(�xi) =
f (�xi|H1)

f (�xi|H0)
. (3.12)

Adop�ng mul�variate normal probability density func�ons in equa�on 3.12
and applying a logarithm this leads to the op�mum-NP detector [33]:

T (�x;�t) = (�x −�μB)
�ΓB

−1(�x −�μB)− (�x −�μt)
�Γt

−1(�x −�μt) (3.13)

In general the distribu�on parameters under the target hypothesis are not
known a priori. Hence, it is assumed, that �μt =�t and that background and
target covariance matrices are equal ΓB = Γt = Γ. This allows equa�on
3.13 to be re-wri�en to

T (�x;�μt) = κ−1 · (�t −�μB)
�Γ−1(�x −�μB), (3.14)

which is a scaled variant of the squared Mahalanobis distance from the pixel
under test to the background distribu�on. In prac�cal applica�ons, the
background distribu�on parameters mean vector�μB and covariance matrix
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ΓB are replaced by their Maximum Likelihood Es�mates (MLEs) obtained
from background training data and κ is set to

κ =
(
�t −�μB

)� Γ−1 (�t −�μB
)
, (3.15)

which serves to normalize the detec�on output to one if�x =�t. This yields

TMF(�x;�t) =
(�t −�μB)

�Γ−1(�x −�μB)

(�t −�μB)�Γ−1(�t −�μB)
(3.16)

as closed form MF target detec�on func�on.

3.3.4 The Constrained Energy Minimiza�on

The Constrained Energy Minimiza�on (CEM) originally proposed by Farrand
and Harsanyi in [16] is a member of the family of unstructured target detec-
�on algorithms that requires no knowledge of the background endmembers
in a hyperspectral image. The CEM can be considered a filter based rather
than a model based approach towards target detec�on.
Let �w� = [w1, . . . ,wp] denote the coefficients of a linear finite impulse re-
sponse filter �w. The CEM aims to es�mate the filter coefficients as to max-
imize the energy of the filtered signal (i. e. the filtered hyperspectral ob-
serva�on data), when the target�t is present in a pixel vector. For the filter
input�xi ∈ R

p the filter output is given by yi = �w��xi. Hence, the average
signal energy μE of the filtered signal amounts to

μE =
1
N

N

∑
i=1

y2
i =

1
N

N

∑
i=1

�w��xi�x�i �w

= �w�(
1
N

N

∑
i=1

�xi�x�i )�w = �w�R�x�w.

(3.17)

The matrix R�x is called the sample correla�on matrix. An op�mum filter
should aim to minimize μE while transmi�ng the target spectrum�t. In
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mathema�cal terms, the la�er introduces the boundary condi�on�w��t = 1,
and consequently:

�wCEM =
R�x

−1�t
�t�R�x

−1�t
. (3.18)

Thus, the CEM target detec�on func�on reads:

TCEM(�x;�t) = �w�
CEM ·�x =

�t�R�x
−1�x

�t�R�x
−1�t

. (3.19)

3.3.5 The Orthogonal Subspace Projector

The Orthogonal Subspace Projec�on (OSP) algorithm was suggested by
Harsanyi and Chang in [28]. Based on the linear mixture model

�x =�tαt +B�αB +�n (3.20)

the algorithm belongs to the family of structured target detec�on algo-
rithms capable of sub-pixel detec�on. Note that in contrast to the full linear
mixture model that was defined for target matrices, equa�on 3.20 allows
target vectors (as opposed to target matrices) only. The OSP algorithm is
based on the idea of measuring the magnitude of a pixel vector under test,
a�er projec�on onto a subspace orthogonal to the space spanned by the
background vectors that form the columns of matrix B in equa�on 3.20.
The orthogonal complement operator, defined as

PB
⊥ = I −B(B�B)−1B� (3.21)

maps the pixel vectors of the given hyperspectral observa�on {�xi}N
i=1 onto

a subspace orthogonal to the space spanned by the vectors that form the
columns of matrix B. The target detec�on func�on of the OSP algorithm
follows directly:

TOSP(�x;�t) =
�t�PB

⊥�x
�t�PB

⊥�t
(3.22)
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The OSP was originally proposed without the denominator�t�PB
⊥�t. How-

ever, it can be shown (e. g. [42]) that under the Gaussian white noise as-
sump�on the OSP equals the maximum likelihood es�mate of the target
abundance TOSP(�x;�t) = α̂�t .

3.3.6 The Adap�ve Matched Subspace Detector

The AMSD belongs to the structured target detec�on algorithms and
has the highly desirable CFAR property. Based on the LMM, the algo-
rithm takes a likelihood ra�o hypotheses tes�ng approach. The two com-
pe�ng hypotheses to be discriminated for every pixel vector under test
�xi ∈ {�x1, . . . ,�xN} are

H0 : �xi = B ·�αB +�n

H1 : �xi = B ·�αB +T ·�αT +�n = S ·�α +�n.
(3.23)

Hypothesis H0 covers the background only case, while H1 accounts for non-
zero target weights in the model, indica�ng presence of target spectra in the
pixel vector. Note that we denote the concatena�on of target and back-
ground matrix S = [T,B] and the corresponding generalized abundance
vector �αS = [�α�

T ,�α�
B ]�.

Under both hypotheses, the noise vector �n is assumed to be zero mean
normally distributed with�n ∼ N (�0,γ2

n I). Both �αB and �αT as well as the
noise variance γ2

n are unknown and have to be es�mated for the generalized
likelihood ra�o test:

GLRT(�x) =
L (�̂α, γ̂2

n |�x)
L (�̂αB, γ̂2

n,B |�x)
. (3.24)

The algorithm then employs the MLEs of mul�variate Normal probability
distribu�on parameters for the two hypotheses �̂αB, �̂αT and γ̂2

�n , to deter-
mine a likelihood ra�o for a specific observa�on.
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Using the orthogonal projec�on operators PS = I −S(S�S−1)S� and
PB = I −B(B�B−1)B� that were introduced in equa�on 3.21, the AMSD
detec�on func�on can be rewri�en as follows[43]:

TAMSD(�x) =
�x�(PB

⊥−PS
⊥)�x

�x�PS
⊥�x

= [GLRT(�x)]2/p −1. (3.25)

It is convenient to use equa�on 3.25 instead of the pure GLRT equa�on 3.24
as the numerator and denominator terms are independent, which strongly
facilitates determina�on of the test sta�s�cs [43].

3.3.7 The Adap�ve Coherence Es�mator

The Adap�ve Coherence / Cosine Es�mator (ACE) is a powerful CFAR target
detec�on algorithm from the family of unstructured algorithms that was
proposed by Scharf et al. in [54]. Like the AMSD detector the algorithm
a�empts to discriminate two hypotheses:

H0 : �xi =�n

H1 : �xi = T ·�αt +β�n, β > 0
(3.26)

In equa�on 3.26 the interfering background clu�er is modeled by the noise
vector�n and – assuming zero mean observa�on data that can be obtained
without loss of generality by removing the background mean �μB from the
target subspace and measurement data – the underlying distribu�on is as-
sumed to be Gaussian normal, with

�n ∼ N (�0,ΓB)

under H0 and
β�n ∼ N (�0,β 2ΓB)

under H1.
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The generalized likelihood ra�o test for these hypotheses under the given
constraints leads to the following target detec�on func�on for detec�on of
the target subspace T in the hyperspectral observa�on vector�x [41]:

TACE(�x,T) =
�x�ΓB

−1T(T�ΓB
−1T)−1T�ΓB

−1�x
�x�ΓB

−1�x
. (3.27)

If the target subspace has only one dimension T ∈R
p×1, equa�on 3.27 can

be re-wri�en more compactly

TACE(�x,�t) =
(�t�ΓB

−1�x)2

(�t�ΓB
−1�t)(�x�ΓB

−1�x)
. (3.28)

The background distribu�on parameters�μB and ΓB are in general unknown.
Thus the corresponding maximum likelihood es�mates �̃μB and Γ̃B are typi-
cally es�mated from background training data and used for construc�on of
the detector in equa�ons 3.27 and 3.28.

3.4 Es�ma�ng Target Detec�on Performance

The main detec�on performance es�ma�on and comparison tool used
within this work are Receiver Opera�ng Characteris�cs (ROCs). ROCs mea-
sure a binary classifier’s performance in terms of its True Posi�ve Rate (TPR)
and False Alarm Rate (FAR).
Let X = {�xi}N

i=1 denote a hyperspectral observa�on and

φ(·;�t) : Rp →{0,1}

denote the ground truth func�on with:

φ(�xi;�t) =

⎧⎨
⎩1, if�xi contains target�t

0, otherwise.
(3.29)
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For a given classifica�on func�on ΔD(·;�t,τ) with classifica�on threshold
value τ we can es�mate the true posi�ve rate:

T PRΔD(X;�t,τ) =
1
N

N

∑
i=1

ΔD(�xi;�t,τ) ·φ(�xi;�t). (3.30)

And the false alarm rate follows directly:

FARΔD(X;�t,τ) =
1
N

N

∑
i=1

ΔD(�xi;�t,τ) · (1−φ(�xi;�t)). (3.31)

Thus, by varia�on of τ we obtain the value pairs
(T PRΔD(X;�t,τ), FARΔD(X;�t,τ)) that form the ROC for classifier ΔD

upon detec�on of target�t in observa�on X.

3.4.1 Ar�ficial Hyperspectral Images

In many real-world image processing applica�ons it can be difficult or even
impossible to obtain the ground truth mapping func�on φ(·;�t) in equa�on
3.29, i. e. there is usually no labeled image data available. This is also true
for the task at hand – image labeling even under laboratory condi�ons is a
highly non-trivial task. As target material can not be fixed on the substrate
without fundamentally affec�ng the spectroscopic characteris�cs, shocks
and vibra�ons during sample transport are expected to change the ground
truth, even if an accurate target mapping could be generated in prepara�on.
However, for accurate performance analysis and comparison of hyperspec-
tral target detec�on methods, having labeled data is essen�al.
To elude this issue, it is convenient to work with ar�ficially generated data
for performance analysis. This is an especially invi�ng approach as the LMM
provides us with a physically meaningful model for data genera�on.
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Figure 3.2: Pseudo color representa�on of ar�ficial hyperspectral image containing four spa-
�ally dis�nct substrate material regions and a PETN contamina�on located in the
image center in the form of the Fraunhofer logo, with decreasing abundance from
top to bo�om. A Gaussian illumina�on profile was employed for genera�ng the
shown ar�ficial image. The pseudo colors were obtained by evenly binning the in-
frared channels into the channels of an RGB image.

A well defined hyperspectral image {�xi}N
i=1 can be generated using a slightly

modified version of the LMM

�xi = Ξi · (T ·�ti +B ·�bi)+�ni (3.32)

by choosing the target and background abundance vectors�ti and�bi which
in consequence determines the ground truth func�on φ(·;�t). The noise
vectors�ni are usually generated using a Gaussian distribu�on. However,
other distribu�ons can be employed to assess the effects of noise model
mismatches. Mul�plica�ve noise contribu�ons that are compensated in
real-world measurement in the pre-processing step (see sec�on 6.3) can
be readily simulated by the (typically diagonal) noise matrix Ξi = diag{�ξi}
with appropriate choice of elements�ξi ∈R

p
≥0. Defec�ve pixels are modeled

by mul�plica�ve salt and pepper noise.
A false-color representa�on of a typical ar�ficial hyperspectral image gener-
ated using real substance spectra of PETN and some background materials
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(Polyamide, jeans cloth and leather) is shown in figure 3.2. The PETN trace
is deposited in the form of the Fraunhofer logo with decreasing abundance
from top to bo�om. The false colors were obtained by equidistant binning
of adjacent infrared bands into RGB channels for each pixel.

3.5 Background Endmember Es�ma�on for Structured
Target Detec�on Algorithms

Structured target detec�on algorithms are reliant upon knowledge of the
background spectra that occur in the hyperspectral image, as they are usu-
ally based on the full linear mixture model

�x = T�αT +B�αB +�n.

The matrix T denotes the no�on of a target spectral library containing the
pure substance spectra as columns. Likewise does B for the pure back-
ground spectra that are present in the scene. It is clear that in contrast to
the target spectral library it is not a feasible approach to build a background
spectral library containing all possible background spectra that might occur
in a generic measurement scenario. Instead, B has to be generated from
the hyperspectral image data {�xi}N

i=1 to be analyzed. Algorithms that solve
this task are called endmember extractors.

3.5.1 Using the Covariance Matrix Eigenvectors

A common way of genera�ng the background endmember matrix B that
is adopted in many publica�ons related to structure target detec�on al-
gorithms is based on the eigenvectors of the sample covariance matrix
[16, 42, 57]. In this approach, the background endmember matrix is con-
structed using the eigenvectors that belong to the largest eigenvalues of
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the covariance matrix. Let Γ̂X denote the sample covariance matrix of a
hyperspectral observa�on {�xi}N

i=1 that is obtained by:

Γ̂X =
1

N −1

N

∑
i=1

[
(�xi −�̂μX) · (�xi −�̂μX)

�
]
, (3.33)

with�̂μX =
1
N

N

∑
i=1

�xi. (3.34)

We denote the eigenvectors of the sample covariance matrix �̂ν1, . . . ,�̂νp in
descending order of their corresponding eigenvalues λ̂1 ≥ . . .≥ λ̂p.
A reasonable choice of background matrix B is given by concatena�on of
the covariance matrix eigenvectors, associated to the q largest eigenvalues:

B = [�̂ν1 · · ·�̂νq]. (3.35)

The choice of the parameter q in 3.35 is related to the material complexity
of the hyperspectral image – a homogeneous background can be described
by a subspace of few eigenvectors, whereas a scene containing several dif-
ferent background materials might require more eigenvectors. This no�on
is some�mes referred to as the observa�on’s intrinsic or virtual dimension-
ality and will be subject to a more detailed analysis in chapter 4.

3.5.2 The Adap�ve Background Genera�on Process

The Adap�ve Background Genera�on Process (ABGP) [31] is an itera�ve
and transparent background endmember extrac�on process that was de-
veloped within the scope of this work. The algorithm generates the back-
ground endmember matrix in two stages. In the seeding stage, the ABGP
searches for image spectra that are most different from among each other
and the target spectrum using an approach closely based on the Adap�ve
Target Genera�on Process (ATGP) proposed by Ren and Chang [51]. In the
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3.5 Background Es�ma�on for Structured Target Detectors

subsequent stabiliza�on stage a clustering method is employed to obtain
more significant class representa�ves.

The ATGP algorithm

Ren and Chang’s ATGP algorithm is an itera�ve endmember extrac�on
method that employs ideas lent of the OSP target detec�on approach in-
troduced in sec�on 3.3.5. In [51], the ATGP was suggested as first part of
a fully automa�c target detec�on process that generates a set of q poten-
�al target substance es�mates T̃ = [�̃t1, . . . ,�̃tq]within a hyperspectral image.
Ren and Chang then suggest to apply a target detec�on algorithm, to detect
the targets�̃ti in a subsequent step.

Lis�ng 1 : Original ATGP finds poten�al set of target spectra

Input : Hyperspectral observa�on X = {�xi}N
i=1

Output : Poten�al target substances T̃ = [�̃t1, . . . ,�̃tq]

�̃t1 ← argmax�xi
{‖�xi‖}

T̃ ←�̃t1
do

PT̃
⊥ ← I − T̃ (T̃�T̃ )−1T̃

�̃t ← argmax�xi
{(PT̃

⊥�xi)
�(PT̃

⊥�xi)}
T̃ ← T̃ ,�̃t

while (�̃t�1 PT̃
⊥�̃t1 < η)

return T̃

The ATGP algorithm is given in lis�ng 1. In a first step the matrix of poten�al
target endmembers is ini�alized with the hyperspectral image vector con-
taining the most signal energy. The algorithm then enters a loop, in which
the orthogonal projec�on operator of the current target endmember ma-
trix is calculated. The pixel vector that has maximum magnitude in the pro-
jected subspace – i. e. in the subspace orthogonal to the space spanned by
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the set of target spectra generated so far – is chosen and added to the po-
ten�al target set. The term�̃t�0 PT̃

⊥�̃t0 in the cutoff criterion is a measure of
similarity among the target vectors collected so far in the process that can
be shown to comprise a monotonically decreasing series over the itera�ons.

The ABGP seeding stage

We obtain the seeding stage of the ABGP algorithm by modifica�on of the
ATGP. The la�er can be forced to operate as a background extrac�on algo-
rithm by adequate selec�on of some ini�al values. The goal of extrac�ng
background spectra of a scene implies knowledge of a set of target spec-
tra that form the target matrix T that is considered foreground. We obtain
a set of poten�al background material representa�ve spectra forming the
columns of the matrix B̃ – the background endmember seed – by ini�alizing
the target es�mate matrix T̃ in lis�ng 1 using the target matrix T ∈ R

p×t .
Lis�ng 2 outlines the seeding stage of the ABGP algorithm.

Lis�ng 2 : The ABGP seeding stage as variant of the ATGP

Input : Hyperspectral observa�on X = {�xi}N
i=1,�x ∈ R

p, target matrix T ∈ R
p×t ,

background dimension q
Output : Background es�mate B̃ = [�̃b1, . . . ,�̃bq]

B̃ ← T

for j ← 1 to q do

PB̃
⊥ ← I − B̃ (B̃�B̃ )−1B̃

�̃b ← argmax�xi
{(PB̃

⊥�xi)
�(PB̃

⊥�xi)}
B̃ ← B̃ ,�̃b

B̃ ← [�̃bt+1, . . . ,�̃bt+q]

return B̃
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We note that the ATGP cutoff criterion suggested in [51] was dropped in fa-
vor of the input parameter q that specifies the dimension of the background
subspace and corresponds to the no�on of virtual dimension introduced
earlier. This was mo�vated by the empirical observa�on that in real world
applica�ons a fixed value of η showed to generalize poorly.

The ABGP stabiliza�on stage

The result of the seeding stage is a set of background endmember spectra
B̃ = [�̃b1, . . . ,�̃bq] that could already be used as background matrix in the
linear mixture model for the target detec�on process in this form. This is
however a sub-op�mal approach, as only a frac�on of the available data is
employed for model construc�on. In addi�on, single pixel spectra can be
subject to various noise ar�facts and a method like the ATGP that is based on
an extreme value measure intrinsically favors outliers. This can substan�ally
affect the quality of B̃ as background representa�on.
We therefore propose to employ a stabiliza�on stage that adopts a clus-
tering algorithm on the observa�on data using B̃ as seed vectors. Rather
than the seeding vectors, we then choose the cluster means as background
endmembers.
A seed-based strict par��oning of the observa�on data {�xi}N

i=1 into q+ t

(t deno�ng the number of columns of the target matrix T) clusters
{C1 . . .Cq,Cq+1, . . . ,Cq+t} can be obtained using any of the full-pixel tar-
get detec�on algorithms presented in sec�on 3.3. Let TD(�xi;�v) denote the
corresponding target detec�on func�on for the observa�on vector�xi and
target vector�v. As the value of TD relates to the probability that�xi contains
�v it can be employed to generate meaningful clusters.
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Based on the cumula�ve set of seed vectors and target spectra
V = {�̃b1, . . . ,�̃bq,�t1, . . . ,�tt} we gain the strict par��oning

Ck =

{
�xi

∣∣∣∣∣k = argmax
k∈{1,...,q+t}

TD (�xi;V[k])

}
(3.36)

The target clusters Cq+1, . . . ,Cq+t are considered to contain one of the
target spectra and are hence collected into a rejec�on class, having no
further impact on the result. The columns of the endmember matrix
B = [�b1, . . . ,�bq] are finally obtained by the remaining cluster means:

�bk =
1

|Ck| ∑
�xl∈Ck

�xl . (3.37)

As stated before, all full-pixel target detec�on func�ons can be employed
for the choice of TD in equa�on 3.36. For computa�on performance rea-
sons, we chose the most straigh�orward approach to full-pixel target de-
tec�on, comprised by the NCC algorithm.

3.6 Target Leakage Preven�on

The main difference between structured and unstructured target detec�on
algorithms is the modeling of the background clu�er. Mathema�cally this
leads to the defini�on of the full and reduced linear mixture model. The
former is adopted by the structured target detec�on algorithms and explic-
itly requires knowledge of the matrix B of background spectra. In contrast,
the la�er assumes that the target signal is embedded in random noise that
is usually assumed to be Gaussian Normal distributed. However, the corre-
sponding noise parameters (background mean vector and covariance ma-
trix) are in general unknown. Ideally, a background training set would be
available for every hyperspectral image, containing it’s background spectra
only, from which the parameters can be es�mated. However, in many appli-
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ca�ons this is not a feasible demand. Instead, the background distribu�on
parameters have to be es�mated from the hyperspectral observa�on under
analysis. This problem is obviously closely related to background endmem-
ber extrac�on which was introduced in sec�on 3.5 though now put into
more sta�s�cal rather than geometrical terms.
We say that target sparsity is given, if a target material is rare in comparison
to other spectra within a hyperspectral image. In mathema�cal terms, the
target�t is said to be sparse in X = {�xi}N

i=1, if the mean magnitude of the
background abundance vector is significantly higher than the target abun-
dance mean. Thus, if the observa�on X is fully described by the linear mix-
ture model

�xi =�t · ti +B ·�bi +�n (3.38)

where t denotes the target abundance and�bi the background abundance
vector, target sparsity is given if

1
N

N

∑
i=1

ti <<
1
N

N

∑
i=1

||�bi||. (3.39)

If target sparsity can be assumed, the parameters for the background noise
distribu�on can be safely es�mated from the en�re observa�on X. If how-
ever, the target is not sparse, the noise distribu�on es�mates are corrupted
and target detec�on performance will be strongly affected. Hence, the goal
within this sec�on is to suggest – given a target spectrum�t – a binary back-
ground decision func�on β (·;�t) that serves to discriminate a hyperspectral
observa�on X = {�xi}N

i=1 into a background set XB,�t and a set XT,�t contain-
ing poten�ally contaminated spectra:

XB,�t := {�x ∈ X |β (�x;�t) = 1}and XT,�t := {�x ∈ X |β (�x;�t) = 0} (3.40)

with β (�x;�t) =

⎧⎨
⎩1 �x not contaminated by�t

0 otherwise.
(3.41)

47



3 Hyperspectral Image Processing

The background noise distribu�on parameters can then be es�mated from
the background set XB,�t . The quality of the background set and subse-
quently the quality of the distribu�on parameter es�mates is determined
by the background detec�on func�on, which thus directly affects the ex-
pected target detec�on performance. The term target leakage refers to
an incorrect mapping of the observa�on data, where contaminated pixel
vectors are falsely classified as background spectra, thus compromising the
background distribu�on parameter es�mates. We call β (·; ·) target leakage
preven�on func�on.
The defini�on of the background decision func�on β (·; ·) is similar to the
general target classifica�on func�on τ(·; ·) defined in equa�on 3.9. At a
first glance, one might be inclined to believe that the principle of target
detec�on is basically the nega�on of background detec�on in which case
the task of target leakage preven�on would induce a logical circle. This is
not the case for two reasons. Firstly, the boundary condi�ons for the two
tasks are slightly different. Secondly, background detec�on is only relevant
for algorithms from the family of unstructured methods that are capable of
sub-pixel target detec�on. Of course, comparing the expected true posi�ve
detec�on rate, in presence of sub-pixel contamina�ons, such algorithms are
expected to outperform full-pixel detectors. The la�er however, do not re-
quire knowledge of the background at all and are thus poten�al candidates
for background detec�on.
The expected true-posi�ve and false alarm rate of classifica�on func�ons
are directly dependent upon the threshold τ (refer to sec�on 3.4 for more
details). Reducing the threshold will in general increase the TPR as well as
the FAR. Using the negated output of a target detec�on func�on at a low
threshold as background classifica�on func�on is a feasible way of strongly
reducing target leakage. False alarms of the detec�on func�on should be to
a certain extent acceptable in the background classifica�on func�on, their
only effect being that some of the background spectra are not used for es-
�ma�on of the distribu�on parameters.
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We therefore suggest to adopt the nega�ve output of the Normalized Cross
Correla�on func�on as target leakage preven�on func�on:

βNCC(�x;�t) =−1 ·TNCC(�x;�t). (3.42)

Other choices could include the inverse of the CEM detec�on func�on as
well as variants of the MF [58].

3.7 Detector Fusion

As men�oned before, the task of target detec�on and target iden�fica�on
intrinsically carries the no�on of a target library. I. e. a hyperspectral ob-
serva�on x = {�xi}N

i=1 should be tested for contamina�on with one or many
of a set of possible target materials, for which the spectra are known. Let
T =

[
�t1, · · · ,�tt

]
denote this target spectral library containing the spectra of

t substances of interest. However, most target detec�on algorithms allow
only a single target spectrum for opera�on. Hence, a detec�on output is
generated for each pixel vector in the set and each target in the library.
We recall the generic target detec�on func�on given in sec�on 3.3 that can
be wri�en as

TD : (�xi ∈ X;�tk) → R (3.43)

Equa�on 3.43 states that a detec�on func�on produces a scalar value for
every pixel vector and target spectrum.
Hence, for the case of a target library T we extend this func�on to

�TD : (�xi ∈ X;T) → R
t (3.44)

Consequently, for every pixel vector �xi ∈ X we obtain a detec�on result
vector of the form

�TD(�xi ∈ X;T) =
[

TD(�xi;�t1), · · · ,TD(�xi;�tt)
]� (3.45)
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We obtain the corresponding library classifica�on func�on by choosing the
index of the target spectrum�tk, with the largest detec�on func�on output
– if it is larger than a specific threshold τk. In mathema�cal terms:

ΔD(�xi;T,�τ ∈ R
t) :=

⎧⎨
⎩argmaxk DT (�x;�tk), if DT (�x;�tk)> τk

0, else.
(3.46)

Hence, the classifica�on func�on is no longer binary, but a mapping into
the set {0,1, . . . , t} that contains the indices of the corresponding target
spectra. The zero index indicates the background class.
The threshold values τ1, . . . ,τt can be chosen individually, i. e. selec�ng a
specific threshold for each target spectrum. This approach may be benefi-
cial in highly controlled applica�on scenarios as a-priori knowledge can be
implemented by careful selec�on – i. e. higher false alarm rates (and thus
lower thresholds) or vice versa may be acceptable for some substances in
comparison to others. The generic measurement scenario that we are aim-
ing for within this work however, suggests to choose τ1 = τ2 = . . . = τt = τ .
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In sec�on 3.5 we closed with the remark that the only remaining model pa-
rameter to be es�mated is the column dimension of the background end-
member matrix, i. e. the parameter q in B ∈R

p×q in the full mixture model.
Hence, we are searching for a rule to determine the parameter q given the
linear model

�xi = S ·�αi +�ni, S ∈ R
p×q, �αi ∈ R

q,�n ∼ N (�0,σ2I). (4.1)

This corresponds to the no�on of intrinsic dimension or virtual dimensional-
ity that has been subject to some research in the past (e. g. [3, 4, 7, 11, 12]).
The column order of the material matrix S corresponds to the number of
spectrally dis�nct materials in the scene and determines the model order.
Hence, determining q can be considered to comprise a model order selec-
�on problem.
In this sec�on we will inves�gate an approach based on the Minimum De-
scrip�on Length (MDL) principle that was briefly considered for the task of
model order selec�on or virtual dimension es�ma�on by Broadwater in [7].
Broadwater’s work is a modifica�on of an approach suggested by Wax and
Kailath [63] who tackled a similar problem of es�ma�ng the number of in-
dependent signal sources in complex radar signals. Broadwater eventually
rejected the method as dysfunc�onal. However, this can be contributed to
an error that occurred by modifying Wax’ formula�on for complex signals
to real valued observa�ons.
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4.1 Considera�ons on the Eigenvalue Distribu�on of
Covariance Matrices

Most approaches to linear model order selec�on essen�ally analyze the
eigenvalue distribu�on of the sample covariance matrix, as the parame-
ter q is directly encoded into it. To see this, we follow Wax’ and Kailath’s
deriva�on given in [63] and consider the real-valued mul�-band observa-
�on X = {�xi}N

i=1,�xi ∈R
p in the light of the linear model in its most general

form given in 4.1. Assuming a zero-mean noise distribu�on with diagonal
covariance matrix and constant variance, we obtain a model for the covari-
ance matrix R ∈ R

p×p of X as

R = Ψ +σ2 · I, with Ψ = SC�αS�. (4.2)

In equa�on 4.2 C�α denotes the covariance matrix of the abundance vectors

C�α = E {(�αi −�μα) · (�αi −�μα)
�}, (4.3)

where�μα denotes the abundance mean.
We assume that the columns comprising S are linearly independent and
hence, S being of full column rank. Also, we assume, that the abundance
covariance matrix C�α is non-singular. It follows that Ψ has rank q and the
p− q smallest eigenvalules of Ψ equal zero. Let {λ1, . . . ,λp} denote the
eigenvalues of R with λ1 ≥ ·· · ≥ λp. Then

λq+1 = · · ·= λp = σ2. (4.4)

To conclude, equa�on 4.4 states that in a mul�-band observa�on following
the linear model with Gaussian random noise distribu�on�n ∼ N (�0,σ2I),
the eigenvalues corresponding to the noise eigenvectors are all equal to the
noise variance σ2.
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We note that equa�on 4.2 serves as generic model for a covariance ma-
trix whereas we indicate the sample covariance matrix of observa�on
X = {�xi}N

i=1 by a hat:

R̂ =
1

N −1

N

∑
i=1

(
�xi −�̂μX

)
·
(
�xi −�̂μX

)�
. (4.5)

Likewise we write {λ̂1, . . . , λ̂p} to denote the set of sample covariance ma-
trix eigenvalues.

4.2 Exis�ng Model Order Selec�on Methods

In this sec�on we introduce three well-known approaches to model order
selec�on in hyperspectral images, that are based on an analysis of the sam-
ple covariance matrix eigenvalue distribu�on. We then present a deriva�on
of an approach developed within this work, which is based upon the MDL
principle. We note, that whereas all of the following approaches require
freely chooseable design parameters, the proposed MDL based approach is
en�rely parameter free.

4.2.1 Principal Components Energy Metric

The Principal Components Analysis (PCA) energy metric approach follows
directly from the observa�ons on the covariance matrix eigenvalue distribu-
�on given in the introduc�on. Under the assump�on that the noise eigen-
values are small in comparison to the signal eigenvalues it is suggested to
apply a threshold to the total eigenvalue energy ra�o, which is defined as
the frac�on of the cumula�ve sum of the ordered eigenvalues to the total
eigenvalue sum. The cutoff index serves as model order es�mate.
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4 The Problem of Model Order Selec�on

In mathema�cal terms, let {λ̂i}p
i=1 denote the ordered set of sample co-

variance matrix eigenvalues R̂ with λ̂i ≥ λ̂i+1. Using the total eigenvalue
energy ra�o

ρk =
∑k

i=1 λ̂i

∑p
i=1 λ̂i

, (4.6)

the model order es�mate q̃PCA is then defined as

q̃PCA = argmin
k

[ρk ≥ τ]. (4.7)

Typical choices of the threshold value are τ = 0.99 or τ = 0.999. We note
that the result q̃PCA depends on the signal to noise ra�o of the measure-
ment X. Figure 4.1 illustrates this fact in a simple simula�on. Two ar�ficial
hyperspectral observa�ons with q = 5 endmembers each, were generated
(see sec�on 3.4.1 for more details on ar�ficial image data). The Signal to
Noise Ra�o (SNR) was set to 30 dB and 10 dB respec�vely. We give the re-
sul�ng sample covariance matrix eigenvalue distribu�ons in figure 4.1 as
well as the energy ra�o that was considered as measure of model order
in this sec�on. Whereas the general form of the eigenvalue distribu�on
is qualita�vely very similar for the two noise levels, the noise eigenvalues
carry more energy in the la�er case. Hence, different thresholds would be
required to es�mate the correct model order q = 5 for the two observa-
�ons.

4.2.2 Noise Subspace Projec�on

The Noise Subspace Projec�on (NSP) approach to model order selec�on in
hyperspectral images is based on sta�s�cal hypothesis tes�ng published by
Chang and Du in [10]. It builds upon the earlier proposed Harsanyi-Farrand-
Chang (HFC) method that was suggested by Harsanyi et al. in [27].
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Figure 4.1: Impact of different levels of addi�ve white Gaussian noise on the sample covari-
ance matrix eigenvalue distribu�on. Le�: general form of eigenvalue distribu�on
is mostly independent, but more energy lies in eigenvalues corresponding to noise
eigenvectors. Right: the total energy ra�o to discriminate noise eigenvalues from
signal eigenvalues is strongly dependent upon noise level. The eigenvalues were
obtained from an ar�ficial hyperspectral image generated with q= 5 endmembers.

The HFC compares the eigenvalues generated by the sample covariance ma-
trix R̂ denoted λ̂1, · · · , λ̂p to the eigenvalues γ̂1, · · · , γ̂p of a matrix Ĉ ∈R

p×p
≥0

that is defined as follows:

Ĉ :=
1
N

N

∑
i=1

�xi�x�i . (4.8)

The matrix Ĉ is called correla�on matrix in several publica�ons (e.g. [12]),
which is as pointed out in [3] however a misleading term as the entries are
not correla�ons.
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Harsanyi et al. argued that equality γ̂i = λ̂i holds, if the eigenvalues cor-
respond to noise eigenvectors. This gives rise to the following series of p

hypothesis tests:

H0 : zi = γ̂i − λ̂i = 0

H1 : zi = γ̂i − λ̂i > 0.
(4.9)

Zero mean normal distribu�ons p0(zi)=N (0,σ2
zi
) and p1(zi)=N (μi,σ2

zi
)

are assumed, with the parameter σ2
zi

being es�mated to

σ̂2
zi
=

2
N
(γ̂2

i + λ̂ 2
i +2γ̂iλ̂i). (4.10)

A Neyman-Pearson detector with an adap�ve threshold based on the ex-
pected cumula�ve probability of false alarm is constructed for each eigen-
value pairing. The number of tests for which H0 was rejected is employed
as resul�ng model order es�mate.
The NSP algorithm suggested by Chang and Du takes a similar approach to
model order selec�on that operates on a whitened version of the sample
covariance matrix. Using an es�mate of the noise covariance matrix R̂n the
whitened sample covariance matrix R̂w is obtained by

R̂w = R̂(−1/2)
n R̂R̂(−1/2)

n (4.11)

More details to the construc�on of the whitening matrix R̂(−1/2)
n will be

given later in sec�on 4.4.4. The noise-related eigenvalues of the whitened
sample covariance matrix are expected to equal one. Hence, the compe�ng
hypotheses can be re-wri�en to

H0 : yi = l̂i = 1

H1 : yi = l̂i > 1,
(4.12)

where the l̂i denote the eigenvalues generated by R̂w.
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Now, p0(yi) =N (1,σ2
yi
) and p1(yi) =N (μi,σ2

yi
), with the distribu�on pa-

rameter

σ̂2
yi
∼ 2l̂2

i
N

. (4.13)

Again, the cumula�ve probability of false alarms is employed to establish a
dynamic threshold value for each test, and the number of tests for which
H0 is rejected serves as resul�ng model order es�mate. The test sta�s�cs
involved in selec�on of the adap�ve threshold values requires choice of the
marginal probability value (p-value) at which the null hypothesis is rejected.
This comprises a design parameter that needs to be chosen at implemen-
ta�on �me and strongly affects the es�mate.

4.2.3 Second Moment Linear Dimension

The Second Moment Linear Dimension (SML) approach to model order se-
lec�on was proposed by Bajorski in [4]. Bajorski based the SML algorithm
on a purely empirical observa�on: a specific func�on of the sample covari-
ance matrix eigenvalues follow a Gamma distribu�on, if they are associated
to noise eigenvectors.
Let {λ̂i}p

i=1 denote the ordered set of sample covariance matrix eigenval-
ues R̂ with λ̂i ≥ λ̂i+1. The SML u�lizes as measure of the rela�ve gap size
between two eigenvalues the ra�o

f j := (λ̂ j − λ̂ j+1)/λ̂ j+1. (4.14)

According to Bajorski, empirical studies showed that the propor�ons f j fol-
low a Gamma distribu�on, if the par�cipa�ng eigenvalues belong to noise
eigenvectors. Hence, he proposes to apply sequen�al sta�s�cal hypothe-
ses tes�ng on the ordered set of eigenvalues, to determine, whether the
underlying distribu�on can be considered to be the Gamma distribu�on.
A marginal threshold on the p-score serves as cutoff criterion for the test
sequence and es�mates the model order.

57



4 The Problem of Model Order Selec�on

Lis�ng 3 : The SML algorithm for model order selec�on [4]

Input : Hyperspectral observa�on X = {�xi}N
i=1,�xi ∈ R

p, marginal p-value threshold
τ , eigenvalues of sample covariance matrix {λ̂1, . . . , λ̂p}

Output : Es�mated model order qSML

m ← 
 p
3
�

j ← p−m; do
j ← j−1

← testGammaDistribution({λ̂ j . . . , λ̂p})
while ≤ τ
return j

A pseudo-code implementa�on of the SML algorithm is given in lis�ng 3.
Details on the hypotheses test that involve distribu�on parameter es�ma-
�on and calcula�on of the p-value, are omi�ed to improve readability and
can be found in [4].
We emphasize at this point that all considered model order selec�on meth-
ods require selec�on of a parameter that has to be chosen at design-�me
and affects the resul�ng model order es�mate. Especially in complex sys-
tems that involve several independent data analysis stages and operate in
generic scenarios it is desirable to avoid methods that come at the cost of
free parameters. The following MDL based model order selec�on method
is not subject to this problem.

4.3 The Two-Part MDL Principle

The Minimum Descrip�on Length (MDL) principle is an informa�on-
theore�c approach to model selec�on that was first published by Schwartz
and Rissanen in 1978 ([52, 55]) and has since been subject to various re-
finements and improvements ([5, 25, 26]). MDL found strong resonance in
the radar signal analysis community not least to Wax’ and Kailath’s ground
breaking work [63], who published a MDL based method for es�ma�ng the
number of dis�nct signal sources in complex-valued radar signals.
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Throughout the following chapter we will adopt Grünwald’s terminology
[25] that puts the terms

• model for a family of probability distribu�ons or func�ons with the
same func�onal form (e. g. the linear mixture model with unspecified
parameter q)

• point hypothesis for a specific realiza�on of a model

• hypothesis as generic term for either one.

Thus, by this defini�on we use the term model selec�on problem, instead
of the slightly more cumbersome model order selec�on problem.
The basic idea behind MDL model selec�on is to find the best hypothe-
sis, among a parametric model that allows to describe the combina�on of
both the hypothesis (including all parameters) as well as the observa�on
data with a minimum number of informa�on theore�c bits. To support this
no�on we borrow an example from Grünwald’s tutorial on MDL [25]: Let
H (1),H (2), . . . denote sets of candidate models, considered to describe
the observa�on data X and H (k) denotes the set of k order models (e. g.
the linear mixture model with S ∈R

p×k). We are then searching for the best
hypothesis H ∈⋃

i H
(i) that minimizes the sum L(H)+L(X |H), where

• L(H) is the coding length in bits of the hypothesis and all its param-
eters, and

• L(X |H) is the length in bits of the hypothesis descrip�on

I. e. the MDL follows the idea that the best model to explain the observed
data is the smallest model containing the selected hypothesis. It hence
searches for a tradeoff between goodness-of-fit and complexity of the mod-
els involved an can be considered an implementa�on of Occam’s razor. The
func�on L(X |H) resembles the codelength of the observa�on X, when
encoded with the help of the hypothesis H.
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For probabilis�c hypotheses – and we shall restrict ourselves to such hy-
potheses in the following – the op�mum code is the Shannon-Fano code
[15, 56] for which the codelength can be calculated explicitly:

L(X |H) =− log p(X |H),

where p(X |H) denotes the probability density func�on to the correspond-
ing hypothesis.
The hypothesis codelength L(H) is not quite as straigh�orward to obtain
and o�en amounts to coun�ng the free parameters of hypothesis H. Rissa-
nen suggested for an observa�on size N

L(H) = k · log
N
2π

with k deno�ng the number of free parameters in H. This choice of model
codelength leads to what is now generally referred to as Two-Part MDL:

MDL2P =− log p(X |H)+ k · log
N
2π

(4.15)

The first term in equa�on 4.15 denotes the nega�ve log-likelihood func-
�on and resembles the number of bits required to code the model error or
goodness of fit. The second term es�mates the number of bits required to
code the model descrip�on. I. e. a very complex model may yield a good
fit and thus reduce the required number of bits to encode the model error.
However, as many parameters have to be described, the model codelength
will increase. In this sense, the model codelength term serves as penalty
func�on for overly complex models to intrinsically avoid over-fi�ng.
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4.4 MDL in Linear Model Dimension Es�ma�on

In this sec�on we derive a model selec�on method based on the MDL princi-
ple, for es�ma�ng the number of endmembers in a hyperspectral observa-
�on. We note that the method is not restricted to hyperspectral images, but
is applicable to any real-valued mul�-band measurement observa�on that
can be described by a linear superposi�on of independent signal sources.
The approach closely follows Wax’ and Kailath’s sugges�on, who published
a method for es�ma�ng the number of signal sources in radar applica�ons
that are typically complex-valued. Following sec�on 4.3 the two part MDL
for probabilis�c hypotheses aims to minimize the sum

− log p(X |�θ)+ 1
2

κ(�θ) logN. (4.16)

where p(· | ·) denotes the probability density func�on of choice, �θ the cor-
responding parameter vector, and κ(·) denotes the number of free param-
eters in the parameter vector.
The first part of the sum in equa�on 4.16 is the data codelength term and
resembles the number of bits required to code the model error or goode-
ness of fit. As we restrict ourselves to probabilis�c models, by defini�on it is
minimized by the appropriate MLE of�θ that we denote �̂θ. The second term
– the model codelength – es�mates the number of bits required to encode
the model descrip�on length including all required parameter values.

4.4.1 Data Codelength

A parametric model for the covariance matrix R given in equa�on 4.2 is [63]

R(k) = Ψ(k) +σ2I (4.17)

where the parameter k drives the rank of Ψ(k).
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Then R(k) can be expressed in terms of its eigenvectors �ν1, . . . ,�νk with
�νi ∈ R

p according to the ordered eigenvalues λ1 ≥ ·· · ≥ λk:

R(k) =
k

∑
i=1

(λi −σ2)�νi�ν�
i +σ2I. (4.18)

This directly provides a reasonable choice of parameter vector:

�θ (k) = (λ1, . . . ,λk,σ2,�ν�
1 , . . . ,�ν�

k )�. (4.19)

We choose the family of Gaussian probability density func�ons as proba-
bilis�c model. Omi�ng most of the details of the deriva�on that are given
in appendix A, we obtain the following explicit form of the log-likelihood
func�on L (· |�θ (k)):

L (X |�θ (k)) = log p(�x1, . . . ,�xN |�θ (k)) = log
N

∏
i=1

p(�xi |�θ (k))

=−N
2

[
log(2π)p + logdetR(k) + tr

[
R(k)−1 · R̃

]]

=−N
2

[
log(2π)p +

k

∑
i=1

[
logλi +

li
λi

]
+(p− k) · logσ2 +

p

∑
i=k+1

li
σ2

]
.

(4.20)

The MLEs that maximize the log-likelihood func�on read [2]

λ̂i = li, i = 1, . . . ,k, li ∈ R

σ̂2 =
1

p− k

p

∑
i=k+1

li

�̂νi =�ci, i = 1, . . . ,k,�ci ∈ R
p.

(4.21)

The li denote the eigenvalues to the sample covariance matrix eigenvectors
�ci. Plugging the MLEs in equa�ons 4.21 into the log-likelihood func�on –
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and once more omi�ng the details that are given in appendix A – we obtain
the data code length

L (�̂θ) =−N
2

[
k

∑
i=1

logλi +(p− k) · log
p

∑
i=k+1

li
p− k

]
+ c (4.22)

where we have collected all terms that do not depend on k in the constant
c. This can be safely dropped in the minimiza�on step, as it has no impact
on the result.

4.4.2 Model Code Length

The next task stands to determine the number of free parameters κ(�θ (k))

in the model parameter vector�θ (k) as is required for the model code length
term in equa�on 4.16. For easier readability we restate the defini�on of the
model parameter vector

�θ (k) = (λ1, . . . ,λk,σ2,�ν�
1 , . . . ,�ν�

k )�.

It is obvious that we require k+1 free parameters to account for the eigen-
values λ1, . . . ,λk and the noise variance σ2. This yields

κ(�θ (k)) = k+1+N({�νi}k
i=1), (4.23)

where N({�νi}k
i=1) denotes the number of free adjustable parameters of the

set of eigenvectors {�νi}k
i=1. Being eigenvectors to different eigenvalues of

R(k) which is symmetric and posi�ve-semidefinite, the vectors {�νi}k
i=1 are

consequently mutually orthogonal and it hence suffices to calculate the di-
mension of the group of real valued (p×k) matrices with mutually orthog-
onal columns. More formally:

N({�νi}k
i=1) = dim{M ∈ R

p×k |M�M = I}. (4.24)
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The group on the right hand side of equa�on 4.24 is known as S�efel-
Manifold over the field R:

Vk(R
p) = {M ∈ R

p×k |M�M = I} (4.25)

with the known dimension

Vk(R
p) = pk− 1

2
k(k+1). (4.26)

Using these results, equa�on 4.23 simplifies to

κ(�θ (k)) = k+1+ pk− 1
2

k(k+1). (4.27)

We now plug the result from equa�ons 4.22 and 4.27 into the MDL equa�on
4.16 and (omi�ng the terms that do not depend on k) obtain:

MDL2P =−L (X |�̂θ (k))

=− N
2

⎛
⎝ k

∑
i=1

log li + log

[
p

∑
i=k+1

li
p− k

]p−k
⎞
⎠

+
1
2
(k+ pk− 1

2
k(k+1)) logN.

(4.28)

Apart from the sample covariance matrix eigenvectors and -values, equa-
�on 4.28 depends on the parameter k ∈ {1, . . . , p} only. Following the MDL
principle we calculate the model order and i. e. the number of columns of
the material matrix S in the linear mixture model as

qMDL = argmin
k

⎡
⎣−N

2

⎛
⎝ k

∑
i=1

log li + log

[
p

∑
i=k+1

li
p− k

]p−k
⎞
⎠

+
1
2
(k+ pk− 1

2
k(k+1)) logN]

]
.

(4.29)
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4.4.3 Comparison of Model Codelength Terms

In the previous sec�on we diverted considerably from Wax’ and Kailath’s es-
�ma�on of free parameters κ in the model parameter vector �θ (k). In [63]
the authors es�mate the number of free adjustable parameters, by count-
ing the degrees of freedom when construc�ng a matrix having mutually or-
thogonal normalized columns. In the coun�ng process, the normaliza�on
condi�on is considered independent to the orthogonality condi�on. As Wax
and Kailath deal with a complex covariance matrix having real eigenvalues
and complex eigenvectors this yields

κWK = k+1+NWK({�νi}k
i=1) = k(2p− k)+1. (4.30)

However, if we employ the S�efel-Manifold of complex valued unitary
(p× k) matrices Vk(C

p) we obtain

ÑWK({�νi}k
i=1) = dim Vk{Cp}= 2pk− k2 (4.31)

and thus

κ̃WK = k+1+ ÑWK({�νi}k
i=1) = k+1+2pk− k2. (4.32)

Comparing equa�ons 4.32 and 4.30 we observe

κWK − κ̃WK =−k (4.33)

and conclude that equa�on 4.30 systema�cally underes�mates the num-
ber of free parameters in �θ (k) by k as the normaliza�on and orthogonality
condi�ons can not be regarded independently in the construc�on process.
As stated before, to this day MDL applica�on in hyperspectral image analysis
has been reported twice.
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Chang and Du published results using Wax’ and Kailath’s formula�on of MDL
in [11]. However, in this publica�on the MDL was not adapted to the real
valued signals of hyperspectral images. Therefore, the model code length
term systema�cally overes�mates the required model complexity and con-
sequently underes�mates the required model order.
Broadwater published a review of various approaches to model order se-
lec�on, including results of MDL applica�on in [7]. In this paper, the model
code length term was reportedly corrected for applica�on to real valued
signals and the associated κ term reads:

κBW = 1+ k(
1
2
+ p− k). (4.34)

However, it can be shown that κBW and consequently the code length term
is not a strictly increasing series for k = 1, . . . , p. For k > 
p/2� it can be
shown that κBW is monotonically decreasing.
This is even contradictory to the purpose of the code length term as penalty
func�on, as big models that are associated to large values of k are now
favored. Thus, MDL is expected to select the largest model available (i. e.
�θ (p)) and indeed Broadwater states that ’MDL never obtained a minimum
over the 169 endmembers [...]’.
These results are summarized in an example for a hyperspectral observa�on
with p = 200 spectral bands and N ≈ 21000 in figure 4.2. The results show
that the model codelength term proposed by Broadwater leads to choice
of overly complex models, as it suggests decreasing model code lengths for
increasing model complexity in the range 100 < k < 200. We also note
that the difference between the complex-valued model codelength term
proposed by Wax and Kailath and the alterna�ve for complex valued signals
derived in this sec�on (equa�on 4.32) is almost negligible in the observed
scale. However, the codelength term proposed by Wax and Kailath that
was adopted in the paper of Chang and Du, is expected to underes�mate
the required complexity when applied to real-valued signals.
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Figure 4.2: Comparison of the model codelength terms found in literature for example of hy-
perspectral observa�on with N = 200 spectral bands. The model codelength sug-
gested by Wax and Kailath for complex-valued signals is very similar to the result
obtained by employing the method of measuring the dimension of the associated
S�efel manifold. Both complex results in general overes�mate the model code-
length when applied to real-valued signals. The model codelength suggested by
Broadwater favors models with high complexity.

We therefore suggest usage of the codelength term given in equa�on 4.27
for real-valued signals that was derived within this work.

4.4.4 Noise Adjusted MDL

We have up to now restricted ourselves to a data model that accounts for in-
dependent, iden�cally distributed (i.i.d) addi�ve white Gaussian noise. I. e.
we s�pulated that

�n ∼ N (�0,σ2I). (4.35)

in the generalized linear mixture model (equa�on 4.1).

4.4 MDL in Linear Model Dimension Es�ma�on
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served. Preserving the assump�on of a zero mean normal noise distribu-
�on, we obtain the slightly more general form

�n ∼ N (�0,Rn). (4.36)

We call Rn the noise covariance matrix.
Under these condi�ons, the assump�ons concerning the sample covariance
matrix eigenvalue distribu�on made in sec�on 4.1 are obviously violated.
Assuming�n ∼ N (�0,σ2I) we were led to believe that the covariance ma-
trix eigenvalue distribu�on of an observa�on generated by q linear inde-
pendent endmembers would sa�sfy

λ1 ≥ ·· · ≥ λq ≥ λq+1 = · · ·= λp = σ2.

This is obviously no longer true for non-i.i.d. noise distribu�ons that follow
equa�on 4.36 and thus renders all following conclusions based upon this
observa�on defec�ve.
The following solu�on to this problem is based on ideas that lead to the
Noise Adjusted Principal Components (NAPC) transform given in [9]. If the
noise covariance matrix Rn is known, a whitening transforma�on F can be
applied to the observa�on covariance matrix R, such that

F�RnF = I and F�F = Δn
−1, (4.37)

with Δn deno�ng the diagonal matrix of eigenvalues of Rn. The whitening
matrix F is obtained by le�ng

F = EΔn
−1/2, where E�RnE = Δn. (4.38)
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Consequently, we derive a whitened version of the MDL based model order
selec�on method by employing the whitened eigenvalues {λ̃i}p

i=1 gener-
ated by R̃ .
It is le� to establish a noise whitening procedure that is applicable if the
noise covariance matrix Rn is unknown, in which case it has to be es�mated
from the available data. As the noise covariance matrix is explicitly known
only in rare cases, several es�ma�on methods have been suggested. Chang
and Du suggest an approach that follows [53] for applica�on in hyperspec-
tral image analysis.
The method is based upon a decomposi�on of the inverse of the sample
covariance matrix reading

R−1 = DR−1ER−1DR−1 . (4.40)

Here, DR−1 denotes a diagonal matrix that contains the diagonal elements
of R−1 and ER−1 containing ones as diagonal elements and correla�on coef-
ficients otherwise.
The entries of DR−1 = diag{δ1, · · · ,δp} can be re-wri�en to

δi = (σ2
i (1− r2

p−i))
−1/2, (4.41)

where rp−i denotes the mul�ple correla�on coefficient of the i-th spectral
band to the p−1 other bands obtained by mul�ple regression theory [10].
Following [10] the matrix elements δi can therefore be employed to con-
struct a noise covariance es�mate as follows:

R̃n = diag{δ−2
1 , · · · ,δ−2

p }. (4.42)
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We then obtain a whitened version R̃ of the data covariance matrix R by

R̃ = F�RF. (4.39)



4 The Problem of Model Order Selec�on

{l̃1, . . . , l̃p}. Consequently we obtain the Noise Adjusted Minimum Descrip-
�on Length model order es�mate:

qNA−MDL = argmin
k

⎡
⎣−N

2

⎛
⎝ k

∑
i=1

log l̃i + log

[
p

∑
i=k+1

l̃i
p− k

]p−k
⎞
⎠

+
1
2
(k+ pk− 1

2
k(k+1)) logN]

]
.

(4.43)
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To obtain a generic whitening process, this result is plugged into the whiten-
ing transforma�on for the case of a known noise covariance matrix given
in equa�on 4.39 to obtain the whitened sample covariance eigenvalue set



5 Analysis and Related Work

Standoff detec�on of explosive substance and precursor residues has been
a field of increasingly ac�ve research in the last decade and laser based
methods have emerged as the most promising approach. In this chapter
we will outline the experimental condi�ons that are induced by the field of
applica�on and present an overview over the exis�ng a�empts.

5.1 Boundary Condi�ons of Target Applica�on

In this work we strive to present a fully automa�c remote spectroscopy sys-
tem for detec�on of explosive residues. Several criteria were considered
relevant in real world applica�ons and hence pursued during development.

Eye-Safety

Most standoff detec�on methods are based on laser spectroscopy. This
however, raises the problem of eye-safety, especially since possible appli-
ca�ons require open-path opera�on in public. Nevertheless, fully eye-safe
system opera�on is considered a cri�cal condi�on.

Stand-Off Capability

Possible applica�on fields include opera�on in uncontrolled scenarios, e. g.
for iden�fica�on of poten�ally dangerous substances. Hence, non-contact
opera�on and measurements across several meters should be possible.
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Background Interference

The system should be capable of detec�ng target substances without any
prior knowledge and independently of the substrate that it is deposited on.

Igni�on Safety

Methods that require high-power or focused lasers can lead to accidental
igni�on due to the power densi�es involved.

Detec�on Performance

Overall detec�on performance in terms of sensi�vity and selec�vity should
be as high as possible. I. e. the measurement system’s cross-sensi�vity be-
tween dangerous and harmless substances should be low, while threats are
detected with high probability.

5.2 Remote Detec�on Systems

5.2.1 Stand-off Photoacous�c Spectroscopy

Van Neste et al. developed a stand-off spectroscopy device based on the
principle of photoacous�c spectroscopy (PAS) that is illustrated in figure 5.1.
[61]. A pulsed tunable quantum cascade laser that provides a tuning range
of 9.26 μm to 9.8 μm with a spectral resolu�on of 0.01 nm is employed to
illuminate the sample under test. The backsca�ered radia�on is collected
by a gold coated mirror and focused between the prongs of a quartz crystal
tuning fork. The laser pulse frequency was set to match the mechanical res-
onance frequency of the tuning fork, giving rise to an acous�c wave at its
air-surface interface. The mechanical displacement is measured as piezo-
electric voltage and amplified using lock-in technique.
Van Neste et al. reported measurement of various explosive spectra includ-
ing TNT, RDX and PETN that match the corresponding Fourier transform ab-
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Figure 5.1: Principle of stand-off photoacous�c spectroscopy [60].

sorp�on spectra well, in the observed measurement range. Measurement
results proved predominantly independent of measurement distances be-
tween 0.5 and 20 m. Whereas Van Neste et al. provide no further infor-
ma�on upon measurement geometry, Kim et al. state in [37] , that ’[...] all
these experiments were performed for specularly aligned samples on very
smooth surfaces’. In later publica�ons [37, 40, 60] the quartz crystal tuning
fork was replaced by an Mercury Cadmium Telluride (MCT) single element
detector. In this configura�on the measurement setup can be considered
a non-imaging variant to that presented within this work. This comes at
the loss of spa�al informa�on and renders the sub-pixel target detec�on
methods inapplicable, as the background spectral interference can not be
extracted from the measurement data.
In [40] the system is equipped with a UV laser, that is employed to change
the target signature between two measurements and hence allow to elim-
inate background interference for certain target substance molecules that
are structurally sensi�ve to UV light (e. g. TNT). [37] choose a Daylight So-
lu�ons MIRcatTM as wavelength selec�ve illumina�on source, that contains
four Quantum Cascade Lasers (QCLs) of adjacent tuning ranges and pro-
vides a broad cumula�ve tuning range from 6.3 μm to 12.5 μm (1587 cm−1

to 800 cm−1). In this publica�on first experimental results in non-specular
geometry were presented. As the signal showed less convincing matches to
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Figure 5.2: Principle of photothermal infrared imaging spectroscopy [35].

the expected library spectrum, the authors closed with the remark, that al-
though ’[...] standoff detec�on for specularly aligned target explosive sam-
ples at large distance was achieved in our previous work, standoff explosive
sensing with diffuse reflec�on spectra seems to be more challenging and
needs to be further inves�gated’ [37].

5.2.2 Photothermal Infrared Imaging Spectroscopy

The measurement principle of photothermal infrared imaging also employs
tunable infrared quantum cascade lasers as spectrally selec�ve illumina�on
sources. It was suggested by Furstenberg et al. for remote detec�on of ex-
plosives and has since been subject to several publica�ons [18–20, 34–36].
The concept of photothermal infrared imaging is shown in figure 5.2. The
principle is based on measurement of wavelength-dependent resonant
thermal hea�ng effects, rather than the reflec�on or sca�ering of incident
radia�on, itself. At wavelengths where the excita�on radia�on is absorbed,
the sample is heated and thus emits thermal infrared radia�on in a broad
spectral range. An infrared sensor, insensi�ve to the illumina�on wave-
length is used to detect this hea�ng effect.
In [35] a QCL with tuning range between 5.8 μm and 7.7 μm is used as excita-
�on laser. A liquid nitrogen cooled MCT camera equipped with op�cal filters
blocking the excita�on wavelength measures the thermal hea�ng effect in
the range of 8 μm to 12 μm. Different illumina�on-pulse modes are applied
to derive a hyperspectral image with op�mum signal to background con-
trast. A long pulse hea�ng phase of 125 ms is followed by a 250 ms pause to
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Figure 5.3: Principle of laser induced breakdown spectroscopy [23].

ensure thermal equilibrium is achieved. A series of 16 short pulses < 10 ms
completes the sequence, crea�ng a feature vector that shows high discrim-
ina�ve power between target and background. Using this setup, Kendziora
et al. report measurement of RDX spectra on several substrates. An en-
semble learning algorithm (GentleBoost) is trained on labeled training data
and adopted for automa�c target detec�on. Results on a test set suggest
an expected probability of detec�on of 88.3 % for the case of RDX on two
different substrates with an expected false alarm rate of 6.0 %.

5.2.3 Laser Induced Breakdown Spectroscopy

Laser induced break down spectroscopy (LIBS) is a variant of atomic emis-
sion spectroscopy that is widely used for chemical analyzes. Short pulses of
high-power, near-infrared laser light are generated by a Nd:YAG solid state
laser and are used to create a plasma in vincinity of the substance to be ana-
lyzed. This is achieved by focusing a collimated beam on the sample. During
the plasma’s cooling process a chemically selec�ve material spectrum can
be obtained using a broadband spectrometer (100 nm to 1000 nm). Figure
5.3 illustrates the principle.
Go�ried et al. suggest a trace explosive detec�on system based on LIBS
and report some impressive results for detec�on of common explosives
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Figure 5.4: High energy incident monochroma�c radia�on gives rise to Stokes, Rayleigh or an�-
Stokes sca�ering. The energy of a sca�ered photon can be either iden�cal to the
excita�on energy (Rayleigh), lower (red-shi� / Stokes) or higher (blue-shi� / an�-
Stokes). The corresponding quan�zed wavelength shi�s are specific to the molec-
ular structure and observed in the Raman spectrum.

like TNT, RDX and PETN using a mobile, short-distance measurement device
[23]. However, due to the high power densi�es required, LIBS is prone to
accidental igni�on. Go�ried et al. states: ’Igni�on (i. e. burning) of an ex-
plosive residue has occasionally been observed in our laboratory (primarily
with TNT par�cles), but ini�a�on of an energe�c material with a LIBS laser
has not been observed for the secondary explosives commonly used by the
military’ [23]. Also due to the laser power involved, LIBS is in general not
eye safe as the authors state: ’While the LIBS laser will never be completely
safe in the direct path of the focused beam, diffuse reflec�ons will be less
of a problem at some wavelengths’. Hence, open path opera�on requires
extensive precau�ons like securing the beam path.

5.2.4 Stand-off Imaging Raman Spectroscopy

Raman spectroscopy is a well established laser based spectroscopy method,
that exploits inelas�c light sca�ering from sample molecules which change
their vibra�onal state during this sca�ering event [13].
A Raman spectrum is obtained by illumina�ng the sample with a NIR, visible
or UV laser and the sca�ered radia�on is analyzed by a spectrometer. The
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laser excita�on gives rise to three different sca�ering effects, that differ by
molecular rota�onal and vibra�onal energy transi�ons illustrated in figure
5.4: Stokes sca�ering, Rayleigh sca�ering and an�-Stokes sca�ering. The
excita�on radia�on causes molecular energy transi�ons to virtual energy
levels (dashed lines) that are instable, causing the molecule to immediately
relax into one of the indicated low vibra�onal or ground energy states. In
Rayleigh sca�ering – the by far strongest component of sca�ered radia�on –
the molecule falls back into its ini�al state and hence, the sca�ered photon
has the same wavelength as the excita�on radia�on. With less probability
the molecule falls back into an energy state, that differs from its original one.
While in the Stokes Raman process a vibra�onal mode of the molecule is ex-
cited, i. e. can occur at any temperature, the An�-Stokes process requires
the molecule to be already in an excited vibra�onal state, i. e. requires ther-
mal excita�on of the molecule. Taking Stokes-Raman sca�ering as the most
likely process the difference between incident and sca�ered photon energy
equals the energy of the vibra�onal mode excited, which in turn is charac-
teris�c for the molecular species.
Östmark et al. developed an imaging spectroscopy system for remote de-
tec�on of hazardous substances based on the Raman effect ([49], [45],
[46]). The principle is shown in figure 5.5. A frequency-doubled Nd:YAG
laser emi�ng at 532 nm is used as excita�on laser, to illuminate the sam-
ple. The backsca�ered radia�on is collected by a 200 mm Smith-Cassegrain
telescope, mounted in front of an ICCD camera. An op�cal notch filter at
the entrance aperture of the telescope suppresses the reflected light and
light caused by Rayleigh sca�ering. An op�cal liquid crystal tunable filter
placed between collec�on op�cs and camera serves as wavelength selec-
�ve element, enabling imaging spectroscopy. The sensor generates mul�-
spectral images, and custom model-fi�ng based detec�on algorithms are
employed for target detec�on. Traces of Ammonium Nitrate, TNT and DNT
were detected down to 1 g of material at a distance of 10 m.
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Figure 5.5: The principle of imaging raman spectroscopy proposed by Nordberg et al.. A
frequency doubled Nd:YAG laser emi�ng at 532 nm is used as excita�on laser.
Rayleigh sca�er and specular reflec�on is surpressed by a notch filter and a tun-
able liquid crystal filter between collec�on op�cs and sensor serves as wavelength
selec�ve element [46].

Due to the laser source employed, the system significantly exceeds allowed
power density limits for eye-safety which renders open path opera�on in
public areas not possible at this �me. In the recent past promising results
have been reported towards imaging Raman spectroscopy using eyesafe
deep UV excita�on lasers [21]. However, to this day the achievable detec-
�on accuracy remains insufficient for robust trace detec�on in the field.

5.2.5 Conclusion

Stand-off trace detec�on of explosives has been subject to extensive re-
search in the past, but to this day no method has shown to significantly out-
perform the others. Highly selec�ve and sensi�ve spectroscopy methods
like LIBS and Raman show impressive results in terms of detec�on limit, but
suffer from eye-safety issues. Photothermal infrared imaging spectroscopy
is inherently slow, due to required exposi�on and cool-down �me required.
Also, thermal coupling between target and background requires complex
models or elaborate methods for background interference suppression.
Photoacous�c spectroscopy showed to be too insensi�ve for measurement
of the diffuse backsca�ering signal and in a generic measurement scenario
a specular reflec�on geometry can not always be achieved.
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6 Design and Specifica�ons of the
Hyperspectral Imaging Sensor

The measurement principle of tunable mid-infrared laser spectroscopy was
outlined in more detail in chapter 2. In this sec�on we describe the ex-
perimental setup, including the short range hyperspectral image sensor as
well as the long range setup, based on the same principle. We introduce
the target spectral library that is used for the detec�on process. Finally, we
present measurement results that support applica�on of the linear mixture
model and close with a comparison of measurements obtained with Fourier
Transform Infrared (FTIR) diffuse reflectance spectroscopy.

6.1 Hyperspectral Image Sensors

The main difference between the sensor variants are the illumina�on and
op�cs required for the respec�ve opera�on distances. Both variants of the
hyperspectral image sensor employ tunable External Cavity Quantum Cas-
cade Laser (EC-QCL) to illuminate the sample to be analyzed and collect
the diffusely backsca�ered light by a Mercury Cadmium Telluride (MCT)
camera. Hence, these core elements and their following specifica�ons are
shared between the systems.

6.1.1 EC-QCL Illumina�on Source

A dual core EC-QCL illumina�on source is employed for spectrally selec�ve
illumina�on providing a cumula�ve spectral tuning range of 1000 cm−1 to
1400 cm−1. The Quantum Cascade Laser (QCL) chips were designed, grown
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and processed at Fraunhofer IAF with the heterocascading design being op-
�mized for broad emission range (sec�on 2.2.1). The laser chips are oper-
ated at room temperature and indium-soldered on custom heat-sinks. Tem-
perature stabiliza�on is realized using Pel�er cooling elements.
The QCLs are operated in pulsed mode at 1.7 MHz and 100 ns pulse width,
which amounts to 17 % duty cycle. The average power at the center wave-
lengths under these condi�ons is typically around 50 mW. Under these op-
era�on condi�ons (pulsed mode in external cavity) the emission linewidth
is ≈ 1 cm−1. The collimated output beams are aligned by a custom-coated
dichroi�c mirror with a cutoff wavelength centered between the QCL chips’
center wavelengths. Wavelength tuning is achieved by opera�ng the chips
in a Li�row external cavity configura�on using a blazed diffrac�on gra�ng
with a gra�ng constant of 150 mm−1 for both lasers. In this setup, the emis-
sion wavelength is determined by varia�on of the gra�ng angle. For angu-
lar posi�oning, the gra�ngs are mounted on piezo-driven rotary posi�oners
that offer an angular resolu�on of 200 μ°. This theore�cally yields a spec-
tral wavelength selec�on resolu�on of 0.003 cm−1 at 1000 cm−1 and a res-
olu�on of 0.006 cm−1 at 1300 cm−1 respec�vely, which resides well beyond
the typical emission bandwidth in pulsed QCLs (≈ 1 cm−1).
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Figure 6.1: Le�: dual core EC-QCL module manufactured at Fraunhofer IAF containing two EC-
QCLs with adjacent tuning range. Right: cumula�ve laser tuning curve covering
range from 980 cm−1 to 1380 cm−1.
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The rota�on stage’s maximum rota�on velocity is 15 °/s, which yields a
wavenumber step �me of 4.32 ms at the long-wave fringe of the spectrum.
The full spectral range can be swept in 0.89 s. The module containing the
QCLs is shown in figure 6.1 together with the cumula�ve laser tuning curve.

6.1.2 Image Sensor

A S�rling cooled MCT camera manufactured by IRCAM is used as infrared
image sensor. The detector features 384×288 pixels with a pixel pitch of
24 μm in full frame mode, in which it can be operated at a maximum frame-
rate of 160 images per second. To increase measurement speed, the cam-
era is driven in a sub-frame mode of 192×192 pixels, where a frame-rate
of 400 images per seconds is achieved. The analog digital conversion res-
olu�on is 14 bit. The detector’s nominal 20 % cut-on is specified at 7.5 μm
(1333 cm−1), long-wave 20 % cut-off is given at 11.5 μm (862 cm−1). The per-
centage of bad pixels (i. e. pixels that exceed the 2 σ noise variance thresh-
old) was measured to be 0.1 %.

6.1.3 Collec�on Op�cs

The short-range hyperspectral image sensor shown in figure 6.2 is equipped
with a 100 mm focal length Germanium collec�on lens with an f-number of
f / 2. At the illumina�on laser’s spectral long-wave margin of 10 μm, this
yields an airy disk of dairy ≈ 50 μm and consequently an op�cal resolu�on
limit of dairy/2 ≈ 25 μm. This represents a close matches to the image sen-
sor’s pixel pitch of 24 μm.
A modified astronomical Schmidt-Cassegrain telescope with gold coated
mirrors serves as collec�on op�cs for the long range hyperspectral image
sensor (figure 6.3). The telescope’s secondary convex mirror was replaced
by a plain mirror. The op�cal characteris�cs are thus determined by the
primary mirror that has a focal length of 1 m and an f-number of f / 3.
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Figure 6.2: The short range hyperspectral image sensor can be operated between 20 cm and
5 m and provides a spectral tuning range of 1000 cm−1 to 1300 cm−1.

Due to the resul�ng airy disk of dairy ≈ 73 μm, the op�cal resolu�on limit is
dairy/2 ≈ 36 μm, hence the detector slightly over-samples the image signal.
Both hyperspectral image sensors are equipped with CMOS cameras,
aligned to the infrared collec�on op�cs that provide a calibrated visible im-
age of the scene at a large field of view, along with the hyperspectral image.
Addi�onal equipment like a distance sensor, a GPS sensor and a pan and �lt
sensor can be ac�vated on demand. The corresponding sensor values are
stored in a meta-file and have been used e. g. for integra�on of the sensor
into mul�-sensor network environments.

6.2 Data Acquisi�on

Hyperspectral image data acquisi�on and pre-processing is predominantly
controlled by custom acquisi�on so�ware that is wri�en in the C++ pro-
gramming language. Due to the �me constants involved, hardware trigger
sources are employed for various tasks, e. g. to control synchroniza�on of
camera frame trigger and the laser pulse modula�on.
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Figure 6.3: The long range hyperspectral image sensor is opera�onal in the range of 10 m to
25 m and equipped with a CMOS camera aligned to the collec�on op�cs that pro-
vides a visible image of the scene along with the hyperspectral image.

6.2.1 Illumina�on Synchroniza�on

The detector’s integra�on �me is intrinsically limited to 100 μs. Longer in-
tegra�on �mes lead to pixel satura�on caused by thermal radia�on in the
scene. At a framerate of 400 frames per second, this limits the system’s
effec�ve duty cycle to a maximum of 4 %.
It is therefore reasonable to synchronize the laser pulse trigger signal to
the camera frame trigger by restric�ng the laser illumina�on to the 100 μs
camera integra�on �me. This allows to increase the laser’s duty cycle to
30 % which – in spite of QCL self hea�ng – can be tolerated by the QCL chips
under un-cooled, room temperature opera�on condi�ons only for a short
�me. The camera’s read-out phase is employed for heat dissipa�on.
In addi�on, as men�oned in chapter 2.4, the hyperspectral images are gen-
erated using difference images. I. e. a thermal reference image is recorded
by omi�ng laser illumina�on in every second image and the difference im-
age serves as signal. This can also be controlled by appropriate choice of
the corresponding system trigger signals. We illustrate the resul�ng �me
diagram for laser- and camera-synchroniza�on in figure 6.4.
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Figure 6.4: Timing diagram for synchroniza�on of laser and camera trigger signals. The high
duty cycle laser trigger signal is enveloped by the camera frame trigger that controls
the detector’s integra�on �me, allowing the chip temperature to stabilize during
the detector’s read-out phase. Every second image, the illumina�on is omi�ed to
record a passive image of the thermal scene.

6.2.2 Camera Readout

Synchroniza�on of camera and illumina�on source is also relevant in imple-
menta�on of the data acquisi�on process. We recall that the laser backscat-
tering measurement principle requires difference images and several subse-
quent difference images are averaged to achieve speckle reduc�on. To gain
reproducible measurements, it is eminent to verify that the emission wave-
length is well defined (either constant or scanning over a defined range)
during the capturing phase.
In an earlier implementa�on this was controlled by driving the trigger
source that generates the frame trigger in a burst mode. I. e., in the mea-
surement rou�ne, the current emission wavelength was monitored and a
so�ware trigger was generated, shortly a�er the target emission wave-
length was reached. The so�ware trigger was fed into the trigger source
that generated a sequence of a fixed number of camera and laser pulse
trigger signals as described in sec�on 6.2.1. This mode of opera�on offers
the benefit of genera�ng difference images of defined signature – the first
image in a burst is always an ac�ve image and thus thermal background ref-
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erencing is straight forward. It was stated before that – for a typical spectral
resolu�on of 1 cm−1 – the rota�on stage that carries the diffrac�on gra�ng
in the external resonator and is thus responsible for emission wavelength
selec�on, requires a step �me of up to ≈ 4.32 ms, during which no camera
readout is performed in the suggested implementa�on. This mode of cam-
era opera�on proved highly disadvantageous in terms of image-to-image
Signal to Noise Ra�o (SNR) varia�on, as the SNR showed to be directly de-
pendent upon the preceding no-readout �me. Readout pauses cause the
first image in a burst phase to be subject to significant noise ar�facts, and
are therefore eminent to prevent.
Hence, the alterna�ve implementa�on given in lis�ng 4 was developed,
which ensures con�nuous readout. I. e. the so�ware trigger is omi�ed in
favor of a con�nuous opera�on of the frame and laser trigger source. Once
the target emission wavelength is set, the measurement rou�ne averages
the subsequent difference images to determine the image layer to the cur-
rent illumina�on wavelength. Whereas it ensures a constant SNR, this im-
plementa�on comes at the cost of an unknown signal value sign, as at the
beginning of each capturing process the rela�ve phase of the synchronized
triggers can not be ac�vely set. In the case of strong backsca�ering sig-
nals, the sign of every image layer can be corrected by comparing the signal
energy of the averaged image to zero in hindsight. However, if the signal en-
ergy is low due to low backsca�ering radia�on or a small illuminated area,
this approach may cause severe spectral ar�facts.
To elude this issue, the process of con�nuous frame grabbing was moved
into a dedicated image grabbing thread that holds a frame counter. The
measurement rou�ne then does not enter the capturing process un�l the
frame counter reaches an even value. This ensures that every averaging
process begins either with an ac�ve illumina�on or thermal background im-
age. Hence, the sign is either correct for all image layers, or inverse, allow-
ing the men�oned correc�on approach to be applicable to the cumula�ve
signal energy of the full image stack.
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Lis�ng 4 : Hyperspectral image capturing process
Input : Start and end wavenumbers w1,wp, wavenumber step Δw and number of

difference images to average per illumina�on wavelength navg
Output : Hyperspectral image X

X ←
wcur ← w1
while wcur < wp do

wcur wcur
w1

while ¬ do

Y ← 0
for i ← 1 to navg do

Δ1 ←
Δ2 ←
Y ← Y +(Δ1 −Δ2)/navg

Y

X. Y

wcur ← wcur + Δw

if X. < 0 then
X ←−X

return X

6.3 Pre-processing

Several pre-processing steps have to be applied to the acquired hyperspec-
tral images, before they can be employed for further analysis. A spectral
normaliza�on procedure renders the data invariant to the laser and coarse
sensor characteris�cs and a homogeniza�on procedure takes care of spec-
tral characteris�cs on a single pixel level. Finally, defec�ve image pixels are
iden�fied and replaced by es�mates derived from their neighborhood.
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6.3.1 Data Normaliza�on

In sec�on 6.1.1 we showed the spectral emission characteris�cs of the EC-
QCL illumina�on source (figure 6.1). The emission power is obviously not
constant throughout the considered spectral range and consequently, the
obtained backsca�ering radia�on is subject to the same varia�on. Similarly,
the sensi�vity of the image sensor is subject to spectral varia�on. Finally,
the atmospheric transmi�vity is subject to varia�ons caused e. g. by humid-
ity. It is therefore eminent to systema�cally eliminate these signal contribu-
�ons, to allow comparability of data obtained with different combina�ons
of laser and camera as well as under other atmospheric condi�ons.
This is done prior to sample measurement using a normaliza�on procedure.
A spectrally flat, sanded aluminum plate with defined roughness serves as
normaliza�on sample. The mean spectrum is employed for normalizing all
following measurements by element-wise mul�plica�on of every observed
spectrum with the inverse of the normaliza�on spectrum.
Let A ∈R

p×N denote the raw hyperspectral image data acquired using the
sanded aluminum plate and X ∈R

p×M denote the raw backsca�ering spec-
tra of the sample to be analyzed.
We obtain a representa�on of the system’s transfer func�on from
A = [�a1, . . . ,�aN ] as the vector

�μ :=
1
N

N

∑
i=1

�ai (6.1)

and – with �μinv deno�ng the element-wise inverse and ◦ deno�ng the
Hadamard product – obtain the normalized hyperspectral image data

X̃ = {�xi ◦�μinv |�xi ∈ X}. (6.2)
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Figure 6.5: Le�: defini�on of averaging regions in hyperspectral image of spectrally flat ob-
ject. Right: the corresponding spectra a�er the normaliza�on process s�ll show
spa�ally dependent oscilla�ons a�ributed to thin-film interference effects in the
sensor chip.

6.3.2 Spectral Homogeniza�on

The normaliza�on procedure described in the previous sec�on serves to
eliminate the spectral dependent impact of laser illumina�on, atmospheric
transmission and cumula�ve sensor sensi�vity. However, it does not con-
sider non-constant spectral sensi�vity differences among the sensor pixels.
To evaluate this impact, an experiment was conducted to analyze the ho-
mogeneity of the sensor pixels’ spectral response to coherent illumina�on.
For this purpose, the laser illumina�on was projected into a gold coated in-
tegra�ng sphere. The image sensor was used to image the sphere’s output
port from a distance of 20 cm. Figure 6.5 shows spectra obtained from the
hyperspectral image recorded in this configura�on a�er the normaliza�on
process. Whereas the mean backsca�ering spectrum of the en�re hyper-
spectral image is fairly constant, strong oscilla�ons with spa�al dependent
phase are observed in the averaged spectra of the considered regions. We
a�ribute these to thin-film interference effects at the sensor.
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Hence, a homogeniza�on process is required to eliminate this sensor-
dependent effect. Let R = [�r1, . . . ,�rN ] denote the hyperspectral data ob-
served using the aforemen�oned integra�ng-sphere setup. We obtain a
homogenized representa�on of the hyperspectral image X

X̃ = X ◦Rinv (6.3)

where once more, ◦ denotes the Hadamard product and Rinv denotes the
element-wise inverse of R.

6.3.3 Defec�ve Pixel Correc�on

A relevant source of noise in images acquired with MCT imaging sensors
are defec�ve pixels. Common defects include pixels or pixel clusters that
are constantly black (i. e. dark dot defects), constantly bright (i. e. bright
dot defects) as well as pixels that switch between the two states rapidly
(blinkers). As defec�ve pixel noise is not covered by the data model, it is
important to eliminate this noise source in a dedicated pre-processing step.
If the loca�ons of the bad pixels are known, it is a valid approach to simply
remove the corresponding spectra from the hyperspectral image. However,
the missing spectral informa�on introduces an addi�onal noise source if
e. g. spa�al filters are employed. This issue is eluded by filling the missing
pixel values using bilinear interpola�on at the bad pixel loca�ons.
As the loca�on of the defec�ve pixels is a constant parameter of the im-
age sensor, it suffices to generate the bad pixel map once for every sensor.
This is achieved by a characteriza�on procedure: a series of raw images of
a thermally homogeneous object is acquired from which the variance is cal-
culated for each pixel. Pixels that have zero variance are either bright dot
defects or dark dot defects and are thus marked as bad pixels. In addi�on,
pixels that show a variance exceeding the 0.95 % quan�le are considered
blinkers and added to the bad pixel map, too. The effect of this defec�ve
pixel removal procedure is illustrated in figure 6.6.
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Figure 6.6: Le�: logarithm of pixel standard devia�on prior to bad pixel replacement. Right:
logarithm of pixel standard devia�on a�er bad pixel replacement using bi-linear
interpola�on. Center: bad pixel map; bright colors indicate presence of a bad pixel.

6.4 The Target Spectral Library

As stated before in chapter 2.3, measurement results acquired by laser
backsca�ering spectroscopy are best comparable to those measured using
FTIR spectroscopy. These are well known, to differ significantly from the
results that are obtained using A�enuated Total Reflectance (ATR) spec-
troscopy. Exis�ng commercial and research spectral databases of solids
provide the la�er and are consequently inapplicable to this task. However,
for a set of substances of interest, the target spectral library can be estab-
lished using the measurement technique on appropriate samples. To obtain
pure target substance spectra, signal contribu�ons of interfering substances
have to be avoided. This can be achieved by choice of a weakly sca�ering
substrate as carrier for the target substance to be measured – ideally a per-
fect mirror in a geometry that avoids specular reflec�on into the detector.
Typical carrier substrate choices include e. g. glass or polished metal.
We present the target spectral library containing PETN, RDX, TNT and Am-
monium Nitrate obtained from such a procedure in figure 6.7. A weakly
sca�ering piece of painted auto-body served as substrate. The spectra were
measured using the short-range hyperspectral image sensor from a distance
of 1.4 m. The substances were deposited on the substrate using a silicone
stamp with an approximate area of ≈1 cm2. In the measurement configu-
ra�on, this amounted to ≈ 1000 spectra for averaging per substance.
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Figure 6.7: Sample traces on a non-sca�ering surface were measured using laser backsca�er-
ing spectroscopy to establish a target spectral library.

6.5 Verifica�on of the Linear Mixture Model

If the substance trace to be detected is deposited on a sca�ering surface,
the spectral signature measured by a single pixel may contain contribu-
�ons of mul�ple substances. For this reason sub-pixel target detec�on al-
gorithms usually adopt a data model for spectral unmixing. As stated in
sec�on 3.2, a common data model for this purpose in the hyperspectral im-
age analysis community is the Linear Mixture Model (LMM). It is le� to be
shown that the LMM is applicable for hyperspectral image data acquired by
the measurement technique of laser backsca�ering spectroscopy. In this
sec�on we present measurement results that support this assump�on.
To verify that the LMM holds, it is sufficient to show that observed spec-
tral mixtures can be generated by linear mixtures of the contribu�ng pure
substance spectra. For this purpose, several experiments were performed
on homogeneous, but strongly sca�ering substrates that contain defined
contamina�on regions.
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Figure 6.8: Homogeneous Polyamide substrate containing spa�ally defined contamina�on ar-
eas (contaminant: RDX powder). A pure background spectrum (blue region) and
a contaminated spectrum (red region) can be obtained by spa�al averaging of the
spectra in the indicated regions.

The spectral signature of the contaminant�t is known in all cases. The de-
fined spa�al contamina�on allows to obtain the mean background signa-
ture �b by spa�ally averaging of the spectra in the corresponding region.
The mean spectrum of the contaminated region�sc is obtained from the
measurement data, likewise. An example of such a sample is shown in fig-
ure 6.8. The homogeneous Polyamide substrate contains spa�ally defined
contamina�on areas. The contaminant in this case was RDX powder. The
men�oned spectra can be obtained by averaging the spectra in the corre-
sponding indicated image regions.
Given LMM holds, we expect that for appropriate choice of abundance coef-
ficients αt and αb

�sc = αb ·�b +αt ·�t. (6.4)

Hence, the unknown abundance coefficient es�mates α̂b and α̂t can be
achieved by solving the linear equa�on system

[�b,�t] · [α̂b, α̂t ]
� =�sc. (6.5)
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Typical abundance value constraints on solving this system of two linear
equa�ons are the sum-to-one constraint (i. e. α̂b + α̂t = 1) and the non-
nega�vity constraint (i. e. α̂b ≥ 0, α̂t ≥ 0). However, the scaling of the
measured spectra is in general unknown due to the measurement method.
Hence, the sum-to-one constraint is inapplicable and we are le� with the
non-nega�vity constraint only.
Having calculated the abundance es�mates, we should be able to un-mix
an es�mate�̂t of the pure substance spectrum�t from the observed mixture
�sc by le�ng

�̂t =
1
α̂t

(�sc − α̂b�b). (6.6)

If the LMM holds, we expect�̂t to match�t well. Mathema�cally, we expect
a small residual norm

‖[�b,�t] · [α̂b, α̂t ]
�−�sc‖2 ≈ 0. (6.7)

The results of the linear unmixing approach for an RDX contaminated
Polyamide sample is given in figure 6.9. The hyperspectral image was
recorded using the short range hyperspectral image sensor from a distance
of ≈ 2m with a spectral resolu�on of 1 cm−1. The pure background and
contaminated spectra were obtained by averaging the spectra in the re-
gions indicated in figure 6.8. The spectrum of the contaminated area shows
contribu�ons of the contaminant (RDX powder) as well as the background
spectrum (Polyamide). Linear unmixing under the non-nega�vity constraint
allows to extract a well matching representa�on of the RDX library spectrum
from the observed spectrum of the contaminated area.
In figure 6.10 we present the linear unmixing residual norm image for two
non-matching choices of target spectra in comparison to the correct choice
(PETN, TNT and RDX, respec�vely). For eased comparison to the true sub-
stance distribu�on, the residual norm images are transparently overlaid
over a gray-scale visible image of the scene.
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Figure 6.9: Verifica�on of the LMM for the case of RDX contaminated Polyamide.

Keeping in mind that low residual norms indicate good model matches we
observe that all models perform equally well in the background region of
the hyperspectral image. In the contaminated regions, the PETN and TNT
models show poor goodness of fit and as expected the RDX model performs
best. We also note that the residual norm image of the RDX model shows
no spa�al structure. As the substance deposi�on was not homogeneous
within the contaminated areas, this indicates that the goodness of fit is in-
dependent to varia�on of substance density and layer thickness.
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���

���
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Figure 6.10: Residual norm image of linear unmixing with non-nega�vity abundance constraint
for RDX contaminated Polyamide sample and several possible target spectra (from
le� to right: PETN, TNT and RDX). A low residual norm indicates a good model
match. As expected, the lowest residual norm is obtained adop�ng a model con-
taining the correct contaminant (RDX).
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Figure 6.11: Backsca�ering (BS) spectra in comparison to results obtained by FTIR reflectance
spectroscopy. The la�er where obtained using a Bruker HYPERION 3000 micro-
scope by averaging over several single grain spectra. The laser backsca�ering
spectra are taken from the substance library. The measurement methods yield
very well comparable results.

6.6 Comparison to FTIR Reflectance Spectroscopy

In this sec�on we compare the spectra obtained by laser backsca�ering
spectroscopy to the well established method of FTIR reflectance spec-
troscopy. Figure 6.11 shows the TNT and RDX library spectra presented in
sec�on 6.4 together with the corresponding FTIR reflectance spectra mea-
sured with a Bruker HYPERION 3000 FTIR microscope. The FTIR spectra
were obtained by averaging of several (≈ 10) single grain spectra. Both
measurement methods yield very well comparable results.
These results suggest that the spectral resolu�on obtained using the EC-QCL
is well suited for spectroscopy of solids. We also follow that physical effects
like spectral mode-hopping that were men�oned in chapter 2, do not affect
the measurement results at the observed scale. These findings support the
assump�ons and conclusions drawn in sec�on 2.4. We note that in general
it is a valid approach to assemble the spectral library for substance detec�on
in hyperspectral images acquired using laser backsca�ering spectroscopy
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with FTIR microscope reflectance spectra. This approach bears the benefit
that the library spectral range is not limited to the spectral range provided
by the laser spectroscopy system and is not prone to noise sources that
might affect the measurement results of the la�er.
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Figure 6.12: Comparison of several FTIR reflectance measurements of single substance grains.
The measurements were performed with a Bruker HYPERION 3000 FTIR micro-
scope in reflectance geometry. The characteris�c spectral features are well pre-
served among different grains of the same substance. Slight baseline dri�s are
observed e. g. in the case of TNT spectra.
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Figure 6.13: Comparison of TNT FTIR reflectance spectra of two different grain sizes (fine and
coarse). While the characteris�c spectral features of TNT are well observable in
both spectra, the grain sizes cause a slight baseline shi�.

6.6.1 Intra-Substance Spectral Variability

To obtain an es�mate of spectral reproducibility, a series of measurements
on single substance grains was conducted to analyze the intra-substance
spectral variability. The measurements were performed using a Bruker HY-
PERION 3000 FTIR microscope.
The results are given in figure 6.12. The material specific characteris�c spec-
tral features are obviously shared among several grains of the same sub-
stance. Spectral varia�ons within a group of grains are predominantly of
low-pass nature and most strongly observed in the case of TNT.
The set of single grain spectra of the la�er can be perceived to fall into
two disjoint subsets being formed by grains P1 to P4 versus grains P5 to
P9. The baseline shi� causing the spectral differences is especially strongly
pronounced in the range from 1100 cm−1 to 1170 cm−1 but are also observ-
able at the short wave fringe of the considered spectral range.
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Figure 6.13 shows the mean spectra of these two TNT clusters to illustrate
the effect in more detail. The observed findings suggest that the spectral
differences can be a�ributed to grain size: grains P1 to P4 were taken from
a TNT sample that was subject to a milling technique that yields a finer
grained powder during the manufacturing process.
We conclude that the impact of grain size on the observed spectra is not
likely to affect the characteris�c spectral features of a substance in term of
absorp�on peak posi�ons, but rather introduces a baseline dri� of low-pass
nature. Consequently – if necessary – such differences can be easily han-
dled by employing a high-pass filter to the spectra in a pre-processing step,
or by including spectral varia�ons of the same substance into the library.
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In this chapter we present a detailed comparison of the hyperspectral data
analysis methods presented so far under special considera�on of specific
proper�es of the proposed ac�ve infrared backsca�ering spectroscopic hy-
perspectral imaging principle. We begin with an analysis of the Minimum
Descrip�on Length model order selec�on method in sec�on 7.2. In sec�on
7.3.1 we illustrate the opera�on of the Adap�ve Background Genera�on
Process algorithm introduced in chapter 4. The impact of the model order
selec�on outcome on target detec�on performance is evaluated in sec�on
7.3.2. We then compare the expected target detec�on performance of the
considered target detec�on algorithms in sec�on 7.3.6 and their sensi�vity
to effects that are specific to the measurement methods (e. g. beam pro-
file and spectral resolu�on) in sec�on 7.3.5. We close with target detec�on
results obtained on real hyperspectral image data in sec�on 7.4.

7.1 Ar�ficial Hyperspectral Images

Several performance analysis tasks men�oned require labeled data that is
not available for real-world data obtained from the presented hyperspectral
image sensor. Therefore, ar�ficial hyperspectral images as introduced in
sec�on 3.4.1 are employed for this ma�er.
If not explicitly stated otherwise, the standard hyperspectral image for this
task is a 256×256 pixel image that comprises four spa�ally dis�nct back-
ground regions. The corresponding spectra were measured from real-world
samples and represent Polyamide in two different colors, jeans and leather.
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The contaminant is deposited in the image center in the form of the Fraun-
hofer logo with linear decreasing abundance from top to bo�om and covers
a total number of 1288 pixels.
The general spectral range is set to cover 1000 cm−1 to 1300 cm−1 at a res-
olu�on of 1 cm−1. The illumina�on beam profile is either top-hat or Gaus-
sian and – using an approximate 4 σ diameter for the la�er as threshold –
yields 45 561 illuminated pixels. This leads to a contamina�on coverage of
2.83 %. The wavelength dependence of laser intensity and sensor sensi�v-
ity are added using a mul�plica�ve model. The spa�al wavelength depen-
dence of the image sensor men�oned in sec�on 6.3.2 is accounted for using
the sensor’s true spectral responses obtained by measurement of a highly
homogeneous and spectrally flat object (a gold coated integra�ng sphere).
The pixel dependent spectral response was added to the simula�on data,
also using a mul�plica�ve model. If not stated otherwise, Addi�ve White
Gaussian Noise (AWGN) is added in a final step, to simulate sensor noise.
The standard Signal to Noise Ra�o (SNR) is set to 10 dB. Figure 7.1 shows
pseudo color representa�ons of the standard ar�ficial hyperspectral image
containing the men�oned background regions and a PETN contamina�on in
two beam shape variants. The pseudo-colors were obtained by equidistant
binning of adjacent infrared spectral bands into RGB channels.

7.2 Comparison of Model Selec�on Methods

The goal of model order selec�on is to es�mate the column order of the
background endmember matrix, i. e. the parameter q of S ∈ R

p×q in the
full Linear Mixture Model (LMM):

�xi = S ·�αi +�n,S ∈ R
p×q, �αi,�n ∈ R

q. (7.1)

In chapter 4 we introduced a parameterless method for this task that is
based on the Minimum Descrip�on Length (MDL) principle.

100



7.2 Comparison of Model Selec�on Methods

Figure 7.1: Pseudo-color image of ar�ficial hyperspectral image comprising four different back-
ground regions and a PETN contamina�on in the center. The contamina�on is
spread across the center with decreasing abundance from top to bo�om. The ar�-
ficial image was generated with a spectral range from 1000 cm−1 to 1300 cm−1 and
a spectral resolu�on of 1 cm−1. The top-hat beam shape (le�) yields a constant SNR
whereas the SNR distribu�on under a Gaussian beam shape (right) shows a spa�al
dependence.

In this sec�on we present results of the suggested MDL model order selec-
�on method and compare its performance to the Noise Subspace Projec�on
(NSP) method [10] and Second Moment Linear Dimension (SML) methods
suggested by Bajorski [4]. As will be subject to a more detailed discussion
later in sec�on 7.3.2 the model order is driven mainly by – but needn’t nec-
essarily be iden�cal – to the number of spectrally dis�nct materials in the
hyperspectral image. It is enlightening to begin with an analysis of model or-
der selec�on in ar�ficial hyperspectral image data and consider real-world
measurements in a subsequent step.

7.2.1 Impact of Noise Whitening

In chapter 4 we ini�ally derived the MDL based model order selec�on
method based on the LMM in its form given in equa�on 7.1. In sec�on
4.4.4 we argued that the noise model is restricted to independent iden�-
cally distributed (i.i.d.) Gaussian white noise. A noise whitening step was
suggested leading to the Noise Adjusted Minimum Descrip�on Length (NA-
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MDL) model selec�on principle. In this sec�on, we analyze the effect and
relevancy of this noise whitening procedure. The aforemen�oned standard
ar�ficial hyperspectral image comprising four different background regions
and a PETN contamina�on serves as hyperspectral observa�on with known
model order for this task.
The noise whitening matrix can be explicitly specified for the case of ar�fi-
cial hyperspectral images. The dewhitening is caused by the normaliza�on
stage of the preprocessing step outlined in sec�on 6.3.1 and the whitening
matrix can be derived based on this knowledge.
To see this, we recall that during preprocessing the hyperspectral image
data X = {�xi}N

i=1 is normalized by the element-wise inverse of the mean
spectrum of a spectrally flat object �winv using the Hadamard product ◦ on
each observa�on spectrum as follows:

X̃ = {�xi ◦�winv |�xi ∈ X}. (7.2)

We rewrite the normaliza�on procedure using the diagonal matrix Winv that
contains the elements of �winv as diagonal elements and obtain:

X̃ = {Winv ·�xi |�xi ∈ X}. (7.3)

The normaliza�on step affects the linear model of the observa�on data as
follows

�̃xi = S̃ ·�αi +Winv ·�ni,�ni ∼ N (�0,σ2I). (7.4)

Hence, the noise is no longer i.i.d, but rather distributed following

�̃ni ∼ N (�0,σ2�Winv). (7.5)

Using this informa�on we adopt the noise whitening procedure given in sec-
�on 4.4.4 to obtain the whitened version of the sample covariance matrix
required within the NA-MDL based model selec�on algorithm.
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Figure 7.2: Impact of noise whitening step on the outcome of the proposed MDL based model
order selec�on method. The standard ar�ficial image containing five different end-
member spectra was employed for this example. Le�: the sum of stochas�c com-
plexity and data model complexity develops no minimum if noise whitening is omit-
ted. Right: if the noise whitening step is used, the MDL model order selec�on cor-
rectly iden�fies the expected number of endmembers.

In figure 7.2 we illustrate the effect of noise whitening on the suggested
MDL based model order selec�on method. In the non whitened version the
data codelength is significantly overes�mated and consequently the result
comprised by the sum of model codelength and stochas�c complexity does
not show a minimum over the poten�al model orders 1 ≤ k ≤ p = 300. If
the noise-whitening step with known noise covariance matrix is employed,
the NA-MDL yields a significantly reduced data codelength es�mate. Con-
sequently, the sum of data codelength and stochas�c complexity develops
a minimum located at the expected model order index k = 5, represen�ng
the five different endmember spectra used to generate the ar�ficial image.

7.2.2 Impact of Homogeniza�on

As outlined in sec�on 6.3.2 a crucial preprocessing step is comprised by
spectral homogeniza�on, in which spa�ally dependent spectral pixel char-
acteris�cs are eliminated.
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Figure 7.3: Impact of homogeniza�on procedure on MDL based model order selec�on using
ar�ficial data with a true endmember count of q = 5. If the homogeniza�on step
is omi�ed the MDL model order selec�on algorithm overes�mates the required
model.

The pixel dependent spectral response is a�ributed to thin-film interference
effects within the camera caused by the coherent nature of the illumina-
�on and is consequently simulated in ar�ficial images using a mul�plica�ve
model. The spa�al dependent mul�plica�ve noise source in uncorrected
images is not covered by the linear mixture model. It is therefore expected
to cause the selected model order es�mate to shi� towards overly com-
plex models compared to the true number of spectrally dis�nct materials
contained in the scene.
This effect is illustrated in figure 7.3. The corresponding experiment was
conducted on a standard ar�ficial image containing q = 5 spectrally dis-
�nct endmembers. Whereas the MDL model order es�mate minimum is
blurred and shi�ed to k = 8 in uncorrected data, it shows a considerably
more pronounced minimum at the expected value of k = 5, if homogeniza-
�on is applied. This underlines the necessity of the spectral characteriza�on
procedure and preprocessing step.
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7.2.3 Comparison to Other Methods

The most straigh�orward way of es�ma�ng the model order of a mul�-
channel observa�on like a hyperspectral image is to compute the number
covariance matrix eigenvalues and threshold their cumula�ve sum to a fixed
frac�on of the total eigenvalue sum. This approach has been introduced as
Principal Components Analysis (PCA) energy metric in chapter 4.2.1. Chang
and Du’s NSP [10] and Bajorski’s SML [4] comprise more sophis�cated meth-
ods for evalua�ng the required model order tailored to applica�on in hy-
perspectral images. In this sec�on we analyze their accuracy under various
circumstances in comparison to the proposed MDL approach using ar�ficial
hyperspectral images.
In table 7.1 we present the impact of addi�ve white Gaussian noise on
model selec�on accuracy of the considered methods. We observe that
with decreasing SNR the PCA energy metric significantly overes�mates the
model order. This is caused by the fact that the noise eigenvalues comprise
a significant frac�on of the total eigenvalue sum. In applica�ons, where a
measurement independent fixed SNR can be determined, an appropriate
threshold can be established in a calibra�on step. This is however not a
feasible approach in the target applica�on, as the SNR is expected to be
subject to measurement specific circumstances (e. g. �lt angle or distance).
Hence, we consider the method inapplicable for the target applica�on.

20 dB 13 dB 10 dB 7 dB 5.2 dB 3 dB 0 dB −0.8 dB

PCA 4 144 235 263 268 271 272 273

NSP 5 5 5 4 4 4 2 1

SML 5 5 4 4 4 4 1 1

MDL 5 5 5 4 4 4 4 3

Table 7.1: Impact of addi�ve white Gaussian noise on model order selec�on accuracy.
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p = 300 p = 150 p = 60 p = 30 p = 12 p = 6

PCA 5 4 4 4 3 2

NSP 5 4 4 4 4 2

SML 4 4 4 4 1 1

MDL 5 5 5 4 4 4

Table 7.2: Model order selec�on under various resolu�on condi�ons. The experiments were
performed on the same ar�ficial image in various resolu�on levels. The original
resolu�on of 1 cm−1 yields p = 300 spectral bands. The lower resolu�on images
were obtained by spectral binning.
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The MDL based model order selec�on method outperforms the compe�ng
methods especially for low SNR. The true model order is underes�mated by
one even at a SNR of 0 dB.
In table 7.2 we present the considered methods’ dependencies on the
available spectral resolu�on of the hyperspectral observa�on to be an-
alyzed. The experiments were performed on a standard hyperspectral
image with a spectral resolu�on of 1 cm−1 in the spectral range from
1100 cm−1 to 1300 cm−1, which amounts to p = 300 spectral bands. The re-
duced resolu�on images were obtained from this image by itera�ve spectral
binning of adjacent bands. For this experiment, the PCA energy metric frac-
�on cutoff threshold was calibrated to yield the correct model order of q= 5
under the standard noise condi�ons (SNR: 10 dB AWGN). With decreasing
spectral resolu�on (i. e. less spectral bands) the PCA energy metric signif-
icantly underes�mates the true model order. The SML and NSP are in this
case well comparable to the PCA energy metric method but are under sev-
eral other resolu�on condi�ons outperformed by the MDL based method.
The la�er underes�mates the true model order only by one, even if only six
spectral bands are available for analysis.

NSP yields stable results down to SNR levels of 3 dB. Under lower SNR lev-
els the model order is severely underes�mated. SML is also reliable for
noise levels down to 3 dB from which point on it is essen�ally dysfunc�onal.
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Figure 7.4: Analysis of NA-MDL result for various numbers of spectrally dis�nct endmember
substances. As expected, the minimum shi�s by one for every endmember added
to the ar�ficial image.
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7.2.4 Further Results

To illustrate opera�on of the MDL model order selec�on method for various
endmember counts, a series of experiments was conducted on ar�ficial hy-
perspectral images comprising one through ten spectrally dis�nct endmem-
bers. A geometric distribu�on of the spectrally dis�nct materials into four
different adjacent regions was employed for the ar�ficial image in figure 7.1.
This approach is also used for the case of ar�ficial images containing exactly
two background materials. All other configura�ons were obtained by ran-
domly distribu�ng the contribu�ng spectra across the image. In addi�on, a
spa�al low-pass filter is applied to simulate defocused imaging. This causes
blurred fringes in the cases of two or four background regions. For all other
cases it induces a random mixture of the contribu�ng substances that are
unlikely to occur in their pure forms within the resul�ng images. The MDL
model order selec�on es�ma�ons from this experiment are presented in
figure 7.4.
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q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10

PCA 1 2 2 3 3 3 3 3 3

NSP 2 3 4 5 6 7 8 8 10

SML 2 3 4 5 6 7 6 6 7

MDL 2 3 4 5 6 7 8 9 10

Table 7.3: Model order selec�on under various background complexity condi�ons. The exper-
iments were performed on ar�ficial images containing different numbers of back-
ground spectra in various spa�al arrangements.

7.3 Target Detec�on Performance

In this sec�on we present a detailed analysis of the system’s detec�on per-
formance using the considered detec�on algorithms and background es-
�ma�on methods under measurement method specific boundary condi-
�ons. As stated before, labeled image data is required for es�ma�on of de-
tec�on performance. This is however not available in the case of real-world
hyperspectral images nor is it feasible to acquire.
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As can be seen, the minimum shi�s by one, for every material spectrum
that is added to the observa�on data. No differences can be observed be-
tween the two aforemen�oned fundamentally different background region
constella�ons.
Table 7.3 shows a comparison of model selec�on results to the other con-
sidered approaches. As shown before, the MDL based model order selec-
�on method recognizes the underlying model order even in those cases,
where the background spectra are randomly arranged and hence, pure
background spectra are not contained in the observa�on data. Among the
compe�ng methods, only NSP was able to iden�fy the correct model order
with the excep�on of q = 9, under these condi�ons. The PCA energy metric
method was essen�ally dysfunc�onal. SML showed to yield systema�cally
underes�mated model order es�mates for q = 8 and higher.
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We therefore conduct the experiments on ar�ficial images and reevaluate
the observa�ons on real measurement data in the following sec�on.

7.3.1 Adap�ve Background Genera�on Process

In sec�on 3.5 we presented the Adap�ve Background Genera�on Process
(ABGP) algorithm for the task of background endmember extrac�on as a
variant of Ren and Chang’s Adap�ve Target Genera�on Process (ATGP). The
purpose of background endmember extrac�on algorithms is to derive a set
of linearly independent spectra that span the background subspace of the
hyperspectral image. This set of spectra forms the background endmember
matrix SB ∈ R

p×q in the full linear mixture model

�x = SB�αB +ST�αT . (7.6)

Background subspace es�ma�on is hence an approach relevant for and
shared among all structured target detec�on algorithms based on the LMM.
By defini�on, image spectra are considered background only, if they do not
contain the target spectrum. I. e. an individual background endmember
set has to be generated for each target spectrum hypothesis in the target
spectral library in the detec�on process.
The ABGP algorithm comprises an itera�ve approach to background sub-
space es�ma�on that employs the orthogonal subspace projec�on opera-
tor for opera�on. The la�er is used in the seeding stage of the algorithm to
generate a mapping of the observa�on spectra into the subset orthogonal
to the concatena�on of target spectrum and all background spectra iden�-
fied so far in each itera�on step. The mapped spectrum with the maximum
magnitude in this subspace is chosen as the next background endmember
and added to the endmember matrix. This process is repeated un�l the set
of q spectra determined by the model selec�on process is completed.
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Figure 7.5: The ABGP algorithm opera�ng on ar�ficial hyperspectral image with PETN as target
spectrum and four different background regions. Top le�: ABGP result for TNT tar-
get hypothesis. The endmember loca�ons are indicated by colored circled crosses
and the spa�al regions containing spectra that form the corresponding cluster are
colored accordingly. Top right: same for PETN hypothesis. Bo�om: the correspond-
ing endmember spectra formed by the cluster mean vectors.

In a subsequent stabiliza�on stage the observa�on spectra are clustered
based on their correla�on to the background endmembers and the cluster
means are u�lized as endmember representa�ves.
We present the ABGP opera�on for the example of an ar�ficial hyperspec-
tral image in figure 7.5. The loca�on of the raw endmember spectra chosen
in the first part of the process are indicated with a colored, circled cross. The
spa�al regions containing spectra that form the corresponding cluster are
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colored accordingly. We present the ABGP outcome for the model order
es�ma�on q = 5 both for the correct hypothesis of PETN as target spec-
trum as well as for the compe�ng hypothesis of TNT as target spectrum.
In the la�er case the ABGP chooses an endmember spectrum for each of
the four background regions and an addi�onal endmember in the area with
high PETN contamina�on, as this is considered background under the TNT
target hypothesis. Under the PETN target hypothesis, the fi�h endmember
is obsolete, in the sense that the background subspace order is exceeded.
Due to the target inclusion guard, no endmember is chosen from the target
contaminated area. Therefore, a redundant background endmember that
has no effect on the background subspace is chosen in the area that was
already covered by endmember three.

7.3.2 Impact of Model Order Mismatch

In sec�on 7.2 we showed that model selec�on es�ma�ons can poten�ally
be prone to inaccuracies under various noise or low resolu�on condi�ons.
It is thus important to analyze the impact of model order es�ma�on miss-
matches upon the target detec�on performance to be expected.
In figure 7.6 we present the Receiver Opera�ng Characteris�cs (ROCs) for
target detec�on in a standard ar�ficial hyperspectral image containing four
spa�ally dis�nct regions and a PETN contamina�on. The detec�on results
were obtained using the Adap�ve Matched Subspace Detector (AMSD) in
combina�on with the ABGP background endmember extrac�on algorithm
for a series of different values of model order es�mates. The ROCs show
the expected true posi�ve rate in terms of the true false alarm rate for dif-
ferent detec�on threshold values. We note that false alarms include both
false alarms for the target substance as well as false alarms of any other tar-
get spectral hypothesis. We observe that if an overly simple model order is
selected (i. e. q < 5), the detec�on performance is significantly decreased
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Figure 7.6: The model order es�mate determines the number endmembers generated by the
background endmember extrac�on step and affects the detec�on performance of
structured target detec�on algorithms. If the model order is underes�mated, the
detec�on performance is significantly reduced, whereas overes�ma�ng the model
order has only marginal impact.
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in comparison to the detec�on performance achieved employed by the in-
tui�vely correct model order (q = 5).
We a�ribute the quan�zed, step-func�on like behavior to the four similarly
sized background regions: depending on the threshold value, an underes-
�mated order model falsely classifies one or several background regions
that are not represented in the background matrix as contaminated regions.
Hence, each region contributes fully or not at all to the false alarm count.
If the model order is overes�mated (i. e. q > 5) no adverse effect on target
detec�on accuracy is observed. This is true for model orders overes�mated
by as much as a factor of four. If the model order is overes�mated by an or-
der of magnitude, a slight reduc�on of target detec�on accuracy is seen. We
a�ribute this minor decrease, to numerical instability of the inverse back-
ground endmember matrix that is employed in the AMSD algorithm.
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whereas significant detec�on performance reduc�ons are to be expected if
the model order is underes�mated. Hence, the chosen model order must
not necessarily match the true physical number of spectrally dis�nct ma-
terials. However, overly simple models are to be avoided. Nevertheless,
as the processing �me of the ABGP is linear in sample size but quadra�c
in model order, it is in general favorable to select an es�mate close to the
lower margin instead of an arbitrarily high number as value of q.

7.3.3 Spectral Resolu�on

The target spectral resolu�on of a hyperspectral image determines the re-
quired measurement �me as several images at limited frame-rate have
to be acquired for every illumina�on wavelength to generate a spectral
band. In addi�on high spectral resolu�on images require higher compu-
ta�on power in the analysis step. For these reasons, it is a desirable goal to
reduce the measurement resolu�on without affec�ng the target detec�on
performance. We present the target detec�on performance for a series of
hyperspectral images of varying spectral resolu�on in figure 7.7. The exper-
iments were performed on a standard ar�ficial hyperspectral image having
a spectral resolu�on of 1 cm−1. The la�er represents the physical spectral
resolu�on limit using an EC-QCL under the specified measurement condi-
�ons (see sec�on 6.1.1 for further details). The reduced resolu�on images
were obtained from this image by selec�on of equidistant spectral channels
and dropping the intermediate bands.
The detec�on performance is compared for five different resolu�on levels.
The highest spectral resolu�on of 1 cm−1, yields a total number of p = 300
spectral bands in the range from 1000 cm−1 to 1300 cm−1. Lower resolu-
�ons of 2 cm−1, 3 cm−1, and 5 cm−1 give rise to p = 150, p = 100 and p = 30
bands. From the results shown in figure 7.7 we conclude that any reduc�on
of spectral resolu�on affects the resul�ng detec�on performance.
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From these experiments we conclude that a robust implementa�on of the
ABGP algorithm is well capable of coping with overes�mated model orders,
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Figure 7.7: Impact of spectral measurement resolu�on on target detec�on performance in an
ar�ficial hyperspectral image containing a PETN trace on four different background
substrates. The maximum spectral resolu�on of 1 cm−1 generates p = 300 spectral
bands from 1000 cm−1 to 1300 cm−1.

The detec�on performance reduc�on is marginal between the 1 cm−1 and
2 cm−1 resolu�on cases and thus the benefit of improved measurement and
analysis computa�on �me might be acceptable.
The discrimina�on performance drawbacks observed from lower spectral
resolu�on suggest however that further resolu�on reduc�on is not advis-
able. We note, that these results are closely related to the feature char-
acteris�cs and more specifically to the feature width of the spectra in the
considered library. In general, the spectral resolu�on has to be sufficient to
resolve the characteris�c features of the target spectra.

7.3.4 Impact of Homogeniza�on Step

An important part in data preprocessing is the homogeniza�on step that
was introduced in sec�on 6.3.2. The coherent nature of the ac�ve illumina-
�on showed to cause thin-film interferences in the detector and induce spa-
�ally dependent oscilla�ons on the resul�ng spectra. This systema�c mul�-
plica�ve noise source is in general not covered by the LMM and is therefore
expected to affect the resul�ng target detec�on performance.
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Figure 7.8: Impact of spa�ally dependent mul�plica�ve oscilla�ons on the measurement re-
sults caused by thin-film interference effects in the camera sensor on target de-
tec�on performance: the significantly decreased detec�on performance can be ei-
ther compensated by the homogeniza�on step in data preprocessing (le�) or by
choosing the systema�cally increased model order outcome generated by the MDL
es�ma�on method (right).

We present the effect of the homogeniza�on step on target detec�on per-
formance in figure 7.8. The performance results were obtained on a stan-
dard ar�ficial hyperspectral image containing a PETN trace on four differ-
ent background materials with, and without the homogeniza�on step. The
AMSD target detec�on algorithm was used in combina�on with the ABGP
background endmember extrac�on method. If the true number of different
materials (i. e. q = 5) is employed as model order for the ABGP algorithm
the detec�on performance is strongly affected if the homogeniza�on step is
omi�ed. In sec�on 7.2 we analyzed the impact of homogeniza�on on the
MDL model selec�on es�mate and observed that omi�ng homogeniza�on
increases the model order. For the specific ar�ficial hyperspectral image,
the MDL generated an es�mated model order of q = 8 on the raw obser-
va�on data. It is therefore interes�ng to analyze detec�on performance,
if this intui�vely overes�mated model order is applied in the background
extrac�on step. In figure 7.8 we compare the results obtained on the non-
homogenized hyperspectral image that was obtained by the model order
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suggested by MDL (i. e. q = 8) to the intui�ve choice of physically dis�nct
materials in the image (i. e. q= 5). It is well observable that using the higher
model order generates a target detec�on performance now again compa-
rable to the results obtained a�er applica�on of the homogeniza�on step.
From these observa�on we conclude that the thin-film interference induced
noise source can be dealt with by elimina�on of the systema�c effect using
homogeniza�on. We also follow that an alterna�ve way of handling this ef-
fect is to accept the increased model order required by the raw data. We
hold the first approach for favorable, as it generates true material spectra
and requires lower order models which is considered beneficial in most ap-
plica�ons. In addi�on, the spectroscopy method might be applied for a
comprehensive spectral analysis in a scene, in which case omi�ng the ho-
mogeniza�on procedure would lead to significant ar�facts.
Finally, we observe that under unknown noise condi�ons, the intui�ve phys-
ical choice of model order that is based on the true number of spectrally dis-
�nct materials in an observa�on does not necessarily represent the model
order that yields op�mum target detec�on performance. In the case of
non-homogenized data, the MDL es�mate might ini�ally seem flawed, yet
the obtained detec�on performance of the la�er is significantly outper-
formed by that gained, following the MDL sugges�on.

7.3.5 Impact of Beam Profile

The hyperspectral image sensor presented in this work is equipped with
speckle reduc�on op�cs that provides a top-hat beam profile. In sec�on
6.1 we pointed out that this kind of beam profile is favorable compared to a
Gaussian beam profile that is obtained, if no beam shaping is done. In this
sec�on we present simula�on results that serve to support this statement.
Figure 7.9 shows a performance comparison under top-hat and Gaussian
beam profile illumina�on condi�ons between the Matched Filter (MF) and
the AMSD target detec�on algorithm with ABGP background extrac�on.
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Figure 7.9: Analysis of detec�on performance on illumina�on beam profile. Right: the de-
tec�on performance of the CFAR AMSD detec�on algorithm is independent to se-
lec�on of beam profile, whereas the outcome of the non-CFAR MF detector (le�)
benefits from the constant SNR distribu�on yielded by the top-hat profile.

Using standard ar�ficial hyperspectral images containing a PETN contami-
nated area on four background regions for the measurements we observe
that the impact of beam profile on detec�on performance generated by the
AMSD detec�on method is marginal. In contrast, the top-hat beam pro-
file yield significantly be�er performance results compared to the Gaussian
beam profile, if the MF is used for target detec�on.
These findings are a�ributed to the Constant False Alarm Rate (CFAR) prop-
erty of the AMSD algorithm. Under CFAR condi�ons, the target detec�on
performance is independent to the signal to noise ra�o. Consequently, the
false alarm rates obtained by the AMSD algorithm using a Gaussian beam
profile are spa�ally independent and thus match the results obtained by
choice of a top-hat beam profile. The MF however is not CFAR and thus
suffers detec�on accuracy performance reduc�on induced by the spa�ally
non-constant SNR distribu�on.
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7.3.6 Comparison of Detec�on Algorithms

In sec�on 3.3 we presented an overview over target detec�on algorithms
that are widely used in the hyperspectral image analysis community. Based
on a hierarchy of two criteria, the detec�on methods were classified into
three families. The family of full pixel target detectors, do not fulfill the sub
pixel detec�on capability criterion and do not rely on a specific data model.
This family contains the Normalized Cross Correla�on (Normalized Cross
Correla�on (NCC)), the Matched Filter (MF) and the Constrained Energy
Minimiza�on (Constrained Energy Minimiza�on (CEM)) algorithms. Among
the sub pixel detectors we differen�ate between the structured target de-
tectors (Orthogonal Subspace Projec�on (OSP) and AMSD) that require a
background endmember extrac�on algorithm and the unstructured meth-
ods (e. g. the Adap�ve Coherence / Cosine Es�mator (ACE)) that model the
background as noise clu�er.
In this sec�on we compare the target detec�on performance obtained by
the considered methods for the example of the standard ar�ficial hyper-
spectral image containing a PETN trace spread on four background mate-
rials. The AMSD algorithm occurs in two flavors that result from the two
considered background endmember extrac�on methods. The AMSD-PCA
generates the background spectra using the sample covariance eigenvec-
tors to the first q most significant eigenvalues (see sec�on 3.5.1). The AMSD
implementa�on that u�lizes the proposed ABGP background endmember
extrac�on approach is denoted AMSD-ABGP.
The results are given in figure 7.10. As expected, the sub pixel target de-
tec�on algorithms significantly outperform all members of the full pixel de-
tectors. This can be contributed to the fact that only few pure target pixels
are contained in the image. Among the full pixel detectors the CEM and MF
approach yield well comparable detec�on performance results, while the
NCC proves essen�ally dysfunc�onal due to excep�onally high false alarm
rates, even at high threshold values.
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Figure 7.10: Performance analysis of various target detec�on algorithms. The model-based
sub pixel detec�on algorithms (le�) significantly outperform the full pixel detec-
�on algorithms (right). No significant difference is observed between structured
target detectors (AMSD, OSP) and the unstructured detector (ACE). The ABGP im-
plementa�on outperforms the more straigh�orward PCA implementa�on of the
AMSD algorithm.

Among the AMSD implementa�ons, the variant that uses the ABGP
endmember extrac�on method significantly outperforms the more straight-
forward AMSD-PCA implementa�on. No significant difference is observed
between the considered structured and unstructured target detec�on algo-
rithms, as OSP, ACE and AMSD-ABGP detec�on result performance results
are well comparable.
Given the findings from these experiments we will employ the AMSD detec-
tor with ABGP background extrac�on (AMSD-ABGP) for most of the follow-
ing. Not only showed the expected detec�on performance to be among
the most promising of the considered methods. Moreover, its physically
meaningful background endmember extrac�on method and u�liza�on of
the same in the hypothesis tes�ng step renders it a transparent and intu-
i�ve detec�on algorithm for the task at hand.
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Figure 7.11: Detec�on performance (le�) for the considered spectral library substances (right).
Target detec�on performance is well comparable among the four material spectra,
although they show considerable differences in feature richness.

7.3.7 Impact of Substance Spectra

In sec�on 6.4 we presented the library containing the spectra of four haz-
ardous substances that are of interest in many security related applica-
�ons. While the substance spectra are well dis�nguishable from among
each other, they show considerable differences in spectral feature richness.
Whereas PETN, TNT and RDX possess several characteris�c spectral fea-
tures, AN comprises only one characteris�c feature at 1042 cm−1. Intu-
i�vely, one is led to assume that this renders the la�er to be more difficult
to detect in comparison to the compe�ng substances. In this sec�on, we
seek to inves�gate, if this no�on is supported by experimental data.
A series of experiments was conducted on a set of four ar�ficial hyperspec-
tral images, each containing a trace contamina�on with one of the sub-
stances from the spectral library. The AMSD algorithm with the ABGP back-
ground endmember extrac�on method using a model order of q = 5 was
employed as target detec�on process. We present the respec�ve ROCs gen-
erated by these configura�ons in figure 7.11. We observe that at a false
alarm rate of 0.5 % a detec�on performance of greater than 95 % is ob-
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tained for every target substance. Nevertheless, slight performance differ-
ences can be seen at the lower false alarm fringe. While best results are
achieved upon the image containing an RDX contamina�on, PETN and TNT
yield slightly weaker results. As expected, the weakest detec�on perfor-
mance among the considered substances is achieved for detec�on of AN.

7.4 Detec�on Results on Real World Samples

All results presented in this chapter up to this point were obtained upon ar-
�ficial hyperspectral image data. Baring these results in mind, we now turn
our a�en�on to analysis of real-world measurement data. Various sam-
ples containing traces of the considered library substances were available
for this analysis. The samples consist of a homogeneous substrate material
(e. g. jeans cloth or Polyamide) containing several contaminated areas.
The contaminants were deposited on the substrate using a 1.5 cm diame-
ter round silicone stamp that was dived into the pure substance powder and
then placed on the substrate in a regular pa�ern. Whereas this deposi�on
method does not yield defined quan��es of target substance nor a strictly
defined spa�al distribu�on, experiments showed, that it serves well to sim-
ulate fingerprint traces, expected to be observed in real-world situa�ons.
The sample substrates have a side length of 10 cm by 10 cm and typically
contain 16 contaminated areas. An example is given in figure 7.12, showing
a visible image of the scene transparently overlaid by mean signal energy
image and a false color image. The former was obtained by integra�ng over
the spectral dimension of the image, the la�er by equidistant spectral bin-
ning of adjacent IR channels into RGB channels. The measurements pre-
sented in this sec�on were obtained using the short range hyperspectral
image sensor presented in chapter 6 from a distance of ≈ 1.4 m. Using a
50 mm projec�on op�cs and the rectangular waveguide for beam shaping,
the illuminated area at this distance amounts to about 6.4×6.4 cm2.
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Figure 7.12: Typical sample containing RDX traces on a Polyamide substrate. The visual image
is overlaid with the mean backsca�ering intensity (le�) and a pseudo-color rep-
resenta�on of the hyperspectral image (right). The pseudo-color representa�on
was obtained by equidistant binning of the IR channels onto RGB channels and
indicates spectral differences between target and substrate.

Given the results in sec�on 7.3.3 a spectral resolu�on of 1 cm−1 was cho-
sen in the spectral range from 990 cm−1 to 1310 cm−1. Per each illumina�on
wavelength, a total number of 10 difference images was averaged to gen-
erate the corresponding spectral band image.
The remainder of this sec�on is organized as follows: we begin with an anal-
ysis of the considered model order selec�on methods on real-world mea-
surement data and follow with an inves�ga�on of the ABGP background
endmember extrac�on process. We close with an overview over results
obtained by the target detec�on step for several sample measurements.

7.4.1 Model Order Selec�on

We presented a comparison of the considered model order selec�on meth-
ods on ar�ficial hyperspectral image data under various noise and resolu-
�on condi�ons in sec�on 7.2. In the following, we will examine, if these
results are transferable to real-world measurements as introduced in the
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Sample PCA NSP SML MDL

RDX on jeans 202 53 2 71

PETN on jeans 237 44 1 61

TNT on jeans 124 52 1 74

RDX on PA 181 45 2 69

PETN on PA 173 50 2 81

TNT on PA 142 47 1 75

Table 7.4: Model order es�mates generated by the considered es�ma�on methods on various
hyperspectral images obtained by the short range hyperspectral image sensor.

beginning of this chapter. We note that all considered samples contain ex-
actly two different substances: the substrate material and the contaminant.
In table 7.4 we present the outcome of the PCA, NSP, SML and noise
whitened MDL model order selec�on methods upon various samples.
Among the considered methods the results generated by the SML method
match most closely the intui�ve expected model order based on the
physical number of spectrally dis�nct materials in the image. All other
considered methods significantly exceed this number up to two orders of
magnitude in the case of the PCA based method. The NSP consistently pro-
duces es�mates of around 50, whereas the MDL based method generates
es�mates of 61 to 81. The MDL es�mates lie significantly beyond the es-
�mates expected from the simula�on given in sec�on 7.2. In a robust im-
plementa�on of the ABGP, this model overes�ma�on has no impact on the
detec�on performance as shown in sec�on 7.3.2 for the case of ar�ficial
data and again later in sec�on 7.4.3 for the case of real measurement data.
However, as stated before, the computa�on �me of the ABGP depends pre-
dominantly on the target model order, hence lower model order es�mates
would be beneficial. It is therefore of interest to iden�fy the effect that
causes the observed behavior of the MDL and NSP methods on real mea-
surement data.
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Figure 7.13: Comparison of covariance matrix eigenvalue distribu�ons of ar�ficial and real
measurement data containing RDX on jeans substrate. We show the histogram
of logarithmic normalized eigenvalues of the respec�ve sample covariance matri-
ces. Whereas eigenvalues generated by the sample covariance matrix of ar�ficial
hyperspectral image data are obviously well localized in comparison to the those
generated by real data. This effect is a�ributed to correlated noise observed in
the real measurement data.

An indica�on can be derived from a comparison of the covariance matrix
eigenvalue distribu�ons obtained from real and ar�ficial hyperspectral im-
age data as given in figure 7.13. We present the histogram of eigenvalues
generated by the sample covariance matrix of an ar�ficial and real hyper-
spectral image, both containing an RDX contamina�on on jeans substrate.
The eigenvalues were obtained from the noise whitened covariance matri-
ces (see sec�on 4.4.4) and scaled to a maximum of one. Due to the large
value range, the histograms were generated on the logarithms of the cor-
responding data sets.
From the distribu�ons observed in figure 7.13 we conclude that the gen-
eral noise level was significantly higher in the ar�ficial hyperspectral image.
However, in comparison to the eigenvalues obtained from the real measure-
ment, the ar�ficial noise related eigenvalues are more concentrated around
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the mean noise variance. The broader distribu�on of the real measurement
covariance matrix eigenvalue indicate presence of correlated noise that was
obviously not fully removed by the noise whitening step.
Correlated noise is commonly observed in many hyperspectral imaging ap-
plica�ons [53]. The SML method that performed best in terms of being clos-
est to the true physical number of spectrally dis�nct materials in the scene,
is based on an empiric observa�on on the distribu�on of covariance ma-
trix eigenvalues in hyperspectral images. It therefore intrinsically accounts
for presence of correlated noise and its approach is in this sense superior
to the more theore�cal provenance of NSP and MDL. Nevertheless, we will
show in sec�on 7.4.2 that the physical number of spectrally dis�nct materi-
als can not in general be regarded the best choice of model order es�mate
for the ABGP background subspace es�ma�on algorithm. Finally we note
that the most probable correlated noise source in this measurement con-
figura�on is comprised by speckle noise that is not completely eliminated
by the speckle-reduc�on unit.

7.4.2 Background Endmember Extrac�on

In sec�on 7.3.2 we showed that an underes�mated model order strongly af-
fects the detec�on performance for structured target detec�on algorithms.
From this we conclude that the quality of the background endmember ma-
trix is crucial for the resul�ng target detec�on performance. If a background
spectrum is omi�ed (as is the case, if the model order is underes�mated),
target detec�on performance is expected to decrease. The endmember ex-
trac�on method favored in the AMSD implementa�on in this work is the
ABGP and it is therefore of interest to analyze its opera�on on measure-
ments obtained by the hyperspectral image sensor.
We present the output of the ABGP algorithm for background endmember
extrac�on in figure 7.14. The sample under test is a Polyamide substrate
containing RDX contamina�ons.
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Figure 7.14: Endmember registra�on map of ABGP algorithm for background extrac�on. The
measurement was performed on a Polyamide substrate with RDX contamina�ons
from a distance of ≈ 1.4 m with a spectral range from 990 cm−1 to 1330 cm−1 and
a spectral resolu�on of 1 cm−1. Le�: background registra�on map for ABGP with
hypothesis PETN; right: same for RDX.

As in sec�on 7.3.1, we show the endmember loca�ons generated by the first
part of the ABGP algorithm, together with the cluster membership of each
pixel vector as a result of the stabiliza�on stage. The endmember clustering
results are given as color maps overlaid over a visible image of the sample.
The ABGP outcome is given for the case of a target spectrum that is not
contained in the observa�on data (i. e. PETN) and for the case of the con-
tamina�on substance. A fixed value of q = 3 was chosen as total number of
endmembers. In the case of non-exis�ng target (i. e. the PETN hypothesis
in this case) the ABGP chose the first two endmembers to account for the
Polyamide substrate. The third endmember fell into an RDX contaminated
area that is hence correctly considered background for this hypothesis. The
clustering results show a random distribu�on of endmember one and two
within the background area, indica�ng a fairly homogeneous substrate ma-
terial and illumina�on. Under the RDX hypothesis, the spectra from the
contaminated areas fall into the rejec�on class that is not used for back-
ground matrix genera�on. The three endmember spectra are selected by
the ABGP algorithm at various loca�ons in the scene that generate a spa-
�ally random clustering membership.
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Figure 7.15: Endmember registra�on map of ABGP algorithm for background extrac�on. The
measurement was performed on a jeans substrate containing RDX residues from
a distance of ≈ 1.4 m with a spectral range from 990 cm−1 to 1330 cm−1 and a
spectral resolu�on of 1 cm−1. Le�: background registra�on map for ABGP with
hypothesis TNT; right: same for hypothesis RDX.

Figure 7.15 shows the ABGP result for the case of a jeans cloth sample con-
taining RDX contaminated areas. In this case, results for each of the two
hypotheses of TNT and RDX contamina�on are given as colormaps overlaid
over visible images of the sample. As for the previously discussed case of
RDX contamina�on on Polyamide, the pixel vectors within the target con-
taminated areas fall into the rejec�on class. The three background end-
member clusters are randomly distributed across the remaining scene. For
the case of the TNT hypotheses, the first two endmembers generated by the
ABGP come from areas contaminated by RDX, the first endmember being in
a region of high contamina�on and the second at a fringe area containing
a higher background contribu�on. It is only the third endmember that is
chosen within uncontaminated background region.
A hint towards explana�on of this behavior can be drawn from the spa-
�al distribu�on of the normalized backsca�ering intensity, shown in figure
7.16. The mean backsca�ering signal intensity measured on the jeans cloth
background is significantly lower compared to that observed from the con-
taminated areas.
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Figure 7.16: Spa�al distribu�on of the normalized mean backsca�ering intensity of RDX on
Jeans cloth. The mean energy in the background substrate backsca�ering signal
is low compared to that observed from the target contaminated areas.

We recall at this point that the first part of the ABGP algorithm, is based
upon a magnitude measure: in each itera�on an orthogonal projec�on op-
erator is employed to map the observed data into the subspace that is or-
thogonal to the space spanned by the background subspace generated so
far. The method therefore intrinsically favors brighter areas in the image.
Following these findings, one could be misled to choose an implementa�on
of the ABGP that operates on a mean intensity-normalized representa�on
of the hyperspectral image. The la�er can be easily obtained by dividing
each pixel vector by its mean intensity. This approach has the side effect
of strongly amplifying not only the signal but also the noise of pixel vectors
with low mean energy, especially at the edges of the illumina�on area. Par-
�cularly noisy spectra yield a higher magnitude in the orthogonal subspace
and consequently this variant of the ABGP algorithm is drawn towards low
energy pixels, which is for obvious reasons highly undesirable. We conclude
that the stated property of favoring bright pixels is not so much a flaw, but
can rather be regarded beneficial for the purpose. Yet, these findings em-
phasize the necessity of selec�ng a model order that is beyond the intui�ve
expected physical number of spectrally dis�nct materials in the image.
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Figure 7.17: Detec�on of RDX residues on jeans cloth produced by the AMSD-ABGP algorithm
with two different model orders. The detec�on image on the le� was obtained
using a model order es�mate of q = 5 for the ABGP process. The MDL model
order es�mate q = 71 was used for the detec�on image on the right. The results
suggest that overes�ma�on of the model order has no adverse effect on target
detec�on performance.

7.4.3 Impact of Model Order Mismatch

In sec�on 7.4.1 we observed that the model order es�mates generated
by all considered es�ma�on methods are subject to possible mismatches.
While the PCA based method as well as the NSP and MDL approaches sig-
nificantly overes�mate the required model order, the SML algorithm yields
a measure that is more closely related to the physical number of spectrally
dis�nct materials in the scene. We demonstrated in the previous sec�on
that the la�er might cause the ABGP to generate insufficient background
representa�ons. In sec�on 7.3.2 we showed that the target detec�on accu-
racy of the ABGP based AMSD implementa�on is robust to overes�ma�ng
the required model order. It is le� to inves�gate the impact of model order
overes�ma�on on real hyperspectral image measurements. In figure 7.17
we present the target detec�on results obtained on an RDX contaminated
jeans cloth sample using the ABGP based AMSD algorithm. The first result
was obtained by opera�ng the ABGP in a manual mode choosing q = 5 as
model order es�mate. The second detec�on result was generated, using
the MDL es�mate q = 71.
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The two opera�on modes yield close to iden�cal target detec�on results.
This indicates that the required model order is significantly lower than that
generated by the MDL es�ma�on method. Despite significantly increased
processing �me, the ABGP algorithm ensures that target detec�on perfor-
mance is however not degraded.

7.4.4 Short Distance Detec�on Results

Having analyzed the opera�on of the ABGP as background extrac�on
method we now turn towards results obtained from the detec�on step on
real-world measurements. Lead by conclusions following from sec�on 7.3.6
we concentrate on the CFAR sub pixel target detec�on algorithm AMSD (in
the implementa�on variant using the ABGP) and the ACE detector.
The results presented in the following were obtained from the same sam-
ples and measurement configura�on as outlined at the beginning of the
previous sec�on 7.4.2, i. e. using the short range hyperspectral image sen-
sor with a resolu�on of 1 cm−1 in the range of 990 cm−1 to 1310 cm−1.
In figure 7.18 we present the detec�on results of the AMSD-ABGP target
detec�on method on various combina�ons of jeans cloth and Polyamide
substrates contaminated by traces of RDX, PETN and TNT. We observe that
all RDX contaminated areas on the Polyamide substrate successfully gener-
ated posi�ve detec�on results with only minor false alarms raised for the
compe�ng substances (PETN, TNT an AN).
For the case of the PETN contaminated Polyamide sample, the system also
iden�fied target pixels within all PETN regions, again raising only minor false
alarms for the compe�ng substances. For the case of TNT contaminants on
Polyamide the detec�on outcome is slightly inferior, as one of the contam-
ina�on areas failed to cause an alarm. All other contaminated areas were
successfully iden�fied and only few false alarms are obtained.
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Figure 7.18: Detec�on results obtained using the AMSD-ABGP target detec�on algorithm. Top:
Detec�on of RDX contaminated areas on a Polyamide substrate. Top le�: high RDX
concentra�ons, top right: lower concentra�ons. Bo�om: detec�on of PETN (le�)
and TNT (right) contamina�on areas on a Polyamide substrate.

These results are well comparable to the outcome of the simula�ons shown
in sec�on 7.3.7, where we observed that RDX is expected to yield slightly
be�er performance than PETN, TNT and AN in descending order.
Having the detec�on results given in figure 7.18 it is invi�ng to employ the
classifica�on results to reconfirm applicability of the LMM for the proposed
measurement method. As in sec�on 6.5, we employ the LMM to a�empt
to unmix the observed spectra from the areas that were classified as con-
taminated by the AMSD-ABGP algorithm. If the LMM holds, linear unmix-
ing is expected to be capable of extrac�ng the library spectrum from the
contaminated mean spectrum, given the background spectrum and the ap-
propriate library spectrum. In figure 7.19 we present results from spectral
unmixing, for the case of the detec�on results acquired on the TNT contam-
inated Polyamide sample.
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Figure 7.19: Valida�on of linear mixture model for the case of TNT on Polyamide substrate.
Using the background and contaminated spectra obtained by spa�al averaging
over the corresponding regions as generated by the detec�on step we obtain a
close match of the TNT library spectrum.

It is well observable that the mean spectra of background and contami-
nated area are highly similar. Nevertheless, using the linear mixture model
and the spectral unmixing process outlined in sec�on 6.5 the TNT library
spectrum can be almost perfectly gained from the background and contam-
inated spectrum with a low residual norm.

7.4.5 Comparison of Detec�on Algorithms

Besides the AMSD target detec�on algorithm we considered target detec-
�on performance of a variety of other approaches in sec�on 7.3.6: the ACE
detector as unstructured detec�on algorithm, the OSP detector as struc-
tured target detector and the MF, CEM and NCC algorithms as representa-
�ves of full pixel target detec�on methods. In figure 7.20 we present a
comparison of the detec�on results obtained by the men�oned methods
for the case of PETN residues on a Polyamide substrate. From these results
we conclude that the performance differences among the model based sub
pixel detectors (AMSD-ABGP, ACE and OSP) are marginal and significantly
outperform the full pixel detectors.
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Figure 7.20: Comparison of detec�on results obtained by the considered sub pixel detec�on
algorithms (top row) and full pixel detectors (bo�om row) of PETN residues on a
Polyamide sample.

While the sub pixel detectors are s�ll capable of detec�ng low residue con-
centra�ons, the full pixel detectors yield successful detec�on results only
for areas with high target coverage. Among the full pixel detectors, the
CEM detector slightly outperforms the MF and NCC detector. The MF is
both prone to false alarms of TNT as well as PETN false alarms at the fringes
of the illuminated area. High false alarm rates for TNT are observed in the
detec�on map generated by the NCC detector. These observa�ons match
well to the simula�on results in sec�on 7.3.6.
Whereas – both in ar�ficial and real-world hyperspectral image data – only
marginal performance differences were observed among the structured de-
tec�on algorithms, only the AMSD and the ACE detector have the CFAR
property which is beneficial under various condi�ons (sec�on 7.3.5). Sev-
eral detec�on results using the AMSD-ABGP algorithm were already shown.
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Figure 7.21: Detec�on of RDX, PETN and TNT residues using the ACE target detec�on algorithm
on various samples.

ment data using the ACE target detec�on algorithm in figure 7.21. As ex-
pected, the ACE detec�on results are well comparable to those obtained
from the AMSD-ABGP algorithm. All RDX and PETN contaminated areas on
the Polyamide substrate generated posi�ve detec�on results. The TNT con-
tamina�ons on Polyamide and jeans cloth were also successfully iden�fied
with no false alarms raised for the compe�ng substances.
We conclude that most results obtained from experiments on ar�ficial hy-
perspectral image data are well transferable to analysis of real measure-
ment data. Finally, both considered sub pixel detec�on algorithms suggest
to comprise promising approaches for substance detec�on in hyperspectral
image data acquired using the proposed measurement method.
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Figure 7.22: Detec�on of TNT residues on jeans cloth from a distance of 15 m using the long
range setup of the hyperspectral imaging sensor. The detec�on results were ob-
tained using the AMSD-ABGP detec�on algorithm.

7.4.6 Long Range Detec�on Results

In a final step we now turn towards evalua�on of hyperspectral image data,
acquired using the long range hyperspectral image sensor presented in sec-
�on 6.1. To enable long range measurements, this setup differs from the
short range hyperspectral image sensor predominantly in terms of collec-
�on and projec�on op�cs. As stated earlier, customized Schmidt-Cassegrain
mirror telescope with a focal length of 1 m and an f-number of f / 3 serves
as collec�on op�cs that provides sufficient spa�al resolu�on for employing
the suggested target detec�on algorithms for detec�on of substance traces
across longer distances. The projec�on op�cs were chosen as to achieve
a circular top-hat beam profile with a diameter of about 5 cm at a typical
opera�ng distance of ≈ 15 m. In figure 7.22 we present detec�on of TNT
residues on a jeans cloth substrate using the long range hyperspectral image
sensor. The measurement was performed over the full tuning range from
1000 cm−1 to 1300 cm−1 at a resolu�on of 1 cm−1 and a distance of ≈ 15 m.
The AMSD-ABGP detec�on algorithm was employed for target detec�on.
The contaminated areas were successfully iden�fied and no false alarms
were generated for the compe�ng substances.
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Figure 7.23: Top: Polyamide carrying bag containing several Ammonium Nitrate contamina-
�ons. Bo�om: detec�on results obtained using the long range hyperspectral im-
age sensor from a distance of ≈17 m. All AN contamina�on areas were success-
fully detected by the AMSD-ABGP detec�on algorithm.

In figure 7.23 we present measurement results using the same setup for de-
tec�on of traces of Ammoniumnitrate (AN) on the surface of a Polyamide
carrying bag from a distance of ≈17 m. Again, the detec�on results were
obtained using the AMSD-ABGP detec�on algorithm. Three different AN
contamina�on areas were successfully iden�fied with no false alarms gen-
erated for the compe�ng substances.
An analysis of the corresponding spectra is given in figure 7.24. In compari-
son to the spectra obtained by the short range hyperspectral image sensor
the acquired signals have a considerably lower SNR. This is caused not only
by the larger measurement distance, but also by degraded imaging quality
(sec�on 6.1) and atmospheric scin�lla�on effects. In addi�on, the AN spec-
trum has only few characteris�c spectral features in the considered wave-
length range at around 1042 cm−1.
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Figure 7.24: Spectral analysis of the AMSD-ABGP detec�on results on long distance measure-
ment of AN on Polyamide. Le�: the mean spectrum of the contaminated area
shows the AN characteris�c spectral feature at 1047 cm−1. Right: linear un-mixing
allows to obtain the target spectrum from background and contaminated spec-
trum.

The corresponding spectral feature is observed in the mean spectrum of
the contaminated area in figure 7.24 that otherwise predominantly mimics
the background spectrum. Nevertheless, using linear unmixing, the library
spectrum can be obtained from the contaminated and background spectra
using the linear mixture model fairly well.

7.5 Summary and Conclusion

In this chapter we presented a detailed analysis of the data analysis meth-
ods introduced in chapters 3 and 4 under special considera�on of ar�facts
and general proper�es specific to the proposed measurement methods.
Results obtained on ar�ficial hyperspectral data served as guides for assem-
bly of a data processing and analysis framework opera�onal on real hyper-
spectral image data. We presented target detec�on results for various sub-
stance traces using both the short range and the long range variant of the
hyperspectral image sensor. Both the ACE detector as well as the AMSD
target detec�on algorithm implemented with the proposed ABGP back-
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ground extrac�on method showed well applicable for this task. Compared
to the compe�ng methods, the proposed MDL model selec�on method
proved superior for analysis of ar�ficial data, yet highly sensi�ve to corre-
lated noise under which it selects significantly overes�mated models. Nev-
ertheless, it was shown that – while highly sensi�ve to overly simple models
– the AMSD-ABGP target detec�on process is robust against overes�mated
model orders.
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8 Extension to Real-Time
Spectroscopic Sensing

In the previous chapter we provided a detailed analysis of the consid-
ered data analysis algorithms applied to hyperspectral images obtained by
the proposed tunable long-wave infrared (LWIR) laser based backsca�er-
ing spectroscopy principle. The hyperspectral image acquisi�on process is
however �me consuming. The most relevant factors in this regard are the
process of mechanical wavelength tuning and the limited sensor frame rate,
in combina�on with online preprocessing. In a typical sensor configura-
�on, a full hyperspectral image with a 1 cm−1 resolu�on in the range from
1000 cm−1 to 1300 cm−1 is acquired and ready for analysis in ≈ 20 s. Due
to the measurement principle, any rela�ve movement of target or sensor
render the resul�ng measurement data essen�ally unusable. Thus, appli-
ca�on of this measurement technology is currently reliant on fairly coop-
era�ve or sta�c scenes. In this sec�on we will present a modifica�on of
the measurement principle that allows real-�me spectroscopy and conse-
quently enables remote substance detec�on in dynamic environments at
the expence of imaging capability in a stricter sense. This is achieved by re-
placing the conven�onal mechanically tuned External Cavity Quantum Cas-
cade Laser (EC-QCL) by a rapid wavelength-scanning Micro Opto Electrome-
chanical System (MOEMS) tuned EC-QCL that was developed in collabora-
�on with Fraunhofer IPMS [24, 47]. The technique allows a full spectral scan
at a �me-scale of ≈ 1 ms rendering measured spectra invariant to rela�ve
mo�on of sensor or sample that might be expected in relevant scenes.
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Figure 8.1: The MOEMS EC-QCL uses a MOEMS gra�ng for wavelength scanning, that oscillates
at it’s resonance frequency. Hence, emission wavelength is a func�on of �me.

The final measurement system employs a single element detector to pro-
duce a spectral acquisi�on rate of around 1 kHz at an average spectral res-
olu�on of approximately 1.5 cm−1. We begin with a descrip�on of the illu-
mina�on source in sec�on 8.1. In sec�on 8.2 we present the experimental
setup and follow with explana�on of the data acquisi�on process in sec�on
8.2.1. We close with a presenta�on of measurement results in sec�on 8.3
and an analysis of real-�me opera�on of the data analysis process.

8.1 The MOEMS EC-QCL Illumina�on Source

In this sec�on we introduce the MOEMS External Cavity Quantum Cascade
Laser (MOEMS EC-QCL) as rapid wavelength scanning variant of the EC-QCL
presented in sec�on 6.1.1. The la�er will be referred to, using the term
step scanning EC-QCL in the following. As outlined in sec�on 6.1.1 the step
scanning EC-QCL comprises an op�cal gra�ng as wavelength selec�ve ele-
ment that is mounted upon a conven�onal piezo-driven rota�on stage. The
la�er allows control of the emission wavelength by manipula�ng the angle
of incidence. We show an illustra�on of the fast scanning MOEMS EC-QCL
principle in figure 8.1. As in the layout of the sta�c EC-QCL, the QCL chip
is operated using an external cavity resonator in a Li�row configura�on. In
this variant a gra�ng is employed as wavelength selec�ve feedback element
that is etched into the surface of a MOEMS mirror.
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8.1 The MOEMS EC-QCL Illumina�on Source

Figure 8.2: MOEMS EC-QCL light source that was developed in collabora�on with Fraunhofer
IPMS. Le�: compact design allows integra�on into measurement systems with a
small footprint. Right: close-up of laser chip with collima�on lenses in external
cavity resonator and MOEMS gra�ng.

In figure 8.2 we show a realiza�on of a MOEMS EC-QCL. The silicon based
MOEMS scanning gra�ng was designed for a resonance frequency of 1 kHz
with a maximum deflec�on amplitude of 10°. The surface has a diameter
of 5 mm and has a 133 mm−1 groove density diffrac�on gra�ng, op�mized
for maximum reflec�vity into the desired diffrac�on order, etched into it.
The electrosta�cally driven scanning plate is suspended by torsional springs
and it’s angular posi�on is con�nuously measured by an integrated posi-
�on sensor realized by four piezo sensors that are connected to a Wheat-
stone bridge. The trajectory can be con�nuously monitored using the po-
si�on measurement. In addi�on, the sensor unit produces a trigger signal
when the gra�ng plate crosses the zero angle posi�on. This signal is used
for wavelength synchroniza�on as described in sec�on 8.2 in more detail.
The oscillatory trajectory of the gra�ng plate renders the gra�ng angle α(t)

a func�on of �me and causes the laser chip’s emission wavelength to be
altered accordingly. The trajectory is obtained as sum of the constant offset
angle α0 and the �me dependent oscilla�on Δα(t). The la�er is sinusoidal
in �me with the MOEMS resonance frequency fr and amplitude A0, giving:

α(t) = α0 + Δα(t) = α0 + A0 · sin(2π frt +φ0). (8.1)
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8 Extension to Real-Time Spectroscopic Sensing

The constant phase correc�on offset φ0 in equa�on 8.1 is a design param-
eter that allows to account for a non-zero phase difference between the
trigger signal and the true equilibrium posi�on in the analysis of measure-
ment data. Using these results and the gra�ng func�on (equa�on 2.3) we
finally obtain the �me dependent emission wavelength func�on λ (t) as

λ (t) = 2g sin(α0 + A0 · sin(2π frt +φ0)). (8.2)

As in the imaging spectroscopy setup, we operate the QCLs in a low duty
cycle pulsed mode. Consequently, the emission wavelength func�on of the
MOEMS EC-QCL is not a con�nuous func�on λ (t), but rather a discrete �me
series λ [t]. The la�er is obtained from the con�nuous representa�on by
employing the laser pulse as sampling signal. Hence, the parameters of the
laser pulse train define the spectral resolu�on of the resul�ng measure-
ment device. An analysis of the la�er will be subject of sec�on 8.2.2.

8.2 Experimental Setup

The principle experimental setup for the real-�me spectroscopy device is
well comparable to the hyperspectral imaging setup, presented in chapter
6. A tunable laser source – in this case the MOEMS EC-QCL – is used to
illuminate the surface to be analyzed and the diffusely backsca�ered light
is collected by a single element signal detector. The la�er replaces the im-
age sensor in chapter 6. A BaF2 beam-spli�er is used to divert a por�on
of the laser output beam into a gold coated integra�ng sphere, to serve as
reference signal. This measurement principle is illustrated in figure 8.3
In the experimental setup used for data acquisi�on in this work, TE cooled
photo-voltaic Mercury Cadmium Telluride (MCT) detectors (VIGO Systems
PVMI-2TE-10.6) were used as signal and reference detectors. The MOEMS
EC-QCL was equipped with a heterocascading QCL chip tunable in the range
from 1080 cm−1 to 1370 cm−1.
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Figure 8.3: The MOEMS EC-QCL (here denoted μEC-QCL) is used to illuminate the scene and
the diffusely backsca�ered light is measured by a fast single element photo-voltaic
MCT detector. An iden�cal detector serves as reference detector.

The MOEMS gra�ng (133 mm−1 groove density) was oscilla�ng slightly
above its resonance frequency (975.6 Hz) at an amplitude of ≈ 5°. The off-
set α0 was set to≈ 33.6°, to roughly match the center of the QCL chip’s gain
spectrum at ≈ 1200 cm−1. The laser pulse frequency was set to 390.24 kHz
to obtain a burst of 400 pulses per MOEMS oscilla�on period. The laser
pulse width was set to 200 ns giving an effec�ve duty cycle of 8.0 %.

8.2.1 Fast Data Acquisi�on

In this sec�on we outline the real-�me data acquisi�on workflow for real-
�me spectroscopic measurements using the MOEMS EC-QCL and follow
with an analysis of the achievable and expected spectral resolu�on under
the given opera�on condi�ons.
The rapid wavelength tuning in combina�on with the low duty cycle mea-
surement requires a fast data acquisi�on setup for reliable spectroscopic
measurements. In this work a digital lock-in amplifier (Zurich Instruments
UHFLI) with integrated boxcar averaging capability was employed for this
task. The lock-in amplifier is equipped with two independent lock-in units
that – given a constant reference frequency – allows phase-dependent
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8 Extension to Real-Time Spectroscopic Sensing

posi�oning of a boxcar averaging windows for each of two analog input
channels. The laser pulse trigger is fed into the lock-in amplifier as reference
frequency for the harmonic oscillators, and is employed for correct posi�on-
ing of the digital boxcar averaging windows. The la�er are used to average
the analog input signals provided by signal and reference detectors, during
ac�ve emission of the QCL chip, omi�ng the noise signal observed during
the laser-off phase. This approach requires a constant frequency laser pulse
signal to enable the lock-in technique. However, for reproducible spectral
selec�ve measurements, a strict phase coupling between laser pulse and
MOEMS oscilla�on is required. The phase coupling ensures that the laser
pulses occur at defined and reproducible oscilla�on phases in every oscil-
la�on period. This synchroniza�on is achieved by opera�ng the laser pulse
generator in a burst mode. The MOEMS zero-phase synchroniza�on signal
is fed into the laser pulse generator and issues a burst of k pulses at a fre-
quency k · fr where fr denotes the MOEMS oscilla�on frequency. The num-
ber of pulses per oscilla�on period is in our setup chosen to read k = 400
and determines the limi�ng spectral resolu�on of the measurement system
as will be subject to a more detailed discussion in the following sec�on.
The approach men�oned so far yields two boxcar averaged signals: sig-
nal and reference detector values that are obtained from �me equidistant
laser pulses, which were simultaneously generated at fixed posi�ons of the
MOEMS oscillator. To obtain a laser independent signal and correct for
wavelength dependent atmospheric transmission effects, the boxcar aver-
aged signal value is divided by the boxcar-averaged reference value. We
then employ the MOEMS synchroniza�on signal to organize the data chunks
to the analysis computer in a defined manner. I. e. a k× l matrix is gener-
ated that contains the k �me averaged reference signal values as entries
row-wise. Row switching is induced by the MOEMS synchroniza�on signal.
This ensures that the l values in a column of the resul�ng measurement
matrix correspond to the same phase offset of the MOEMS oscilla�on. The
matrix is transferred to the analysis computer for further analysis.
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Figure 8.4: Fast signal acquisi�on for real-�me spectroscopic sensing using the MOEMS EC-QCL
light engine. The MOEMS zero-phase signal is used to synchronize the laser pulse
trigger signal to the MOEMS oscilla�on phase. Single pulses are extracted from
signal and reference detector using boxcar averaging. The resul�ng referenced
measurement signal is obtained by dividing the boxcar-averaged signals. Synchro-
niza�on to the MOEMS phase signal is required for organizing the data chunks for
further spectroscopic analysis.

The effect of the boxcar averaging technique is shown in figure 8.5. For this
simula�on, a resonance frequency of 1 kHz with an amplitude of 4.5° and an
angular offset of 33.6° (gra�ng constant 133 mm−1) was chosen. We show
the trajectory of the MOEMS mirror within the first 20 μs of an oscilla�on
period, a�er crossing the equilibrium posi�on (where the trajectory’s rate
of change is highest). The equidistant laser pulses (width: 200 ns) are sur-
rounded by the box-car window that – with a width of 210 ns – was chosen
slightly larger than the laser pulse to compensate for poten�al frequency
or phase ji�er. Whereas the designated laser emission signal caused by the
MOEMS’ oscillatory mo�on changes over several wavenumbers, the boxcar
output signal remains constant between two laser pulses. This allows us to
use the laser repe��on frequency itself as sampling frequency of the boxcar
averaged signal, which is significantly beyond that required to resolve the
narrow laser pulses in the original low duty cycle signal.
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Figure 8.5: Boxcar averaging for low duty cycle measurement using the MOEMS EC-QCL as il-
lumina�on source

We note that as a side-effect this measurement principle generates a dis-
crete sampling of the backsca�ering spectrum with a sampling rate con-
stant in �me, rather than in wavenumbers as was the case with the hyper-
spectral imaging setup presented in chapter 6. Due to the nonlinear mo-
�on of the MOEMS gra�ng, this yields a non equidistant sampling in the
wavenumber domain. Before we analyze the consequences of this in the
following sec�on, we will turn to another effect observable in figure 8.5:
the MOEMS posi�on changes between the beginning and the end of a sin-
gle laser pulse. The ques�on may arise, if this changes the emission wave-
length, and thus introduces spectral blurring into the resul�ng spectra.
The effect of the angular mo�on on emission wavelength within a single
pulse under the given opera�on condi�ons is shown in figure 8.6. We show
the angular trajectory of the MOEMS and the designated (i. e. mathemat-
ical) emission wavenumber difference, covered during the laser pulses at
various phases of the MOEMS oscilla�on period. We refer to the designated
emission wavenumber covered within a constant �me frame as in-pulse res-
olu�on and note that – following the oscilla�on’s angular rate of change –
it is a func�on of the MOEMS phase.
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Figure 8.6: The phase dependent angular rate of change during a laser pulse causes the des-
ignated emission wavenumber to shi�. This limits the theore�cal resolu�on limit
under the given parameters to 0.19 cm−1 which resides well below the pulsed EC-
QCLs physical emission bandwidth of ≈ 1 cm−1.

We observe that the maximum wavenumber spacing (i. e. lowest spec-
tral resolu�on) is obtained at the zero crossings of the MOEMS oscilla�on,
where the angular rate of change is largest. At these phase offsets the in-
pulse resolu�on approaches 0.19 cm−1, which however is well below the
QCL’s physical emission bandwidth. The la�er is expected to be around
1 cm−1 in the given external cavity resonator configura�on under pulsed op-
era�on (see sec�on 2.2). We therefore expect the emission wavelength to
be unaffected by the MOEMS mo�on during the pulses and consequently
the backsca�ering spectra obtained using the MOEMS EC-QCL to match
those, obtained by the sta�c EC-QCL in the imaging spectroscopy setup.

8.2.2 Spectral Resolu�on

In the same way as the in-pulse resolu�on considered in the last sec�on is
a func�on of the MOEMS oscilla�on phase, the equidistant laser pulse fre-
quency yields a non constant spectral sampling in the wavenumber domain.
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Figure 8.7: Spectral resolu�on obtained in the real-�me measurement configura�on. The sam-
pling density is color coded in the wavenumber emission diagram with red indicat-
ing higher resolu�on (i. e. lower wavenumber rate of change).

In sec�on 7.3.3 we showed that spectral resolu�on has direct impact on
the resul�ng detec�on performance: the detec�on performance was signif-
icantly reduced for spectral resolu�ons beyond 2 cm−1. In this sec�on, we
give an analysis of the spectral resolu�on obtained by the MOEMS EC-QCL
measurement setup in the following sec�on.
In figure 8.7 we present a simula�on of the expected spectral resolu�on ob-
tained when using the MOEMS EC-QCL as spectrally selec�ve illumina�on
source. Given a 133 mm−1 gra�ng and an equilibrium angle posi�on of 33.6°
we obtain a zero-amplitude emission of 1202 cm−1. The maximum MOEMS
amplitude was set to 4.5° and an oscilla�on frequency of 1 kHz was chosen
for the MOEMS element. The la�er in combina�on with a laser pulse fre-
quency of 400 kHz yields exactly 400 laser pulses (i. e. spectral elements)
evenly distributed across an MOEMS oscilla�on period.
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The angular trajectory of the MOEMS element is given as sca�er plot show-
ing the amplitude at the equidistant �me-stamps that are defined by the
laser pulse train. Considering the distribu�on of associated wavenumbers
emi�ed by the MOEMS EC-QCL at these �me stamps, we observe that the
long- and short-wave cutoff wavelengths of the emission spectrum are over-
represented in the emission histogram. This is caused by the non equidis-
tant sampling in the wavenumber domain which renders the spectral wave-
length resolu�on dependent upon the MOEMS oscilla�on phase. Whereas
a mathema�cal resolu�on of 0.007 cm−1 is achieved at the turning points of
the oscillatory mo�on, it decreases to a resolu�on of 2.3 cm−1 when pass-
ing the equilibrium posi�on. The cumula�ve spectral resolu�on over the
full oscilla�on period amounts to 1.43 cm−1.
In addi�on, the emission histogram as well as the resolu�on graph suggest
that the sampling resolu�on in the wavenumber domain is skewed towards
the long wave fringe of the spectrum. On average, more long wave pulses
are generated than short wave pulses. This is caused by the MOEMS os-
cillator’s non central equilibrium posi�on: a fixed angle delta generates a
decreasing wavenumber rate of change for increasing angles.
We note that – if the relevant parameters are well matched to the QCL emis-
sion spectrum – the non constant spectral sampling effect is beneficial for
the proposed measurement technique as it intrinsically compensates the
laser chip’s emission intensity distribu�on. The la�er decreases towards
the long- and short-wave fringes of the emission spectrum. This is com-
pensated by the fact that the laser’s emission linewidth is significantly over
sampled. Likewise, the weaker spectral resolu�on observed when passing
the equilibrium posi�on, usually matches the peak power wavelength in a
well configured setup. In addi�on, the marginal resolu�on of 2.3 cm−1 is
s�ll significantly beyond typical spectral features observed in spectroscopy
of solids (e. g. sec�on 6.4).
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8.3 Measurement Results

In this sec�on we will present experimental results obtained with the rapid
wavelength scanning spectroscopy measurement scheme. The measure-
ments were obtained using the setup as described above at a distance of
≈ 1 m. The collimated output beam of the MOEMS EC-QCL is used directly
for target illumina�on without any further beam shaping. This leads to a
Gaussian beam profile having a 4σ diameter of about 1 cm at the chosen
measurement distance. A large gold coated plain mirror is used to deflect
the illumina�on beam onto the surface of the op�cal table, allowing for a
constant measurement distance and focus. A green pilot laser is used to in-
dicate the measurement spot. The backsca�ered radia�on is focused onto
the detector located next to the illumina�on source using a 2” ZnSe lens.
In figure 8.8 we show a comparison of the spectroscopy results obtained
with the imaging spectroscopy setup and the rapid wavelength scanning
backsca�ering spectroscopy principle [30]. For the results shown, 50 con-
secu�ve backsca�ering spectra of PETN and TNT substance residues were
averaged yielding an effec�ve acquisi�on �me of ≈ 51 ms. The substance
residues were deposited on a weakly sca�ering substrate (painted metal
plate) to avoid background spectral contribu�on. The comparison spectra
were taken from the substance library introduced in sec�on 6.4.
The spectral measurement range of the rapid wavelength scanning ap-
proach is achieved using a single QCL as opposed to the dual core solu�on
operated in the image backsca�ering spectroscopy setup. Consequently,
the spectral measurement range of the la�er is considerably larger. How-
ever, the obtained substance spectra match well in the overlapping region.
Whereas these results are promising and target detec�on can be easily
achieved using any full pixel detec�on method, it is clear that background
contribu�on is to be expected in a more general measurement scenario.
In this case, a sub pixel algorithm is required for reliable detec�on, which
however requires knowledge of the background spectral characteris�cs.
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Figure 8.8: Real-�me spectroscopy measurements of pure PETN and RDX in comparison to the
library spectra that were measured with the imaging backsca�ering spectroscopy
setup. The substance residues were deposited on a weakly sca�ering surface
(painted car plate) and measured in ≈ 51 ms.

For the case of data acquired with the hyperspectral image sensor, this in-
forma�on was extracted from the available image data using the Adap�ve
Background Genera�on Process (ABGP) background extrac�on algorithm.
A crucial boundary condi�on for applicability of the la�er is however that
pure background spectra are existent in the hyperspectral data to be ana-
lyzed. This can be achieved using the real-�me spectroscopic measurement
setup, by spa�al varia�on of the measurement spot – either by varia�on of
the poin�ng direc�on of the measurement device or by moving the sample
while keeping the measurement spot constant. To simulate the former in a
first evalua�on of the principle, we employ the second approach in the fol-
lowing and present measurement results acquired on a PETN-contaminated
Polyamide substrate sample. An approxima�on of the measurement path
over the sample is shown in figure 8.9. The movement of the sample was
performed manually at a non constant speed and the full mo�on was per-
formed in about 1 s. A constant stream of spectra was measured within this
�me using the fast spectroscopy principle.
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Figure 8.9: Approximate measurement path on the RDX contaminated Polyamide sample. The
sample was moved at a non constant speed under the fixed measurement spot,
while the backsca�ering spectra were con�nuously recorded using the fast spec-
troscopy setup.

We present a color-coded backsca�ering intensity map of the hyperspectral
measurement data obtained by this experiment in figure 8.10. The Adap-
�ve Matched Subspace Detector (AMSD) with ABGP background extrac�on
algorithm was employed for target detec�on, to check each acquired spec-
trum (that correspond to pixel vectors in the imaging variant of the spec-
troscopy device) for contamina�on with either one of the hypotheses PETN,
RDX, TNT and AN. The detec�on result is given in the color coded ribbon at
the top of figure 8.10 (top). Several posi�ve detec�on results for PETN were
generated and no false alarms were raised for any of the compe�ng spectra
in the hypotheses set.
The hyperspectral measurement data obtained on a similar measurement
of RDX samples on a Polyamide substrate are shown in figure 8.10 (bot-
tom), which also contains the output of the AMSD algorithm with ABGP
background extrac�on in the ribbon at the top. As for the case of the PETN
traces on Polyamide, several posi�ve detec�on results were generated and
no false alarms were obtained for the compe�ng substances.
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Figure 8.10: Detec�on of PETN (top) and RDX (bo�om) contamina�ons on a Polyamide surface
using real-�me backsca�ering spectroscopy. The backsca�ering intensi�es are
color-coded. The detec�on results were obtained by the AMSD-ABGP algorithm.

In figure 8.11 we present an analysis of the classifica�on results, obtained
on the PETN contaminated Polyamide sample. We show the mean spec-
trum obtained by averaging over the pixel vectors classified as background
in comparison to the pixel vectors classified as PETN-contaminated and the
pure PETN library spectrum. The characteris�c peaks of the PETN library
spectrum are well observed in the contaminated average spectrum, and
only weakly in the background mean spectrum.
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Figure 8.11: Analysis of background and PETN contaminated region spectra, obtained using
the output of the AMSD-ABGP detec�on algorithm.

This indicates that the algorithm successfully discriminated background and
PETN contaminated spectra in the observa�on set. We also show the result
of spectral unmixing as suggested in sec�on 6.5: the contaminated mean
spectrum can be successfully unmixed to match the library spectrum using
the background mean spectrum and the Linear Mixture Model (LMM). The
la�er indicates that the LMM is a valid mixture model for the measurement
data produced by the proposed fast scanning spectroscopy principle.

8.3.1 Empirical Valida�on of Real-Time Data Processing

Whereas the data acquisi�on process outlined in sec�on 8.2.1 allows for
fast measurement acquisi�on and thus for real-�me detec�on, this might
not be necessarily true for the data analysis process. The AMSD target de-
tec�on algorithm that was favored for analysis of the measurement data
generated by the hyperspectral image sensor requires a background end-
member extrac�on algorithm for opera�on. The ABGP algorithm was sug-
gested for this task that comprises the Adap�ve Target Genera�on Process
(ATGP) algorithm in combina�on with a stabiliza�on step based on data
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clustering (sec�on 3.5.2). In the following we will show, that the proposed
data processing methods are in general capable of real-�me opera�on by
measurement of the computa�on �me required for these steps.
As stated before, for applicability of sub pixel target detec�on algorithms
like the AMSD, a hyperspectral data set is required that contains pure back-
ground informa�on. This requires opera�ng the measurement device in a
spa�al scanning mode. We assume that the data containing background-
only spectra is accumulated within a data set recorded in a specific �me
frame of length Δt. It is therefore sufficient, to es�mate the �me required
to analyze a hyperspectral data chunk recorded within this �me that for
simplicity we choose to be Δt = 1s.
We note that every substance of interest in the library requires a full detec-
�on run, i. e. the cumula�ve processing �me is expected to scale linearly
by the number of target substance hypothesis in the library (see sec�on
3.7 for more details). The processing �mes stated in the following were
measured on a 64 bit Windows 7 operated PC with an Intel® Core™ i5-4590
CPU running four cores at 3.3 GHz (3.7 GHz) and equipped with 8 GB RAM.
Data analysis was implemented and executed in Matlab (R2016b) without
u�liza�on of parallel processing or GPU support.
The RDX contaminated Polyamide sample measurement presented in sec-
�on 8.3 served as evalua�on set, containing a total of 1.1 s of data and
i. e. a total number of 1007 spectra. The average processing �me of the
ABGP background extrac�on process was measured to be 64 ms per �me
frame and target library substance, which amounts to a total of 257 ms for
the full substance library containing PETN, TNT, RDX and AN. The follow-
ing AMSD target detec�on algorithm uses this result for the actual detec-
�on step, which was measured to require 82 ms per �me frame and sub-
stance (329 ms for the full library). This amounts to a total processing �me
of 586 ms for the combina�on of ATGP and AMSD for the current library
containing four substances.
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Figure 8.12: Analysis of real-�me capability of the considered target detec�on algorithms using
sequen�al programming. All detec�on algorithms require a processing �me that
is below the data acquisi�on �me from 1 s and upwards. The full pixel detectors
are in general faster, compared to the sub pixel detectors, among which the AMSD
slightly outperforms the ACE.

As the resul�ng processing �mes are considerably shorter than the con-
sidered data frame �me, we conclude that the suggested algorithms are
well applicable for real-�me applica�ons in the considered scale. Further-
more, the detec�on process can be easily parallelized (substance detec�on
for each substance in the library is independent to the others), hence par-
allel processing can be employed, to reduce the computa�on �me by the
number of available cores. Alterna�vely, the data frame �me can be ad-
justed, to match the analysis �me. Figure 8.12 shows the full library data
processing �me for various choices of data frame �me and several detec�on
algorithms, acquired on a 22 s data stream of hyperspectral data.
As expected, compared to the model based sub pixel detec�on algorithms
Adap�ve Coherence / Cosine Es�mator (ACE) and AMSD the full pixel detec-
tors require considerably less processing �me. In terms of processing �me,
among the structured detec�on algorithms, the AMSD slightly outperforms
the ACE. The processing �me of all detec�on algorithms show an approx-
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imately linear growth over data frame width (i. e. observa�on size) with
a propor�onality coefficient well beyond one. We conclude that real-�me
opera�on for arbitrary library sizes can be obtained by appropriate choice
of data frame width. Assuming sequen�al processing, all considered target
detec�on algorithms prove to be capable of real-�me opera�on under the
given opera�on condi�ons, if a data frame width of 1 s or greater is chosen.
We note that on average the Normalized Cross Correla�on (NCC) target
detector is at least a factor of ≈ 1.8 times faster compared to the AMSD
algorithm, especially since full pixel detectors operate on single spectra,
whereas sub pixel detectors require a data frame comprising mul�ple spec-
tra. Hence, the NCC – or in general any member of the family of full pixel
detec�on algorithms – might be a favorable choice in applica�ons where no
or only weak background spectral contribu�on is expected.

8.3.2 Conclusion

In this chapter we presented a real-�me backsca�ering spectroscopy princi-
ple based upon a rapid wavelength-scanning MOEMS EC-QCL. The obtained
measurement results indicate that the measured spectra match well to the
library spectra measured by imaging backsca�ering spectroscopy. Further-
more we showed that the considered hyperspectral image analysis algo-
rithms are in general well transferable to fast iden�fica�on of surface con-
tamina�on using the real-�me spectroscopy setup. Finally, an analysis of
the expected computa�on �me showed that real-�me analysis of the ac-
quired spectroscopic data is achievable using both full pixel and sub pixel
target detec�on algorithms.
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In this work, tunable infrared laser backsca�ering spectroscopy based on
External Cavity Quantum Cascade Lasers (EC-QCLs) was presented. Broadly
tunable long-wave infrared (LWIR) Quantum Cascade Lasers (QCLs) are used
for wavelength selec�ve illumina�on of the scene to be analyzed. The con-
sidered wavelength range from 1000 cm−1 to 1300 cm−1 comprises a part
of the molecular fingerprint range of many organic compounds. Whereas
the measurement principle is for this reason in principle applicable to de-
tec�on of many other chemical substances, focus was put on detec�on of
explosive substances in this work. The examined substances include the
explosives PETN, RDX, TNT and AN.
The proposed technique of ac�ve laser spectroscopic imaging employs tun-
able EC-QCLs for wavelength selec�ve illumina�on of the scene. The dif-
fusely backsca�ered light is collected by a high performance Mercury Cad-
mium Telluride (MCT) LWIR image sensor. Synchronous wavelength tuning
and imaging yields a hyperspectral image, where every pixel vector com-
prises a backsca�ering spectrum of a specific loca�on in the scene.
An op�mized data acquisi�on for the target applica�on by iden�fica�on
and elimina�on of several systema�c noise sources was developed. This
includes a homogeniza�on step that serves to correct for spa�al depen-
dent mul�plica�ve oscilla�ons caused by thin-film interference effects in
the camera sensor in combina�on with the coherent illumina�on source. It
was shown, that the spectra obtained by backsca�ering spectroscopy are
well comparable to reflectance spectra acquired using Fourier Transform
Infrared (FTIR) spectroscopy.
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A comparison of FTIR microscopy spectra of single substance par�cles
showed that the observed intra-substance spectral variability of the domi-
na�ng spectral feature characteris�cs are insignificant, which suggests that
well reproducible measurement results can be expected from macroscopic
measurement techniques. An analysis of backsca�ering spectroscopy re-
sults proved that the Linear Mixture Model (LMM) describes the observed
data well, which indicates that the measured spectra comprise a linear su-
perposi�on of independent sources. The la�er correspond to the spectrally
dis�nct materials in the scene, and are referred to as endmembers.
Various data analysis techniques were considered for target detec�on in the
acquired hyperspectral images. Many of these methods are based upon the
LMM that – in it’s structured form – assumes the observa�on data to be a su-
perposi�on of the contribu�ng endmembers and the poten�al target spec-
trum. It was therefore considered necessary, to develop a method capable
of es�ma�ng the number of contribu�ng pure background substances from
the data set under test – this is referred to as model order es�ma�on.
Based on the work of Wax and Kailath the Noise Adjusted Minimum De-
scrip�on Length (NA-MDL) model order es�ma�on method was developed,
which is applicable to any real valued mul�band observa�on that comprise
a linear superposi�on of independent sources. The method was analyzed
in the context of the target opera�on condi�ons and compared to a se-
lec�on of other model order es�ma�on algorithms (Principal Components
Analysis (PCA), Noise Subspace Projec�on (NSP), Second Moment Linear
Dimension (SML)). On ar�ficial data the presented NA-MDL method proved
to outperform the compe�ng approaches under a variety of condi�ons, in-
cluding low Signal to Noise Ra�o (SNR) or low spectral resolu�on. For the
case of real-world hyperspectral image data, both NA-MDL and NSP showed
to significantly overes�mate the required model order es�mate. Here, SML
es�mates proved to be closer to the expected outcome. Supported by a
comparison of the covariance matrix eigenvalue distribu�ons of ar�ficial
and real-world measurement data, this observa�on was accounted to cor-
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related noise in the real-world hyperspectral images. Given the coherent
nature of the illumina�on source, the noise can most likely be a�ributed
to remaining speckle that was not fully eliminated by the speckle reduc�on
op�cs. It is therefore an�cipated that further improvement of speckle re-
duc�on techniques that are applicable in the LWIR range covered by the
suggested spectroscopy methods would be beneficial for results obtained
from the NA-MDL algorithm.
Based on the Adap�ve Target Genera�on Process (ATGP), a background es-
�ma�on algorithm called Adap�ve Background Genera�on Process (ABGP)
was developed that proved to be robust against model overes�ma�on ar�-
facts. A reliable background endmember representa�on is generated, even
if the required model order is significantly exceeded. Noise reduc�on is
achieved by introducing a clustering step into the procedure and u�lizing
the cluster means, rather than single spectra as endmembers. The back-
ground es�ma�on procedure was analyzed using both ar�ficial and real-
world hyperspectral image data.
The discrimina�ve power of structured target detec�on methods is strongly
dependent upon the quality of the background endmember representa�on.
Using ar�ficial hyperspectral image data, a comparison of the considered
target detec�on methods showed that the Adap�ve Matched Subspace De-
tector (AMSD) – as widely used member of the family of structured detec-
tors – significantly outperforms the full-pixel detec�on algorithms, if the
AMSD background es�ma�on method is employed. Among the unstruc-
tured sub pixel target detec�on methods, the Adap�ve Coherence / Cosine
Es�mator (ACE) yielded compara�vely high detec�on performance. These
results showed to be well transferable to real-world hyperspectral images.
Several examples of explosive residue detec�on on different substrates
were provided using PETN, RDX, TNT, AN as demonstra�on substances. Suc-
cessful detec�on was shown both for hyperspectral images acquired with
the short-range imaging system over a distance of 1.4 m, as well as with the
long-range image sensor at distances up to 17 m.
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An extension to a real �me capable variant of the measurement principle
was presented that comprises a MOEMS External Cavity Quantum Cascade
Laser (MOEMS EC-QCL) as rapid wavelength scanning illumina�on source.
An analysis of the fast data acquisi�on setup showed that the expected
spectral resolu�on should be sufficient for spectroscopy of solids with typ-
ical spectral band widths of 1 cm−1. The data analysis algorithms showed
to be capable of the substance detec�on on hyperspectral data acquired
using this backsca�ering spectroscopy variant. An analysis of the required
computa�on �me proved that all considered data analysis algorithms are
capable of real �me detec�on under the given opera�on condi�ons.
At this �me, the data acquisi�on scheme of the imaging sensor, leaves
room for further op�miza�on. During the camera sensor’s integra�on �me
(max. 100 μs), the laser is operated in pulsed opera�on mode at a duty cycle
of 17 %, which comprises the laser’s duty cycle limit. Advances in con�nu-
ous wave (cw) QCL chips, are expected to enable illumina�on of the target
throughout the full integra�on �me period. Alterna�vely, gated viewing
can be applied to match the sensor’s integra�on �me within a frame, to
the laser’s illumina�on �me. The integra�on �me reduc�on serves to limit
the exposure to the interfering radia�on caused by the thermal background
of the scene. In addi�on, this approach is favored to the aforemen�oned
cw QCL solu�on, as in general both higher peak power and a broader tun-
ing range can be achieved in pulsed mode compared to cw opera�on. Fur-
thermore, future QCLs are expected to improve, both in terms of emission
power and spectral emission range. Whereas the former is beneficial in
terms of achievable SNR or can serve to increase the illuminated area, the
la�er is expected to further increase the detec�on performance and reduce
poten�al cross-sensi�vity.
The coherent nature of the laser illumina�on source comprises problems
both in data acquisi�on and analysis. It is therefore desirable, to improve
the speckle reduc�on approach, which could be achieved by e. g. employing
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mul�ple independent illumina�on sources that are spa�ally distributed suf-
ficiently far from each other.
The MOEMS EC-QCL based real �me backsca�ering spectroscopy technique
is to this point demonstrated using a single element detector. The data
acquisi�on density could be however significantly improved by employ-
ing a line focus in combina�on with a detector array. This induces how-
ever higher complexity in signal acquisi�on and issues addi�onal �me con-
straints on the data analysis process. Furthermore, a mobile and compact
spectroscopy device based on this technique, would be highly suitable for
fast substance analysis in the field. This raises the demand for sensi�ve and
robust, high performance hyperspectral data analysis algorithms that allow
real-�me opera�on within the limited hardware resources provided by em-
bedded systems.
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Log-Likelihood Func�on

We begin with the parametric covariance matrix model

R(k) =
k

∑
i=1

(λi −σ2)�νi�ν�
i +σ2I (A.1)

and recall the defini�on of the parameter vector:

�θ (k) = (λ1, . . . ,λk,σ2,�ν�
1 , . . . ,�ν�

k )�. (A.2)

Given an observa�on X = {�xi}N
i=1 and assuming a mul�variate Normal dis-

tribu�on we are searching for an explicit form of the log-likelihood func�on
L (X |�θ (k)).

L (�x1, . . . ,�xN |�θ (k)) = log
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where once more R̂ denotes the sample covariance matrix. We use equa-
�on A.1 to calculate the logarithmic determinant of R(k) and obtain:

logdetR(k) = log

[
p

∏
i=1

λi

]
=

k

∑
i=1

logλi +(p− k) · logσ2 (A.4)

The trace term can be evaluated to:

tr
[
R(k)−1 · R̂

]
=

k

∑
i=1

li
λi

+
p

∑
i=k+1

li
σ2 (A.5)

Pu�ng these results together, we get the closed-form expression:
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σ2

]
. (A.6)

The Maximum Likelihood Es�mates (MLEs) that maximize the log-likelihood
func�on are [2]

λ̂i = li, i = 1, . . . ,k, li ∈ R

σ̂2 =
1

p− k

p

∑
i=k+1

li
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p.

(A.7)

It is le�, to subs�tute these in equa�on A.6:
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