FEA-BASED DEVELOPMENT OF NEW LASER-WELDED CAN

Dipl.-Ing. Thomas Lieber

Application orientated Research in Germany

FEA-BASED DEVELOPMENT OF NEW LASER-WELDED CAN

- Short Introduction of Fraunhofer Association
- Three piece aerosol tinplate can laserwelded
- Base for FEA-Optimisation
- Component Optimisation by FEA
- Component and Can production
- Summary and Outlook

Fraunhofer Association – in general

Applied research for immediate utility of economy and benefit of society

- Fraunhofer Institute for Machine Tools and Forming Technology IWU
 - founded in 1991
 - about 620 employees
 - €41,5 million annual budget
 - in Chemnitz, Dresden and Zittau

Main Scientific fields

- Mechatronics and lightweight structures
- Machine tools, production systems and machining
- Forming technology and joining

Fraunhofer IWU Chemnitz

Zittau

Dresden

Chemnitz

- Fraunhofer IWU Department Sheet Metal Forming
 - sheet metal forming / hot forming
 - media and energy based forming technologies
 - cutting technologies
 - materials testing and characterization
 - coupled simulation of forming processes
 - development and manufacturing of toolings

Seamed can

- Three piece aerosol tinplate can
- State-of-the-Art

Laserwelded can

- Base for FEA-Optimisation Start up geometry
- Can Prototype Diameter 45

 CAD-Model of Diameter 45 can

- Components initial geometry
 - can top end
 - can body
 - can bottom end
- Initially ends cover the body and laserwelds on both ends outside
- <u>Challenge</u>:

Prototype safety was not sufficient for market introduction -> Optimisation of can components for lighter and more safe product needs to be done !

• <u>Questions</u>:

What geometries and materials are needed for fullfillment of the product safety tests ?

© Fraunhofer IWU

- Base for FEA-Optimisation FEA of pressure test
- Specifications for pressure test:
 15 bar buckling point
- Assumptions on materials and thicknesses from several cans on the market as starting point
- Result in FEM: At what pressure does the can collaps ? Which material and thickness does the can need to reach the specifications?

- Base for FEA-Optimisation Results of pressure test
- Results of pressure test

Fazit: No way of reaching the specifications -> can bottom needs to be optimised !

- Base for FEA-Optimisation Initial geometry change on can bottom
- Cross-section of can bottom

Fazit: Seems to work but more material effort -> can bottom needs to be optimised !

Component Optimisation by FEA – concept change + DoE

- Component Optimisation by FEA Parameter influence
- DoE Setup of 20 Run's
 - D-Optimal design
 - including Interactions and Quadratic terms for regression model
- Pareto Chart of influences

Response Graph of influences

Component Optimisation by FEA - Optimisation on Regression model

- Results discussion
 - 1. Übergang_R of lower influence
 - should be on maximum
 - 2. Höhe of lower influence
 - should be minimized to reduce material effort
 - 3. Aufstand_R is of higher influence
 - 4. DOM_R is of highest influence
- Material reduction potential

can bottom thick. [mm]	buckling press. [bar]	Weight [g]
0,32	22,6	7,275
0,28	17,4	6,365
0,26	15	5,911
0,22	10,8	5,001

Fazit: Works for Diameter 45 - Does it work for other diameters ?

- Component Optimisation by FEA Transfer to diameter 65
- Transfer to Diameter 65

Fazit: Works for other Diameters as well. But what about real life ?

© Fraunhofer IWU

- Component and Can production Realisation of can bottom at Fraunhofer
- Forming simulation

Manufacturing of dies and tooling

© Fraunhofer IWU

Tooling design (for prototypes)

Can bottom manufacturing

- Component and Can production laserdom cans at Caprosol
- Stand-Alone-Module for line inserting
- 80-100 cans per module and minute
- Appr. Size 1,1 m x 1,2 m of module
- Inner lacquering and powdering are possible
- Sleeving and 3D-Printing are options

Component and Can production – Pressure testing

• Reality*

(sheet thickness of can bottom = 0,27 mm)

Buckling pressure [bar]	Burst pressure [bar]	
16,6	30	
16,55	30	
16,6	30	
16,7	30	
17,1	30	
16,2	30	
17,85	30	
16,65	30	
17,0	30	
16,8	30	
Avg. 16,81	30	*CAPROSOL

Simulation

Thickness of can bottom [mm]	Buckling pressure [bar]	Weight [g]
0,26	15	5,911

 Very close correllation of Reality and Simulation !

Fazit: Works in Reality for Diameter 45 mm !

Summary and Outlook - Overview on component material effort

latorial thickness of Lasordom component

All components have been investigated by FEA

Material thickness of Laserdoni components						
Canø(mm)	Top (mm)	Body (mm)	Bottom (mm)			
45	0.16	0.10	0.26			
49	0.19	0.10	0.29			
52	0.21	0.10	0.31			
57	0.23	0.11	0.34			
65	0.27	0.12	0.39			

- Further load cases (axial loading, inner vacuum) have been considered in FEA
 Material savings of 30 % and more are possible
- material savings of ou // and more are possible
- Detailed material savings can be determined online under

www.caprosol.com

Summary and Outlook

Fazit: Thank you for your attention. Ready for questions.

