
Generating EAST-ADL Event Chains from

Scenario-based Requirements Speci�cations

Thorsten Koch1, Jörg Holtmann1, and Julien DeAntoni2

1 Project Group Mechatronic Systems Design, Fraunhofer IPT
Zukunftsmeile 1, 33102 Paderborn, Germany

{thorsten.koch,joerg.holtmann}@ipt.fraunhofer.de
2 Univ. Nice Sophia Antipolis, I3S, UMR 7271 CNRS, Sophia Antipolis, France,

julien.deantoni@polytech.unice.fr

Abstract. Real-time software-intensive embedded systems complexity,
as in the automotive domain, requires rigorous Requirements Engineering
(RE) approaches. Scenario-based RE formalisms like Modal Sequence Di-
agrams (MSDs) enable an intuitive speci�cation and the simulative val-
idation of functional requirements. However, the dependencies between
events occurring in di�erent MSD scenarios are implicit so that it is
di�cult to �nd causes of requirements defects, if any. The automotive
architecture description language east-adl addresses this problem by re-
lying on event chains, which make dependencies between events explicit.
However, east-adl event chains have a low abstraction level, and their
relationship to functional requirements has seldom been investigated.
Based on the east-adl functional architecture, we propose to use its
central notion of event to conciliate both approaches. We conceived an
automatic transformation from the high abstraction level requirements
speci�ed in MSDs to the low abstraction level event chains.

Keywords: requirements engineering, embedded systems, automotive,
scenario-based speci�cation, EAST-ADL event chains

1 Introduction

The growing functionality and complexity of today's embedded software-intensive
systems that are subject to real-time constraints, like in the automotive domain,
require rigorous development processes. This is especially true for the require-
ments engineering (RE) phase, since the detection and �xing of defects in the
system under development (SUD) in subsequent development phases cause costly
iterations [15].

On the one hand, scenario-based notations are well suited for the speci�ca-
tion of requirements due to their intuitive representation [10]. Scenarios describe
sequences of events of tasks that the SUD has to accomplish [10]. In previous
work, we conceived a scenario-based RE approach based on a recent Live Se-
quence Chart (LSC) [3] variant, so-called Modal Sequence Diagrams (MSDs) [8].
The scenario-based nature of MSDs enables a visual and intuitive speci�cation



2 Thorsten Koch, Jörg Holtmann, and Julien DeAntoni

of requirements. Furthermore, the underlying formal semantics allows validating
the requirements by means of the Play-out algorithm, originally conceived for
LSCs [9]. Our MSD Play-out approach implemented in the ScenarioTools3

tool suite considers assumptions on the environment [2] as well as real-time con-
straints [1] and is applicable to hierarchical component structures [11], which
makes it well suited for automotive systems.

On the other hand, the automotive architecture description language east-
adl allows the speci�cation of particular events occurring in an automotive
architecture [5]. The speci�cation of so-called event chains causally relates these
events to each other, which make dependencies between them explicit. Additional
real-time constraints restrict the timing of the particular event occurrences. Fur-
thermore, the formalization of east-adl event chains and timing constraints [6,
7] has recently made possible their validation by means of simulation in the
TimeSquare4 tool suite [4].

However, east-adl event chains only describe requirements on event occur-
rences of an automotive software architecture. Functional requirements are not
in their scope, and the relationship to scenario-based requirements has not been
investigated, yet. This missing link to functional requirements is problematic,
because the explicit dependencies between the events have to be speci�ed in a
modeling notation with a very low abstraction level. Thus, the requirements en-
gineer has to manually extract the information in scenario-based requirements
and specify it again in an awkward manner by means of east-adl event chains,
which is time-consuming and error-prone.

In order to bridge the gap between both formalisms, we conceived an au-
tomatic model transformation from MSDs to east-adl event chains using the
east-adl functional architecture as a common basis. In this paper, we present
a mapping from MSDs to east-adl event chains, which acts as a link between
both formalisms throughout a functional architecture. This enables an intuitive
speci�cation of scenario-based requirements and reduces e�ort to obtain a low
abstraction level speci�cation by means of east-adl event chains.

We illustrate the approach by means of an electronic control unit controlling
vehicle body functions, named Body Control Module (BCM). In the considered
use case, the BCM has to unlock all vehicle doors after a crash was detected
such that all passengers can safely escape or can be rescued from outside.

This paper is structured as follows: The following section introduces the
fundamentals of MSDs and east-adl event chains. Sect. 3 presents the trans-
formation approach. Sect. 4 covers related work. Finally, Sect. 5 summarizes this
paper and provides an outlook on future work.

2 Foundations

In this section, we introduce relevant foundations for the understanding of this
paper: some basic concepts of MSDs (Sect. 2.1) and the east-adl event chains
(Sect. 2.2). Both are illustrated on the running example.

3 http://scenariotools.org/
4 http://timesquare.inria.fr/



Generating Event Chains from Scenario-based Requirements Speci�cations 3

2.1 Modal Sequence Diagrams

The MSD speci�cation of our running example consists of the two MSDs CrashDe-
tected and CrashDetected-Hazard, depicted in Fig. 1. The �rst MSD describes the
requirements that the doors of the vehicle must be opened (message open) as soon
as a crash has been detected (message crashDetected). The MSD CrashDetected-

Hazard speci�es the requirements that if the open operation fails (message doorSta-
tus(false)), a hazard operation is performed (message hazardOpen) to ensure that
the passengers of the vehicle can safely escape or can be rescued from outside.

Basically, an MSD consists of lifelines and messages. Lifelines describe struc-
tural entities, which can be distinguished into environment objects and system
objects. Environment objects are depicted as cloud symbols and represent the en-
vironment that is sensed and manipulated by the SUD (e.g., lifeline cs:CrashSensor
in Fig. 1a). System objects represent components of the SUD (e.g., lifelines
bcm:BCM and dl:DoorLock in Fig. 1). Messages, represented by arrows between
lifelines, de�ne requirements on the communication between objects. Messages
sent from environment objects are called environment messages, whereas mes-
sages sent from system objects are called system messages. They have a temper-
ature and an execution time. The temperature of a message can be cold or hot
visualized by blue and red arrows in Fig. 1. It is used to distinguish between
provisional (cold) and mandatory (hot) behavior. The semantics of a hot mes-
sage is that other messages speci�ed by the MSD are not allowed to occur at
this point in time, while for a cold message, other messages may occur [2]. The
execution kind of a message can either be executed, depicted by solid arrows,
or monitored depicted by dashed arrows. An executed message indicates that
the message must eventually occur, whereas a monitored message can but need
not to occur [2]. The MSD CrashDetected contains an alternative fragment, which
describes di�erent alternative continuations of the scenario.

The scenario-based nature of MSDs enables a high-level speci�cation of re-
quirements with separation of concerns. However, in big speci�cations the im-
plicit event dependencies between several scenarios (e.g., message doorStatus(false)

msd CrashDetected

dl:

DoorLock

crashDetected

open

doorStatus(true)alt

doorStatus(false)

cs:

CrashSensor
bcm:

BCM

(a) The MSD CrashDetected

msd CrashDetected - Hazard

dl:

DoorLock

bcm:

BCM

doorStatus(false)

hazardOpen

doorStatus(true)

(b) The MSD CrashDetected-Hazard

Fig. 1. MSDs for the crash detection use case



4 Thorsten Koch, Jörg Holtmann, and Julien DeAntoni

«analysisFunctionPrototype»

bcm:BCM

AnalysisFunctionType

FunctionalArchitecture

«analysisFunctionPrototype»

dl:DoorLock
«analysisFunctionPrototype»

cs:CrashSensor

«event»

sE_crashDetected

«event»

rE_crashDetected

«event»

sE_close

«event»

rE_close

«event»

rE_doorStatus(true)

«event»

sE_doorStatus(true)

«event chain»

CrashDetected-EC

stimulus

response

«event»

sE_hazardOpen

«event»

rE_hazardOpen

«event»

rE_doorStatus(false)

«event»

sE_doorStatus(false)

Fig. 2. The BCM example functional architecture in east-adl including event chain
for alternative (2) of MSDs in Fig. 1

in both MSDs) can complicate the investigation of requirements defects like an
undesired activation of an MSD.

2.2 EAST-ADL Event Chains

The Electronics Architecture and Software Technology - Architecture Description
Language (east-adl) is an architecture description language for automotive
embedded systems [5]. The east-adl provides a uni�ed notion for all important
engineering information including the functional and non-functional properties
of the system.

In the east-adl [5, Part VI], an event is the abstract representation of a spe-
ci�c system behavior that can be observed at runtime. An event chain describes
the causal order for a set of functionally dependent events. Each event chain has
exactly one stimulus and response event, which describe the start and end point
of the chain. Furthermore, an event chain can be hierarchically decomposed into
an arbitrary number of sub-chains, so-called event chain segments that also have
exactly one stimulus and response event.

Fig. 2 depicts the east-adl functional architecture of the running example.
Furthermore, we add events and the event chain CrashDetected-EC to illustrate
the same interaction as speci�ed in alternative (2) of the MSD CrashDetected acti-
vating the second MSD. Obviously, the speci�cation of all particular events has a
lower abstraction level than the speci�cation of message exchange within MSDs,
but the event chain makes the dependencies between both scenarios explicit.

3 Transformation Approach

In this section, we present our transformation approach for the generation of
east-adl event chains from MSD speci�cations using the east-adl functional
architecture as common basis. The transformation approach has been imple-
mented in the ScenarioTools tool-suite and covers the MSD messages, alter-
native fragments and real-time constraints. However, due to space limitations,



Generating Event Chains from Scenario-based Requirements Speci�cations 5

msd CrashDetected - Hazard

dl:

DoorLock

bcm:

BCM

doorStatus(false)

hazardOpen

doorStatus(true)

Environment MSDs

System MSDs

«event»

sE_door

Status(false)

«event»

rE_door

Status(false)

«event»

sE_door

Status(true)

«event»

rE_door

Status(true)

«event»

rE_hazard

Open

«event»

sE_door

Status(false)

«event»

rE_door

Status(false)

«event»

sE_hazard

Open

stimulus

response

Step 1: Generation of 
Environment Event Chains

Step 3: Integration of System Event Chains into Reaching Environment Event Chains

Environment Event Chains System Event Chains

«event»

sE_door

Status(false)

«event»

rE_door

Status(false)

«event»

rE_open

«event»

sE_crash

Detected

«event»

rE_crash

Detected

«event»

sE_open

«event chain»

CrashDetected

-ECMult

stimulus

response

«event»

sE_door

Status(true)

«event»

rE_door

Status(true)

«event»

rE_hazard

Open

«event»

sE_hazard

Open

«event»

sE_door

Status(true)

«event»

rE_door

Status(true)«event»

rE_open

«event»

sE_crash

Detected

«event»

rE_crash

Detected

«event»

sE_open

stimulus

«event»

sE_door

Status(true)

«event»

rE_door

Status(true)

response

«event»

sE_door

Status(false)

«event»

rE_door

Status(false)

«event»

rE_open

«event»

sE_crash

Detected

«event»

rE_crash

Detected

«event»

sE_open

«event chain»

CrashDetected

-EC2

stimulus

response

«event»

sE_door

Status(true)

«event»

rE_door

Status(true)

«event»

rE_hazard

Open

«event»

sE_hazard

Open

«event»

sE_door

Status(true)

«event»

rE_door

Status(true)

response

Step 4: Split Event Chains

«event»

rE_open

«event»

sE_crash

Detected

«event»

rE_crash

Detected

«event»

sE_open

«event chain»

CrashDetected

-EC1

stimulus

msd CrashDetected

bcm:

BCM

dl:

DoorLock

crashDetected

open

doorStatus(true)alt

doorStatus(false)

cs:

CrashSensor

Step 2: Generation of 
System Event Chains

Event Chains with Possibly
Multiple Response Events

Scenario Event Chains

Legend

Artifact Automatic Transformation Step

«event chain»

CrashDetected-EnvEC

«event chain»

CrashDetectedHazard-SysEC

Message Event Chain Segment Connection Event Chain Segment

response

Fig. 3. Overview of the Transformation Approach

we do not detail the transformation of real-time constraints in this paper (please
refer to [13] for more details about real-time constraint transformations).

Our transformation approach is implemented by means of QVT Operational
[14] model transformations (partially supported by Java black-box libraries) and
encompasses four steps, which are depicted in Fig. 3. In our approach, an east-
adl event chain is the description of the SUD's reaction to an environment
message speci�ed in an MSD. We call this type of event chain scenario event
chain, which is the �nal result of our transformation (i.e., CrashDetected-EC1 and
CrashDetected-EC2). The stimulus of a scenario event chain is always the sending
event of an environment message. In the following, we describe each step by
means of the running example.

Transformation Steps 1 and 2: For the �rst two steps, we divide the set of MSDs
into environment MSDs and system MSDs. We qualify an MSD as an environ-



6 Thorsten Koch, Jörg Holtmann, and Julien DeAntoni

ment MSD, if its �rst message is an environment message; or as a system MSD, if
its �rst message is a system message. These MSDs, representing a sequential or-
der of messages, are respectively transformed into environment event chains and
system event chains. For each MSD message, the transformation algorithm cre-
ates a message event chain segment by setting the sending event of the message
as stimulus and the receiving event to the response.

Based on the running example, the transformation algorithm starts with
the processing of the environment MSD CrashDetected. Therefore, it creates a
new environment event chain CrashDetected-EnvEC and a message event chain
segment for the �rst message crashDetected consisting of sE_crashDetected and
rE_crashDetected.

The next element that occurs in the MSD is the open message. The transfor-
mation algorithm creates again a message event chain segment and in addition
a connection event chain segment. A connection event chain segment preserves
the order of two subsequent messages, e.g., crashDetected and open. Therefore,
the stimulus of the connection event chain segment is set to the receiving event
rE_crashDetected, and the response to the sending event of sE_open.

The next element that occurs in the MSD is the alternative fragment. MSD
messages within the alternative fragment are transformed in the same way as
other MSD messages. However, to preserve the order between the last message
before the alternative fragment and the �rst message in each alternative, the
transformation algorithm creates a set of connection event chain segments from
rE_open to sE_doorStatus(true) and sE_doorStatus(false).

The two alternatives contain only one message, and thus, these messages are
the last messages in the MSD. For a last message, the transformation algorithm
has to consider two cases. First, if the message is not the �rst message in another
MSD (e.g., doorStatus(true)), the currently considered alternative is terminated
and the response event of the last message is added to the set of response events.
Second, if the message is the �rst message in another MSD (e.g., doorStatus(false)),
the transformation algorithm only marks the MSD as reachable. We call a system
MSD reachable, if and only if its �rst message occurs in another processed MSD.

In the second step, the transformation algorithm processes the reachable sys-
tem MSD CrashDetected-Hazard in the same manner, which results in the system
event chain CrashDetectedHazard-SysEC.

Transformation Steps 3 and 4: In the third step, the transformation algorithm
merges the system event chains with the event chains of the MSDs from which
they are reachable. To accomplish this step, the event chain CrashDetected-EnvEC

is �rst copied to a new event chain CrashDetected-ECMult. Afterwards, the event
chain segments and the response events of CrashDetectedHazard-SysEC are at-
tached to the event chain path that corresponds to the MSD message that has
reached the MSD CrashDetected-Hazard (path containing sE_doorStatus(false) and
rE_doorStatus(false)).

In Sect. 2.2, we stated that an event chain is only allowed to have one stim-
ulus and one response event. However, in our running example, the event chain
CrashDetected-ECMult contradicts this de�nition. Hence, in the fourth step, the



Generating Event Chains from Scenario-based Requirements Speci�cations 7

transformation algorithm splits all event chains with multiple response events
and creates a set of event chains; one for each response event (e.g., both occur-
rences of rE_doorStatus(true) in the event chain CrashDetected-ECMult). To accom-
plish this step, the transformation algorithm performs a backward search for each
response event. After the completion of this transformation step, we obtain the
two well-formed scenario event chains CrashDetected-EC1 and CrashDetected-EC2

that have exactly one stimulus and one response event.
After the application of the transformation approach, we can apply both sim-

ulation approaches in a complementary manner. On the one hand, requirements
engineers can simulate the particular scenarios in ScenarioTools and inves-
tigate the behavior emerging from the interplay of multiple scenarios. On the
other hand, they can simulate the resulting event chains within TimeSquare

and visualize explicit event dependencies between di�erent scenarios, enabling
to detect requirements defects caused by undesired activations of MSDs.

4 Related Work

Chen et al. [17] propose a modeling approach for specifying timing require-
ments on the base of functional requirements. They have extended the Prob-
lem Frame formalism with the recent formalization [6, 7] of east-adl event
chains and timing constraints. The event chains and timing constraints have
to be speci�ed awkwardly in the underlying formalization, which is in contrast
with our more intuitive representation of scenario-based requirements. Klein and
Giese [12] present Timed Story Scenario Diagrams (TSSDs), a visual notation
for scenario speci�cations that takes structural system properties into account.
In TSSDs, it is possible to specify time constraints that allow setting lower and
upper bounds for delays. There is no mention of analysis support for TSSDs.
Priesterjahn et al. [16] present an automatic approach that generates a timed
failure propagation model from a system model for fault tolerance analysis based
on timed automata. The transformation is similar to our approach, but they fo-
cus on reliability, while we focus on timed requirements.

5 Conclusion and Outlook

In this paper, we presented a transformation approach from high abstraction
level scenario-based requirements to low abstraction level event chains while
using an east-adl functional architecture as common basis. We apply MSDs as
concrete formalism for scenario-based requirements and east-adl as modeling
notation for event chains. Our approach combines intuitive but formal scenario-
based requirements speci�cations on a high abstraction level with the possibility
to visually inspect explicit event chains induced by the scenarios.

The future work encompasses several aspects. On the one hand, we want
to evaluate our approach and the opportunities w.r.t. real-time requirements in
combining the two simulative validation approaches in a complementary manner.
On the other hand, we want to reuse the east-adl event chains in the subsequent
software development process within Autosar.



8 Thorsten Koch, Jörg Holtmann, and Julien DeAntoni

Acknowledgments. This research is partially funded by the German Federal
Ministry of Education and Research (BMBF) within the Leading-Edge Cluster
�Intelligent Technical Systems OstWestfalenLippe� (it's OWL) and is managed
by the Project Management Agency Karlsruhe (PTKA). This work is also par-
tially supported by the ANR INS Project GEMOC (ANR-12-INSE-0011).

References

1. C. Brenner, J. Greenyer, J. Holtmann, G. Liebel, G. Stieglbauer, and M. Tichy.
ScenarioTools real-time play-out for test sequence validation in an automotive case
study. In Graph Transformation and Visual Modeling Techniques, 2014.

2. C. Brenner, J. Greenyer, and V. Panzica La Manna. The ScenarioTools play-out of
modal sequence diagram speci�cations with environment assumptions. In Graph
Transformation and Visual Modeling Techniques, 2013.

3. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, 19:45�80, 2001.

4. J. DeAntoni and F. Mallet. TimeSquare: Treat your models with logical time. In
TOOLS (50), volume 7304 of LNCS, pages 34�41. Springer, 2012.

5. EAST-ADL Association. EAST-ADL Domain Model Speci�cation: Version
V2.1.12, 2013.

6. A. Goknil, J. DeAntoni, M.-A. Peraldi-Frati, and F. Mallet. Tool support for
the analysis of TADL2 timing constraints using TimeSquare. In ICECCS, pages
145�154. IEEE, 2013.

7. A. Goknil, J. Suryadevara, M.-A. Peraldi-Frati, and F. Mallet. Analysis support
for TADL2 timing constraints on EAST-ADL models. In ECSA, volume 7957 of
LNCS, pages 89�105. Springer, 2013.

8. D. Harel and S. Maoz. Assert and negate revisited: Modal semantics for UML
sequence diagrams. Software and Systems Modeling, 7:237�252, 2008.

9. D. Harel and R. Marelly. Come, let's play: Scenario-based programming using LSCs
and the play-engine. Springer, 2003.

10. J. Hassine, J. Rilling, and R. Dssouli. An evaluation of timed scenario notations.
Journal of Systems and Software, 83(2):326�350, 2010.

11. J. Holtmann and M. Meyer. Play-out for hierarchical component architectures.
In 11th Workshop Automotive Software Engineering (ASE 2013), volume P-220 of
LNI, pages 2458�2472, 2013.

12. F. Klein and H. Giese. Joint structural and temporal property speci�cation using
timed story scenario diagrams. In Fundamental Approaches to Software Engineer-
ing (FASE), volume 4422 of LNCS, pages 185�199. Springer, 2007.

13. T. Koch. Combining scenario-based and architecture-based timing requirements.
Master's thesis, University of Paderborn, Paderborn, 2013.

14. Object Management Group. Meta object facility (MOF) 2.0
query/view/transformation speci�cation: Version 1.1, OMG document num-
ber: formal/2011-01-01, 2011.

15. K. Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer, 2010.

16. C. Priesterjahn, C. Heinzemann, and W. Schäfer. From timed automata to timed
failure propagation graphs. In 4th IEEE Workshop on Self-Organizing Real-time
Systems (SORT 2013). IEEE, 2013.

17. Xiaohong Chen, Jing Liu, Frédéric Mallet, and Zhi Jin. Modeling timing require-
ments in problem frames using CCSL. In APSEC, pages 381�388, 2011.


