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Abstract

Phase separation during the intercalation of lithium ions can lead to degradation
effects in some cathode materials potentially, shortens life-time and decreases
capacity. A nonlinear initial boundary value problem for the lithium ion con-
centration, the electric potential and the electrode-electrolyte interface currents
is introduced on the microscale. Different exchange current densities for Butler-
Volmer interface conditions are evaluated. The Cahn-Hilliard equation is used
to describe the phase transition from solid-solution diffusion to two-phase dy-
namics. The resulting phase-field model is then discretized on a regular mesh.
A first-order finite-volume scheme with adaptive time stepping is applied. The
parameters and their effects in the non-convex Helmholtz energy are investi-
gated and explained. Furthermore, the numerical convergence of the scheme is
examined. In order to illustrate the method, the charging process of a complex
structure is numerically simulated.

Keywords: phase-field model, Cahn-Hilliard equation, Butler-Volmer kinetics,
intercalation, lithium-ion battery, finite-volume method
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1. Introduction

Today lithium ion batteries form an indispensable component for electronic
devices or electric vehicles. Even though lithium ion electrodes are very versatile
in battery production due to their high energy density, the diverse fields of
application require the prediction of life-time, capacity fade, and the modeling
of aging mechanisms. A lot of electrode materials show degradation during
usage. If a large current is applied at the poles of the battery during discharge,
the diffusion of lithium ions inside the battery from anode to cathode is not fast
enough and concentration gradients arise. In some materials the restructuring of
the lithium ions inside the crystal structure of the electrode material gives rise to
large strains [3]. From experiments it is known that the stresses related to these
strains can cause mechanical damage effects in materials including lithium tin
oxide [5], lithium manganese oxide [15], lithium titanate oxide [6] and lithium
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iron phospate [7]. The mechanical stresses arising in a porous electrode made of
lithium manganese oxide have been numerically simulated with a model based
on diffusive dilute solution theory [25]. In this model a diffusion equation is
used to describe the distribution of lithium ions inside the battery.

But especially in lithium iron phospate, the diffusion of the lithium ions
from electrolyte into the active material cannot be modeled by a regular dif-
fusion equation. While in a lot of materials the diffusion leads to an even ion
distribution inside the material, for lithium iron phospate a separation into areas
with a maximum concentration of lithium ions and areas where no lithium ions
are present [11, 28]. Even without applied current, the lithium enriched areas
do not diffuse. The distribution of the lithium ions inside the material can then
be described by two different phases, one phase enriched with lithium ions and
one phase devoid of lithium ions. The process of separation into different phases
is called spinodal decomposition. The problem of describing the movement of
the boundaries between both phases is often called a Stefan problem [1, 14] and
can be approached by adaptive meshes and front-tracking methods [19].

Another approach called phase-field method is introduced in the works of
Cahn and Hilliard [4] and is based on a thermodynamical approach involving
a non-convex Helmholtz energy functional. In a general phase-field method,
the boundary between two phases is discretized and a fine regular spatial mesh
is used. In phase-field models for diffusive processes the constituent fourth-
order nonlinear partial differential equation is called the Cahn-Hilliard equation.
There are applications to electrode material for either spherical [27], ellipsoidal
[15] or cuboid particles [2].

In Section 2 the electrochemical model for a dilute solution battery on the
microscale [16] is presented. A phase-field model for phase separation given in
[27] is introduced and adjusted to the electrochemical model. In Section 3 the
spatial discretization and an adaptive time integration algorithm is presented.
In Section 4 different numerical tests are presented. The process of spinodal
decomposition is shown and explained in Subsection 4.1 on a circular cathode
particle. Two different models for the exchange current density in the Butler-
Volmer currents are evaluated in Subsection 4.2. In Subsection 4.3 the numerical
convergence of the battery cell voltage is examined. In Subsection 4.4 the ef-
fect of the size and the shape of the cathode particle on the phase separation
process is investigated. In Section 5 all findings are summarized and possible
enhancements as well as extensions of the numerical method are discussed.

2. Electrochemical model

In this section the equations for a lithium ion battery model on the microscale
are presented. After introducing the spatial domains involved the transport
equations [16] for the lithium ions and electric charges in each domain are pro-
posed. Current conditions on the interface between the domains are taken from
established models and boundary and initial conditions complete the model. In
this paper the spatial two dimensional case is considered. The extension to a
three dimensional model is possible.
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Figure 1: Decomposition of a battery cell into anode Ωa, electrolyte Ωe, cathode Ωc and the
interfaces Γae and Γce.
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Name Character Value Unit
Concentration c(x, y; t) - mol l−1

Potential φ(x, y; t) - V
Universal gas constant R 8.314 J mol−1 K−1

Temperature T 300 K
Faraday constant F 96485 A s mol−1

Lithium transference number t+ 0.2 1
Electrolyte diffusion coefficient De 1.27 · 10−7 cm2 s−1

Anode diffusion coefficient Da 10−10 cm2 s−1

Cathode diffusion coefficient Dc 10−10 cm2 s−1

Electrolyte conductivity κe 0.0038 A V−1 cm−1

Solid conductivity κs 10 A V−1 cm−1

Maximum lithium ion concentration cm 20 mol l−1

Enthalpy of mixing per site θ 1.110 · 104 J mol−1

Phase-field interface energy κ 3.020 · 1012 J mol−1 cm−1

Reference length L0 10−7 cm
Anode reference potential Ūa 0 V
Cathode reference potential Ūc 3.42 V

Table 1: Material parameters

A rectangular domain Ω = (0, Lx) × (0, Ly) ⊂ R2 in Figure 1 denotes the
micro-structure of a battery cell and consists of the two solid electrodes, anode
Ωa and cathode Ωc and the liquid electrolyte Ωe, i.e. Ω = Ωa ∪ Ωe ∪ Ωc. A
domain for a separator is not included in the model. The union Ωs = Ωa∪Ωc is
called the solid domain. Figure 1 also introduces a domain decomposition with
interface domains Γae, Γce and Γse = Γae ∪ Γce.

The equations are solved for a time interval T = (0, t0] and space-time
domains are defined by Ωi,T = Ωi × T . The function spaces Vi = {f : Ωi → R}
and Vi,T = {f : Ωi × T → R} are introduced for i ∈ {a, e, c}, as are V = {f :
Ω → R} and VT = {f : Ω × T → R}. Additionally on the boundaries trace
spaces Wi = {g : Γi → R} and Wi,T = {g : Γi × T → R} for i ∈ {ae, ce, se} are
introduced.

The following equations involve the function c(x, y; t) ∈ VT describing the
lithium ion concentration in mol l−1, the function φ(x, y; t) ∈ VT describing the
electric potential in V and the chemical potential µ(x, y; t) ∈ Vc,T in J mol−1.

2.1. Governing equations

First the transport equations in the three domains Ωa,Ωe,Ωc are introduced
separately.

Electrolyte

In [16] the transport equations for ion concentration ce ∈ Ve,T and the
electric potential φe ∈ Ve,T in an electrolyte are given as
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∂tce −∇
(
De∇ce −

t+
z+F

j

)
= 0, (x, y; t) ∈ Ωe,T , (1)

−∇
(
κe

1− t+
z+F

(
∂µe
∂c

)
∇ce − κe∇φe

)
= 0, (x, y; t) ∈ Ωe,T . (2)

Table 1 gives numerical values for the electrolyte diffusion coefficient De, the
electrolyte conductivity κe, the charge coefficient z+, the lithium transference
number t+ and the Faraday constant F . The electric current j is given in [16]
as

j = κe∇φ− κ
t+ − 1

z+F

(
∂µe
∂c

)
∇ce. (3)

A logarithmically scaled chemical potential µe(ce) = RT log ce
cm

is used to
rewrite Eq. (1). This gives the final governing equations in terms of the concen-
tration ce ∈ Ve,T and the electric potential φe ∈ Ve,T in the electrolyte as

∂tce −∇
((

De

RT
ce +

κet+(t+ − 1)

F 2

)
∇µe(ce) +

κet+
F
∇φe

)
= 0, (x, y; t) ∈ Ωe,T ,

−∇
(
κe(t+ − 1)

F
∇µe(ce) + κe∇φe

)
= 0, (x, y; t) ∈ Ωe,T .

(4)

This system of two equations consists of a parabolic equation and an elliptic
equation [12].

Anode

An electrochemical model for the transport of lithium ions inside electrode
material is taken from [16]. The continuity equation for a function ca ∈ Va,T is

∂tca +∇f = 0, (x, y; t) ∈ Ωa,T . (5)

The divergence of a diffusion flux f gives rise to local concentration changes.
This flux f is proportional to the gradient of a chemical potential µ:

f = Da(ca)∇µa(ca), (x, y; t) ∈ Ωa,T . (6)

For thermodynamic consistency, the anode diffusion coefficient Da(ca) is
chosen depending on the local lithium ion concentration c as

Da(ca) =
D0

RT
ca

(
1− ca

cm

)
(7)

The solid diffusion coefficient D0 is smaller than in the electrolyte as diffusive
processes in the solid material are more difficult than in the liquid electrolyte.

In dilute solution theory, the chemical potential is given by
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µa(ca) = RT log
ca

cm − ca
. (8)

It is derived from a convex Helmholtz energy assuming a maximum solid
concentration cm depending on the material [27].

Additionally the Laplace equation for an electric potential φa ∈ Va,T inside
the electrode is considered as

−∇ (κs∇φa) = 0, (x, t) ∈ Ωa,T . (9)

The electric conductivity κs is usually orders of magnitude larger in the
electrode than in the electrolyte.

Together the aforementioned equations give the governing equations in terms
of the concentration ca ∈ Va,T and the electric potential φa ∈ Va,T in the anode
as

∂tca −∇
(
D0

RT
ca

(
1− ca

cm

)
∇µa(ca)

)
= 0, (x, y; t) ∈ Ωa,T ,

−∇ (κs∇φa) = 0, (x, y; t) ∈ Ωa,T .

(10)

Cathode

For the concentration cc ∈ Vc,T an extended model compared to the more
simple one in the anode is considered. Instead of a logarithmic chemical po-
tential, the chemical potential µ is defined as the variational derivative of a
non-convex free energy F (p) [4] in a phase-field method,

µ

RT
=
δF (p)

δp
. (11)

The phase-field order parameter p is the normalized lithium ion concentra-
tion, p = c

cm
. In [15] the free energy is assumed as

F0(p) = H1 +H2, where

H1 = p log p+ (1− p) log (1− p),

H2 =
θ

RT
p(1− p).

(12)

The first term H1 is related to a diffusion potential based on one-body terms
in a Hamiltonian of the crystalline structure in active material. The second term
H2 results from a mean-field approximation of two-body interaction terms in
the Hamiltonian.

The interface between lithium-rich phase and lithium-poor phase is related
to misfits in the crystal structure. Therefore in phase-field methods a penalty
term involving a norm of the gradient of the concentration is added to the free
energy to receive

F (p,∇p) = αL2
0

G

L
F0(p) +

βGL

2
(∇p)2

. (13)
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The parameters G and L are introduced as an alternative description of the
parameters phase-field model. They represent energy density and the width of
the interfacial region, respectively. Moreover, α and β are dimensionless scalar
parameters. All of these parameters are derived analytically from the represen-
tation of the free energy with the Euler-Lagrange equations in Remark 1.

From Eq. (13), the chemical potential µ ∈ Vc,T is now given as the variational
derivative by

µ(cc)

RT
= αL2

0

G

L
F ′0(

cc
cm

)− βGL∆

(
cc
cm

)
(x, y; t) ∈ Ωc,T . (14)

Combining Eqs. (5), (6) and (14), the equations governing the lithium ion
concentration cc ∈ Vc,T , the electric potential φc ∈ Vc,T and the chemical po-
tential µ ∈ Vc,T are given by

0 = ∂tc+∇
(
D0

RT
cc

(
1− cc

cm

)
∇µ
)
, (x, y; t) ∈ Ωc,T ,

0 = −∇(κs∇φc), (x, y; t) ∈ Ωc,T ,

µ = RTαL2
0

G

L
F ′0(

cc
cm

)−RTβGL∆

(
cc
cm

)
(x, y; t) ∈ Ωc,T .

(15)

Here the chemical potential µ is introduced as an additional unknown. The
resulting equation system for the cathode domain contains three second-order
differential equations, whereas for electrolyte domain and anode domain, two
second-order differential equations suffice.

Remark 1 (Derivation of the alternative phase-field representation). In this
remark an alternative representation of the chemical phase-field potential µ is
derived in terms of the interface width L and the interface energy density G as
presented in [24].

With the free energy F0 in Eq. (12) and the mixing enthalpy θ given in
Table 1, the minima of the free energy can be derived from the equation F ′0(p) = 0
as p1 ≈ 0.013 and p2 ≈ 0.987. The corresponding concentrations are called the
equilibrium concentrations c1 ≈ 0.013 cm and c2 = cm − c1 ≈ 0.987 cm.

The shifted free energy ∆F0(p) = F0(p)−F0(p1) allows to define the activa-
tion energy needed during a phase transformation from concentration p1 to p2

as an integral.
The coefficients in Eq. (13) can be identified with corresponding values given

in [26] as

αL2
0

G

L
= 1, βGL =

κ

L2
0cmNART

. (16)

With this and the use of the Euler-Lagrange equations, G and L are calcu-
lated as
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G =
1

L0

√
2

κ

L2
0cmNART

p2∫
p1

√
∆F0(p)dp ≈ 2.09 · 10−7cm−1,

L = L0(p2 − p1)

√
κ

2L2
0cmNART∆F0(0.5)

≈ 3.33 · 10−7cm.

(17)

The scalar parameters α and β can now be deduced as

α ≈ 1.593 · 10−14, β ≈ 1.444 · 1010 (18)

The application of a phase-field method requires a fine discretization of the
interface width. From the interface width being L = 3.3 nm it can be concluded
that the spatial discretization size should not be larger than h ≈ 1 nm. This way
the phase interface between different phases is resolved by at least three or four
voxels.

Remark 2 (Equilibrium concentration). Figure 2 shows the influence of the
mixing enthalpy parameter θ on the bulk chemical potential F ′0(c)

F ′0(c) = RT log
c

cm − c
+ θ

(
1− 2

c

cm

)
(19)

in Eq. (14). For a value of θ < θcrit = 0.052 kJ mol−1, this chemical poten-
tial is monotonous. There are no extrema and no phase separation will occur.
θ > θcrit allows phase coexistence, where the equilibrium concentration values are
given by the root marks in Figure 2. An over-saturated state of charge between
the equilibrium concentrations c1 ≈ 0.013 cm and the concentration cs ≈ 0.12 cm
at the maximum S of the chemical potential gives rise to a spinodal decom-
position. In this domain, small perturbations lead to phase separation into a
lithium-poor phase with concentration c1 and a lithium-rich phase with concen-
tration c2 = cm − c1.

2.2. Interface conditions

The domains Γae and Γce in Figure 1 are both part of the electrode domain
and the electrolyte domain. They act as inner boundaries between electrode
and electrolyte and are called interface domains. In order to close the partial
differential equations given in their respective domain, this subsection will define
transmission conditions.

The trace cce,c ∈ Wce is defined as the continuous extension of cc ∈ Vc,T
onto Γce. Also, ce ∈ Ve,T and ca ∈ Va,T are extended as cce,e, cae,e and cae,a
onto Γce and Γae. Using the union Γse of Γce and Γae and the function space
Wse, the lithium ion concentration cse,s can be defined as (cce,c; cae,a) ∈ Wse

and corresponding also cse,e as (cce,e; cae,e) ∈ Wse. In general cse,s 6= cse,e, i.e.
there is no continuous extension of cc and ce across Γse. The functions φc,φe,φa
are extended in the same way to functions φse,s and φse,e.

Then the Butler-Volmer interface electric current ise ∈Wse is defined as
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Figure 2: The bulk chemical potential µc(c) for different values of the phase-field enthalpy
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θ = 11.10 kJ mol−1.
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ise = i0(cse,s, cse,e) sinh

(
F

2RT
η

)
. (20)

The function i0 is called the exchange current density. The model introduced
in [17] for the exchange current density is called Model A and is given as

i0(cse,s, cse,e) = 2k

√
cse,ecse,s

cm
2
. (21)

In Subsection 4.2 it is compared to another model [20] called Model B given
as

i0(cse,s, cse,e) = 2k
√
cse,ecse,s(cm − cse,s). (22)

The Nernst overpotential η is the difference between the electrochemical
potentials on both sides of the particle surface,

η = φse,s − φse,e − U0. (23)

The open circuit potential U0 is the difference of the chemical potential at
the particle surface divided by the Faraday constant and the reference potential.
U0 is defined as

U0 =
µa(cse,s)

F
− Ūa, (x, t) ∈ Γae × T

U0 =
µ

F
− Ūc, (x, t) ∈ Γce × T

(24)

The values Ūa and Ūc are the constant reference voltages of the electrodes
given in Table 1.

The electric current ise is used to define a flux boundary condition for the
Laplace equations for the electric potential. To give a similar Neumann bound-
ary condition on the diffusion equations, a corresponding interface concentration
flux is defined as

fse =
ise
F
. (25)

Now the interface conditions on the anode-electrolyte interface are

fse =n ·
(
D0

RT
cae,a

(
1− cae,a

cm

)
∇µa(cae,a)

)
,

ise =n · (κs∇φae,a),

fse =− n ·
((

De

RT
cae,e +

κet+(t+ − 1)

F 2

)
∇µe(cae,e) +

κet+
F
∇φae,e

)
,

ise =− n ·
(
κe(t+ − 1)

F
∇µe(cae,e) + κe∇φae,e

)
,

(x, y; t) ∈ Γae × T,

(26)
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and on the cathode-electrolyte interface

fse =n ·
(
D0

RT
cce,c

(
1− cce,c

cm

)
∇µce,c

)
,

ise =n · (κs∇φce,c),

fse =− n ·
((

De

RT
cce,e +

κet+(t+ − 1)

F 2

)
∇µe(cce,e) +

κet+
F
∇φce,e

)
,

ise =− n ·
(
κe(t+ − 1)

F
∇µe(cce,e) + κe∇φce,e

)
,

(x, y; t) ∈ Γce × T.

(27)

In these definitions, the normal vector n is assumed to point from solid do-
main to electrolyte domain. The resulting transmission problem is fully coupled
in all three domains. Both concentration and electric potential are involved in
a nonlinear Robin condition.

2.3. Boundary and initial conditions

Since the battery cell is placed in an enclosed housing, no concentration
flux over the boundaries Γa, Γc and Γe is possible. Therefore the boundary
conditions for the concentration c are homogeneous Neumann conditions,

αs(c)∇µa(c) = 0, (x, y; t) ∈ Γa × T,
αe(c)∇µe(c) + β∇φ = 0, (x, y; t) ∈ Γe × T,

αs(c)∇µ = 0, (x, y; t) ∈ Γc × T.
(28)

Boundary conditions on the electric potential are more complex. The neutral
point for the electric potential is arbitrarily assigned to the anode boundary Γa

φ(x, y; t) = 0, (x, y; t) ∈ Γa × T. (29)

The parameter C rate is used to define meaningful charging boundary con-
ditions. It is defined as quotient of charging current and battery capacity and
usually specified in the unit h−1. C rate 1 defines a charging current iin such
that it takes one hour to charge the battery cell from empty to full state of
charge. On the cathode boundary Γc a constant current density iin is applied
such that a particular C rate is achieved,

κs∇φ(x, y; 0) = iin, (x, y; t) ∈ Γc × T. (30)

The boundary Γe containing the electrolyte is assumed to be an isolating
material with no electric current permitted,

(
De

RT
cce,e +

κet+(t+ − 1)

F 2

)
∇µe(cce,e) +

κet+
F
∇φce,e = 0, (x, y; t) ∈ Γe × T.

(31)
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In Eq. (15) for the chemical potential µ in the cathode material, the bound-
ary condition on the interface Γce,c is equivalent to the abundance of a surface
wetting effect.

∂nc = 0, (x, y; t) ∈ (Γc ∪ Γce)× T. (32)

If not noted otherwise, the initial lithium ion concentration in the respective
domains is prescribed as

c(x, y; 0) = 0.99cm, (x, y) ∈ Ωa,

c(x, y; 0) = 0.06cm, (x, y) ∈ Ωe,

c(x, y; 0) = 0.01cm, (x, y) ∈ Ωc.

(33)

This corresponds to the state of charge SOC = 0.99 in the anode and SOC =
0.01 in the cathode. Consistent initial values for the electric potential and the
particle surface currents can now be calculated

φ(x, y; 0) = φ0(x, y), (x, y) ∈ Ω,

i(x, y; 0) = i0(x, y), (x, y) ∈ Γse.
(34)

3. Numerical method

Phase-field models on periodic domains have been extensively studied and
solved with methods using fast Fourier transformation [23, 24]. Problems on
active material particles with a constant Butler-Volmer currents as a boundary
condition have been simulated with higher-order schemes due to the fourth-
order Cahn-Hilliard equation in order to make use of larger time steps [27, 9].
However, the highly nonlinear interface conditions in combination require small
time-steps regardless of the convergence order of the scheme used. For this rea-
son a first-order scheme in time is applied. Even though unconditionally stable
semi-implicit backwards schemes have successfully been derived and proved for
the simple elliptic equations and Cahn-Hilliard equations in [13], they are not ca-
pable of implementing nonlinear interface conditions. Therefore a fully-implicit
scheme is applied.

For the spatial discretization of diffusion problems, finite-volume methods
have prover to be useful and flexible. The electrochemical model in Section 2
describes interface fluxes which can be incorporated in a finite-volume scheme
on cell centers. The spatial discretization presented here is similar to the one
used in [22]. A uniform regular cell grid is used and thus a finite-volume scheme
on cell-centered voxels is identical to a finite-difference scheme [18].

In this section, a general first-order, finite-volume, cell-centered scheme for
discretizing a parabolic differential equation with nonlinear conductivity coef-
ficients and interface conditions is explained. Variables for the concentration,
the electric potential and the interface fluxes are introduced.
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µ̃(c̃) = 1
RT µ(cmc̃) c̃ = c

cm
φ̃ = F

RT φ

t̃ = De

L2
x
t ĩ = i

iin
x̃ = x

Lx

Table 2: Non-dimensionalization of variables

3.1. Non-dimensionalization

Table 2 shows dimensionless variables with tildes. For the non-dimensionali-
zation the universal gas constant R, the temperature T , the Faraday constant F ,
the maximum lithium ion concentration in the solid material cm, the diffusivity
in the electrolyte De and the current density iin given in the boundary condition.
The size of the domain in the first dimension Lx is applied as a reference length.
This enables us to describe both spatial and time derivatives in the following
way:

∂

∂x̃i
= Lx

∂

∂xi

∇̃ = Lx∇
∂

∂t̃
=
De

L2
x

∂

∂t

(35)

For the subsequent derivation dimensionless equations are utilized without
explicit usage of the tilde notation.

3.2. Mesh

Suppose that Nx and Ny are positive integers such that Lx

Nx
=

Ly

Ny
. Let

h ..= Lx

Nx
and consider a uniform mesh Ωh on Ω, defined by

Ωh ..= {(x, y) ∈ R2|x = ih− 1

2
, y = jh− 1

2
1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}.

(36)

Let N ..= |Ωh| = NxNy and let Vh denote the linear space of real-valued
functions defined on Ωh. Meshes Ωi,h = Ωi ∩ Ωh are defined for i ∈ {a, e, c}.

Consider a second mesh Σh on Ω, defined by

Σh ..={(x, y) ∈ R2|x = ih, y = jh− 1

2
0 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}∪

{(x, y) ∈ R2|x = ih− 1

2
, y = jh,

1 ≤ i ≤ Nx, 0 ≤ j ≤ Ny}

(37)

Let Nf
..= |Σh| = (Nx + 1)Ny + Nx(Ny + 1) and let Wh denote the linear

space of real-valued functions defined on Σh. A partition of Σh into different
meshes is now defined.
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(a) A continuous structure depicting
the cathode-electrolyte interface in a
battery. The electrolyte domain Ωe

and the cathode domain Ωc are co-
incide at the interface domain Γce.
The concentration flux f flows into the
cathode particle.

(b) A discretization of the structure
into finite volume cells with a mesh
Ωh = {xi} in the cell centers (red)
and a shifted mesh Σh = {yi} on the
edges of the cells (green). The com-
ponents ci of a function ch ∈ Vh dis-
cretize the lithium ion concentration.
Components fi of a function f ∈ Wh

discretize the concentration flux.

Figure 4: Discretization of a battery structure
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Figure 4 shows both Ωh and the shifted mesh Σh. Also a notation relating
elements of Σh to elements of Ωh is established. The mesh Σh is the union of
several meshes Σi,h for i ∈ {a, c, e} and Γi,h for i ∈ {ae, ce, a, e, c}. A mesh
point yjk is considered an element of Σi,h, if it lies on the edge between two
cells Tj and Tk with center points xj and xk being elements of the Ωi,h,

Σi,h = {yjk ∈ Σh|xj , xk ∈ Ωi,h} for i ∈ {a, c, e}. (38)

Mesh points yjk on edges between two cells Tj and Tk with xj being an
element of a discretized solid domain Ωa,h∪Ωc,h and xk being an element of the
discretized electrolyte domain Ωe,h are considered elements of domain Γae,h,

Γae,h = {yjk ∈ Σh|xj ∈ Ωa,h, xk ∈ Ωe,h},
Γce,h = {yjk ∈ Σh|xj ∈ Ωc,h, xk ∈ Ωe,h}.

(39)

The remaining mesh points yjk are considered elements of Γi,h for i ∈ {a, c, e}
as they lie on the boundary of Ω.

Each cell center xj in Ωh is now related to four edge nodes yjk in Σh.
A function in Vh can be considered an element of V by a cell-wise constant
projection.

3.3. Finite volume discretization

The governing equations are discretized depending on two functions f, i ∈
Wh called the concentration flux and the electrical current. The discretization
is demonstrated by the diffusion equation in the anode, but respective steps
are taken for the remaining diffusion equations, the Laplace equations for the
electric potential and the equation for the chemical potential µ in the cathode.

Let c̄ ∈ Va,T a solution for the lithium ion concentration in Eq. (10), τ the
current time step size and t > τ a fixed time. Then c = c̄(·; t) ∈ V is called
the current solution and č = c̄(·; t − τ) ∈ V is called the previous solution.
Integration of the diffusion equation in Eq. (10) over [t− τ, t] gives

0 =

t∫
t−τ

∂tc̄dt−
t∫

t−τ

∇
(
D0

RT
c̄

(
1− c̄

cm

)
∇µa(c̄)

)
dt =

= c− č− τ∇
(
D0

RT
c

(
1− c

cm

)
∇µa(c)

)
+O(τ).

(40)

Now an integral in space over Ω is discretized into cubic cells Tj surrounding
mesh points xj ∈ Ωh. With the divergence theorem, the volume integrals are
converted into surface integrals. Given ch ∈ Vh and ch,j ..= ch(xj), it is
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0 =

∫
Tj

(c− č)dV − τ
∫
Tj

∇
(
D0

RT
c

(
1− c

cm

)
∇µa(c)

)
dV +O(τ)⇔

0 =

∫
Tj

(c− č)dV − τ
∫
∂Tj

(
D0

RT
c

(
1− c

cm

)
∇µa(c)

)
dS +O(τ)⇔

0 = h3(ch,j − čh,j)− h2τ
∑

yjk∈Σh

fjk +O(h+ τ) ∀xj ∈ Ωh.

(41)

Components of f ∈ Wh between two cells Tj and Tk in the same domain
such that yjk ∈ Σa,h are approximated first order by

fjk =
D0

RT
c

(
1− c

cm

)
∇µa(c) =

=
D0

RT

ch,j + ch,k
2

(
1− ch,j + ch,k

2cm

)
µa(ch,j)− µa(ch,k)

h
+O(h)

if fjk ∈ Σa,h.

(42)

The next subsection defines the remaining components of the flux f ∈ Wh

by defining components fjk ..= f(yjk) for yjk ∈ Γi,h for i ∈ {ae, ce, a, c, e}.
The cell-wise constant projection of ch and φh from Vh onto V defines the

continuous extension of lithium ion concentration and electric potential onto
Γae,h and Γce,h. If xj ∈ Ωc,h and xk ∈ Ωe,h the discretized electric current ijk
between the cells Tj and Tk is approximated with Eq. (20) and Eq. (23) as

ijk = i0(ch,j , ch,k) sinh

(
F

2RT
η(φh,j , φh,k, µh,j)

)
+O(h+ τ), (43)

and respectively for xj ∈ Ωa,h and xk ∈ Ωe,h. The chemical potential
µ is taken from the previous iteration step and convergence is achieved by a
fixed point iteration. Components of the concentration flux fjk are defined
accordingly.

The remaining components fjk of the discretized concentration flux f ∈Wh

are zero for yjk ∈ Γa,h ∪ Γe,h ∪ Γc,h according to the boundary conditions in
Eq. (28). The components ijk of the discretized electrical current i ∈ Wh are
zero for yjk ∈ Γe,h according to Eq. (31) and identical to iin for yjk ∈ Γc,h
according to Eq. (30). For yjk ∈ Γa,h, components ijk are set such that the
Dirichlet boundary condition in Eq. (29) is fulfilled. Finally the components
defining the gradient of the lithium ion concentration ∇c in Eq. (15) for the
chemical potential µ in the cathode are also set according to the surface wetting
boundary condition in Eq. (32).

The initial conditions in Eq. (33) are evaluated at xj ∈ Ωh to get the initial
configuration ch ∈ Vh at time t = 0 as

ch,j = c(x, y; 0), xj ∈ Ωh. (44)
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1 step ← 0;
2 t← 0;
3 while true do
4 SOC ← Calculate state of charge;

5 if SOC> SOC then Finish simulation;
6 u0 ← ǔ;
7 for k=1.. do
8 if k > kmax then
9 τ ← τ

2 ;
10 Restart time step;

11 end if
12 e← Calculate error of uk−1;
13 if e < ε then
14 u← uk−1;
15 else
16 f, J ← Calculate residuum and Jacobian from uk−1;
17 d← Calculate search direction from J and f ;
18 uk ← Calculate new Newton iterate of uk−1 and d;

19 end if

20 end for
21 t← t+ τ ;
22 step ← step + 1;
23 if step-lastDampedStep > Ntrust then τ ← min(τmax,2τ); ;

24 end while

Algorithm 1: Time-adaptive damped Newton-Raphson scheme
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3.4. Linearization and adaptive algorithm

In the previous subsection the electrochemical model is discretized and the
following nonlinear system of equations is established. At each time step a so-
lution of this system is required. In this subsection a damped Newton-Raphson
algorithm with an adaptive time step algorithm is introduced.

0 = h3(ch,j − čh,j)− h2τ
∑

yjk∈Σh

fjk(ch, φh), ∀xj ∈ Ωh,

0 = −h2
∑

yjk∈Σh

ijk(ch, φh), ∀xj ∈ Ωh,

ijk = i0(ch,j , ch,k) sinh

(
F

2RT
η(φh,j , φh,k, µ̌h,k)

)
, ∀yjk ∈ Γae,h ∪ Γce,h.

(45)

The discretization for the equation for the chemical potential µ is an ex-
plicit expression in ch. Therefore µ is eliminated from the equations. Define
Nae = |Γae,h|, Nce = |Γce,h| and Nse = Nae + Nce. The discretized system in
Eq. (45) involves N equations given by the discretized diffusion equation, N
equations given by the discretized Laplace equation and Nse equations given by
the equation defining the particle surface flux. Then the number of degrees of
freedom of the equation system is NDoF = N +N +Nse.

Eq. (45) is written as f(u) = 0. The vector u ∈ RNDoF ∼= Vh × Vh ×Wh is
called solution vector and is defined as u = (ch;φh; ih) ∈ RNDoF . Introducing
terms of a general nonlinear equation solver, f = f(u) is called the residuum
and J = Df(u) ∈ RNDoF×NDoF is called the Jacobian matrix of the system. The
Newton direction vector d ∈ RNDoF is the solution to the linear equation system
given by Jd = f .

Algorithm 1 defines a time-adaptive damped Newton-Raphson scheme and
Algorithm 2 defines a line search scheme. The index k denotes the current
Newton iteration. The index l denotes the current line search iteration. The
error e corresponds to discrete L2-norms for the grid functions ch, φh and ih
and is calculated as

||f ||2 =

√√√√h3

N∑
j=1

c2h,j +

√√√√h3

N∑
j=1

φ2
h,j +

√√√√h2

Nse∑
j=1

i2h,j . (46)

The line search in Algorithm 2 ensures global linear convergence and local
quadratic convergence [21]. If a lot of sequential undamped Newton iterations
are accepted the time step is enlarged. Corresponding, the time step is reduced
if the Newton iteration takes too many steps. Table 3 defines the parameters
used in the solver. Possible extensions include an arc-length scheme for finding
an optimum time step size [8].

An iteration on a smaller nonlinear equation system with size Nsteady
..=

N + Nse given by the equations in φh and ijk is used in a first iteration step
to establish consistent values for the electric potential and the particle surface
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Figure 5: Structures containing cathode particle domains in the shape of different ellipsoids
(left) and a rectangle (right)

current. For this iteration an undamped Newton algorithm is applied. The
electric potential φh is initialized on Ωa,h, Ωe,h and Ωc,h with the values 0, Ūa
and Ūa+ Ūc, respectively and the particle surface current ijk on Γae,h and Γce,h
is initialized with values proportional to the boundary current density iin.

Data: Current Newton iterate uk−1, search direction d, current residual
error e

Result: New Newton iterate uk
1 for l = 1.. do
2 uk,l ← uk−1 − ωl−1d;
3 Project concentration in uk,l to feasible domain;
4 e← Calculate new error of uk,l;
5 if e < e then
6 uk = uk,l;
7 Return;

8 else if ω > ωmin then
9 lastDampedStep ← step;

10 ωl ← ωl−1σ;

11 else if τ > τmin then
12 τ ← τ

2 ;
13 Restart time step;

14 end if

15 end for

Algorithm 2: Line search in the adaptive damped Newton-Raphson
scheme

3.5. Numerical convergence

In this section the numerical convergence of the presented method is exam-
ined. In Figure 5 a microstructure made of anode, electrolyte and a cathode
particle with rectangular shape is shown. This rectangular shape is chosen
such that the resulting discretization is independent of the spatial discretization
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Name Symbol Value
Number of undamped steps until time step is doubled Ntrust 10
Maximum state of charge SOC 0.99
Error criterion ε 10−10

Maximum number of Newton iterations kmax 20
Reduction factor in the line search algorithm σ 1

2
Initial line search step size ω0 1
Minimum line search step size ωmin 10−3

Minimum time step size τmin 10−6

Maximum time step size τmax
t0

100

Table 3: Parameters for the time integration scheme

width h. A domain with width and height 50 nm and the interface width and
interface energy density given in Table 1 are used. The initial state of charge
SOC in the cathode is set to 0.12 and the particle is charged with C rate 100.
The simulation is run until a state of charge of 0.15 is reached. In this range
a phase-field transformation from bulk to separated state happens as seen in
Figure 6a. The time interval T is discretized as Tτ into Nt steps of equal size
τRef. The discretized lithium ion concentration at each time t in Tτ is condensed
to a solution ch ∈ (Vh × Vh ×Wh) × Tτ . Then a norm || · || on the discretized
space-time domain (Vh × Vh ×Wh)× Tτ is given as

||ch|| =

√√√√Nx∑
i=1

Ny∑
j=1

Nt∑
k=1

ch(ih, jh; kτ)2 (47)

A relative error measure is defined as

e =
||ch − cRef||
||cRef||

, (48)

given a reference solution cRef. As derived before, the numerical error esti-
mate for the presented scheme is O(h + τ), where h is the mesh size and τ is
the time-step size. The numerical solutions to the combinations of mesh width
and time step size given in Table 4 are calculated. The solution on the finest
mesh width is used as the reference solution. The coarse solutions are projected
cell-wise constant into the discretized space of the reference solution. Then Fig-
ure 6b shows the plot of the error with logarithmic axes. The binary logarithm
of the discrete error e is plotted against the binary logarithm of the quotient
τ
τRef

= h
hRef

. As the quotient τ
h is fixed, linear convergence is expected. The

numerical convergence rate is O((h+ τ)0.69).

4. Numerical tests

In this section the presented electrochemical model and the numerical method
are applied for several simulation cases. Different microstructures of the cathode
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h / nm 1 0.5 0.25 0.125 0.0625 0.03125
τ / µs 51200 25600 12800 6400 3200 1600

Table 4: Numerical convergence data, the solution on the finest grid is used as a reference
solution.

(a) The rectangular particle in
a state of charge SOC = 0.15.
The particle has separated into
lithium-rich and lithium-poor
phases.

21 22 23 24 25

2−8

2−7

2−6

1

1

log2
τ
τRef

= log2
h

hRef

lo
g
2
e

(b) Results of the numerical convergence test
in a binary logarithmic plot. Depicted is the
error in the lithium ion concentration (blue)
and a linear slope for comparison.

Figure 6: A numerical convergence test on a rectangular particle demonstrates the numerical
method.
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Figure 7: Spinodal decomposition in a particle shaped like a half circle. The color illustrates
the distribution of lithium ions inside the circular cathode particle. The red line denotes the
location that is represented in Figure 8. The red circles indicate phase interface region at the
solid-electrolyte interface.

particle are simulated and the influence on the battery voltage is investigated.
The phase-field method requires time steps in the range of 10 to 100 millisec-
onds to resolve the evolution of the phase interface along the cathode particle
surface. The simulation is limited to short simulation times and high C rates
between 10 and 100.

4.1. Spinodal decomposition

A domain with width and height 100 nm and a circular cathode particle as in
Figure 5 is considered. The spatial discretization was chosen as Nx = Ny = 400.
The particle is charged with C rate 100 from an initial state of charge of 0.01
to 0.25. Figure 7 shows the cathode particle at the final state of charge 0.25.
Figure 8 shows the lithium ion concentration along the indicated line in Figure 7
for different states of charge.

In the beginning at a state of charge 0.05 the concentration inside the parti-
cle rises uniformly at the surface and in the center of the particle. This is called
the bulk state or solid-diffusion state. The diffusivity coefficient inside the solid
material is high enough in comparison to the particle radius to distribute the
lithium-ion flux at the electrode-electrolyte boundary. As soon as the state of
charge 0.12 (see Point S in Figure 2) is exceeded, the lithium ions inside inside
the particle separate in lithium-rich and lithium-poor phases. This process is
called spinodal decomposition. The exact distribution of the phases inside the
particle depends on the microstructure, the C rate and the parameters used in
the phase-field model. While in the bulk state the lithium ion concentration
exhibits a radial symmetry inside the circular particle, in the phase-separated
state this symmetry is broken in favor of two lithium-rich phases at the sur-
face. At the state of charge 0.1225 the lithium ion concentration at the surface
reaches the maximum equilibrium concentration c = 0.987cm and a lithium-
rich phase is established. Finally at state of charge 0.25 the phase-separation is
completed and a lithium-poor phase has emerged with the minimum equilibrium
concentration c = 0.013cm.
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Figure 8: Concentration along the indicated line in Figure 7 for different states of charge.
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Figure 9: A flat three-layer structure used in the comparison of exchange current densities (not
to scale). The left part of the cathode domain (darker green) is initialized with a lithium-rich
phase that grows along the particle surface during charging.

4.2. Exchange current densities

In solid-solution theory and one-dimensional phase-field models [10] the con-
centration gradient in the electrode material is perpendicular to the surface. The
abundance of a concentration gradient along the interface simplifies the choice
of a consistent exchange current density i0 in the Butler-Volmer equations.

In the presented model it is expected that both lithium-rich and lithium-poor
phases emerge along the surface of the solid material at the same time. Hence
it is also possible that a phase interface region resides along the particle surface.
Figure 7 shows the phase interface region at the particle surfaces indicated by
red circles.

In a first simulation this situation is enforced by the initial conditions. Dif-
ferent models for the exchange current density are investigated and compared.

A flat thin three-layer structure is chosen for this simulation. The simple mi-
crostructure simplifies the investigation of the influence of the exchange current
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Interface width 3.3 6.7 10.0 13.3 16.7
Model A 9.44% 11.81% 16.86% 21.28% 22.74%
Model B 17.50% 22.10% 29.83% 35.76% 36.81%

Table 5: Fraction of electric current through phase interface region

density. The structure is 10 nm thick in thickness direction and 100 nm wide.
The C rate 100 is applied. An asymmetrical initial lithium ion distribution in
the solid phase favors the nucleation of a lithium-rich phase on the left side as
seen in Figure 9. For the exchange current density, both Model A and B as
introduced in Section 2, Eqs. (21), (22), are numerically simulated on a set of
different phase-field interface widths L from 3.3 nm to 16.7 nm.

Figure 10 displays the particle surface current density ise along the electrode-
electrolyte boundary at state of charge SOC = 0.5. The center of the phase
interface is at 50 nm and the phase interface region is present equally between
the left and the right.

In the upper plot, the lithium ion concentration along the solid-electrolyte-
interface is shown. The nucleation of a lithium-rich phase on the left side of the
cathode is favored by a high local lithium concentration of 1.8 · 10−2 mol l−1.
In the mid plot Model A (Eq. (21)) was used for the simulation. The surface
current density ise is large in the lithium-rich phase and rises near the phase
interface region. In the lithium-poor phase it is ten times smaller than at the
maximum . The integral of the surface current density over the phase interface
region converges numerically to zero. In the lower plot Model B (Eq. (22)) was
used for the simulation. The surface current density is distributed equally to
both lithium-rich and lithium-poor phases. The peak surface current density is
dependent on the interface width parameter L used in the phase-field model.

Table 5 shows the fraction of the electric current through the phase interface
region for both Model A and B and different phase-field interface widths L. For
both models the electric current transported through the phase interface region
gets smaller for smaller interface widths. In Model B the fraction of the entire
current approximately twice as high as in Model A.

4.3. Battery cell voltage

In this example the influence of charging rate on the battery cell voltage is
investigated. The cell voltage is defined as the difference of the electric potential
between anode and cathode. Due to high conductivity the electric potential is
approximately constant inside each domain. As a first step the jump φse,s −
φse,e in the electric potential at the solid-electrolyte interfaces will be examined
separately for anode and cathode. Then the cell voltage as the sum of both
jumps will be discussed.

One-dimensional structure

A one-dimensional structure of thickness 100 nm built from anode (40 nm),
electrolyte (20 nm) and cathode (40 nm) domain (in this order) is used to
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Figure 10: A comparison of two different models for the exchange current density i0 for
different interface widths L. The upper plot shows the lithium ion concentration in the initial
state and for the state of charge 0.5. The mid and lower plot show the Butler-Volmer current
ise along the cathode surface (indicated in Figure 9 in red) for different phase-field interface
widths L. Two models for the exchange current density are compared, Model A (Eq. (21))
and Model B (Eq. (22)).
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Figure 11: Voltage jump at the solid-electrolyte interface in an one-dimensional battery struc-
ture.

illustrate the basic properties of a battery cell voltage curve. Different C rates
∈ {10, 20, 50, 100} are applied. The capacity of the anode is chosen to be the
same as the capacity of the cathode particle.

The left plot in Figure 11 shows the potential difference between the an-
ode domain and the electrolyte domain plotted against state of charge in the
cathode. In the equilibrium the Nernst overpotential η in Eq. (23) is zero and
the concentration inside the anode particle is constant due to diffusion. So the
potential jump φae,a − φae,e between anode and electrolyte can be expressed
using the logarithmic diffusion potential µa(c) depending on the state of charge,

η = φae,a − φae,e − Ūa +
µa(c)

F
= 0

⇒ φae,a − φae,e = Ūa −
µa(c)

F
= Ūa −

RT

F
log

SOC

1− SOC .
(49)

The equilibrium solution curve resulting from this approximation is shown
in the plot in bold. The voltage curves approach the analytical approximation
in Eq. (49) for smaller C rates, because the Nernst overpotential gets smaller.

The right plot of Figure 11 shows the potential difference at the cathode-
electrolyte interface. The vertical dotted lines show the states of charge that
correspond to the concentrations of spontaneous spinodal decomposition as ex-
plained in Remark 2.

The equilibrium solution for the potential jump φce,c−φce,e at the electrolyte-
cathode-boundary can be derived as

η = φce,c − φce,e − Ūc +
µc(c)

F
= 0

⇒ φce,c − φce,e = Ūc −
µc(c)

F
.

(50)

27



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Concentration c / 10−2 mol l−1

Figure 12: An ellipsoidal particle for states of charge 0.2, 0.4 and 0.6.

At the critical state of charge 0.12 (see Figure 2) the lithium ions separate
in lithium-rich and lithium-poor phases as shown in Subsection 4.1. Given the
Maxwell construction and the higher equilibrium concentration c2 ≈ 0.987cm
the resulting plateau electric potential can be calculated. The interface condi-
tion in Eq. (20) is solved for the potential jump φce,c − φce,e at the electrolyte-
cathode-boundary. The chemical potential µc(c) inside the solid at the particle
surface is zero in a phase-separated state.

φce,c − φce,e = Ūc − 2
RT

F
arcsinh

(
ise

2k
√
ce,0c2

cm
2

)
. (51)

The particle surface current ise is calculated dependent on the C rate. The
resulting plateau electric potentials are indicated by horizontal black lines in
Figure 11.

For high C rates now the particle surface concentration rises even further
which decreases the electric potential, while for small C rates the diffusivity
prevails and the voltage stays constant. These approximations to the cell voltage
are given by horizontal dotted lines in the color corresponding to the C rate.
The phase separation ends after the state of charge corresponding to the reverse
spinodal decomposition point and the concentration decreases in the particle as
the lithium ion concentration is distributed evenly in the particle. Therefore
the voltage rises again and the equilibrium solution in Eq. (50) is valid again.

With this understanding it is now possible to take a look at a complex two-
dimensional example and to distinguish between already established effects and
new effects that arise from the structure.

Two-dimensional structure

Figure 5 introduces structures of different ellipsoidal particles. An analytical
dimensionless description of the cathode domain Ωc inside a square domain Ω
is given as

Ωc =

{
(x, y) ∈ Ω

∣∣∣∣ (x− x0)2

a2
+

(y − y0)2

b2
< r2

}
, (52)
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Figure 13: Voltage jump at the cathode electrolyte interface in a two-dimensional ellipsoidal
battery structure and the resulting battery cell voltage.

where y is the thickness direction. The values a = 100 nm and b = 50 nm
are used to describe a flat ellipsoidal particle with radius r0 = 40 nm around
the center (x0, y0) = (50 nm, 0 nm). A microstructure with width and height
100 nm is considered and the C rate 100 is applied. The capacity of the anode
is then chosen to be the same as the capacity of the cathode particle.

The electric potential jump at the anode-electrolyte interface is similar to
the one given in Figure 11 and is therefore omitted.

The left plot in Figure 13 shows the potential differences between the cath-
ode domain and the electrolyte domain plotted against state of charge in the
cathode. The same annotations as in the right plot in Figure 11 have been
added. While in the one-dimensional case, the potential difference decreased
for an increasing state of charge in the interval SOC ∈ [0.13, 0.9], here the
potential difference rises. In the one-dimensional case, the particle surface con-
centration rose as the state of charge increased. However, as shown before in
Subsection 4.2, the major particle surface concentration flow is applied near the
phase interface. There the lithium-rich phase is able to grow while still retaining
the equilibrium lithium ion concentration c2.

Finally, the right plot in Figure 13 shows the resulting battery cell voltage
as the sum of both voltage jumps at the solid-electrolyte interfaces. Overall the
voltage drop at the anode-electrolyte interface prevails and the effects of phase
transitions can only be recognized as small discontinuities in the voltage curve.

4.4. Variation of cathode particle size and shape

In this section, the effect of cathode particle size and particle shape on the
charging behavior is examined. For transport problems, the ratio between the
size of the interface region Γce and the volume of the intercalated domain Ωc is
important. Also the shape of the domain affects diffusive processes. Further-
more, each phase-field model involves an intrinsic length scale and therefore the
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Figure 14: Voltage curves for different particle sizes. Critical states of charge are indicated
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ratio between the size of the cathode domain Ωc and the phase-field interface
length L is relevant to the solution.

Size effects

A spherical cathode particle as introduced in Figure 5 with varying size
is charged from an empty state of charge SOC = 0.01 with C rate 100. The
particle diameter is varied from 8 nm to 40 nm and embedded in a corresponding
domain with width and height varying from 10 nm to 50 nm. The spatial
discretization is set to Nx = Ny = 200.

Figure 14 shows different voltage curves depending on the diameter size
of a spherical particle. For larger particle sizes with particle diameter d ∈
{24 nm; 32 nm; 40 nm} the charging of the particle progresses as shown before
in Subsection 4.1 with the emerging of a lithium-rich phase, the growth of
this phase and the reversal of the phase separation. The voltage discontinuity
indicates the critical state of charge for which a phase separation happens.
This critical state of charge is dependent on the particle diameter and it gets
larger for smaller particle sizes. The smooth voltage curves for particle sizes
d ∈ {8 nm; 16 nm} show that the lithium ions do not separate into lithium-
rich and poor phases. The interface width L separating both phases is large in
comparison to the particle diameter and the particle stays in the bulk state for
the charging process.

Shape effects

In another example the effect of the particle shape on the process of phase
separation is investigated. In a domain with width and height 100 nm and C
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rate 100 two different ellipsoidal particles are charged. The spatial discretization
is set to Nx = Ny = 400. Figure 15 shows both particles at the state of charge
SOC = 0.14 in a phase-separated stage.

The occurrence of the lithium-rich phases can be explained. Starting at the
bulk phase, the particle surface current ise is constant along the particle sur-
face. At areas of the particle structure with high local boundary curvature, the
concentration rises faster than along flat edges. Therefore a small concentration
gradient is built up inside the particle that later results in the formation of a
lithium-rich phase in corners.

The curved phase interface separating lithium-rich and poor phases has min-
imum area under the constraint to contain the lithium-rich phase. The energy
related to the Laplacian in the free energy functional in Eq. (13) is minimal,
comparable to the effect of surface tension. Due to Eq. (32) the phase interface
is always perpendicular to the particle surface.

4.5. Simulation of a complex microstructure

In a final example a complex microstructure built from geometric shapes is
charged. A domain with width and height 100 nm and C rate 100 is used. The
spatial discretization is set to Nx = Ny = 400. Figure 16 shows the numerical
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solution of the lithium ion concentration in the cathode material during different
states of charge.

It can be seen that the different lithium-rich phases evolve with different
rates. An important factor is the evolution of the phase interface. As explained
before, growth of this area involves increasing the internal energy. Therefore
the surface current and the diffusion inside the particle evolve such that some
lithium-rich regions are preferred for growth. At state of charge SOC = 0.69
the area for the phase interface of the mid lithium-rich phase is small and
potential growth involves growth of its phase interface area, whereas the other
two lithium-rich phases are able to grow without enlarging the area of the phase
interface.

5. Summary and conclusions

An electrochemical model implementing the transport of lithium ions inside
a battery cell and the transmission in the solid-electrolyte interface is introduced
in Section 2. While previous theory is limited to a diffusion model, the model is
extended to include arbitrary electrochemical potentials. A phase-field potential
is presented and applied inside the cathode material to model the separation
into lithium-poor and lithium-rich phases.

Remark 2 analyzes the phase-field potential and gives an estimate for the
interface width of 3.3 nm. Therefore a fine spatial discretization of 1 nm is
required which allows for simulation domains of width and height 200 nm on
a regular mesh. As time steps have to stay below 100 milliseconds to resolve
the evolution of the phase interface, computational costs limit the simulation to
higher C rates in the range of 10 to 100.

The finite volume method presented in Section 3 is suitable for transmission
problems with jump conditions on interfaces inside the domain as well as phase-
field models. It allows for the resolution of different solid microstructures. The
regular mesh enables the use of accelerated numerical methods such as Fourier
methods for parabolic equations. The method shows numerical convergence on
a finer discretization.

Between states of charge 0.13 and 0.9, the cathode material undergoes phase
separation into lithium-poor and lithium-rich phases, a process called spinodal
decomposition in Subsection 4.1. Both phases are present at the particle surface.
By this, the model of the exchange current density has an influence on the
distribution of the solid-electrolyte current along the particle surface as shown
in Subsection 4.2.

The electric potential difference at the cathode-electrolyte interface approaches
the equilibrium solution for smaller C rates. It is non-smooth as the phase sepa-
ration begins at state of charge 0.13. The resulting plateau voltage is calculated
depending on the C rate in Subsection 4.3.

Size and shape of the cathode microstructure affect the emergence of lithium-
rich phases. Smaller particles do not provide enough inner volume for the de-
velopment a phase interface and phase separation is suppressed. Peaks in the
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surface boundary eventuate in high local lithium ion concentrations (Subsec-
tion 4.4).

Finally, the microstructure in Subsection 4.5 reveals the complex diffusion
processes inside electrode material. The interface area between the phases is
minimized and its shape depends on the microstructure. The lithium ions are
transferred inside the particle between different lithium-rich phases by diffusion.

Future work includes the extension of the electrochemical mode to include
three-dimensional structures and linear elasticity. The computational costs can
be significantly reduced by the application of fast Fourier methods for the spatial
differentiation on regular voxel meshes instead of finite differences. Numerical
simulations including inter-particle diffusion on the microscale give further in-
sight into the aging processes resulting in capacity loss and battery failing.
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