

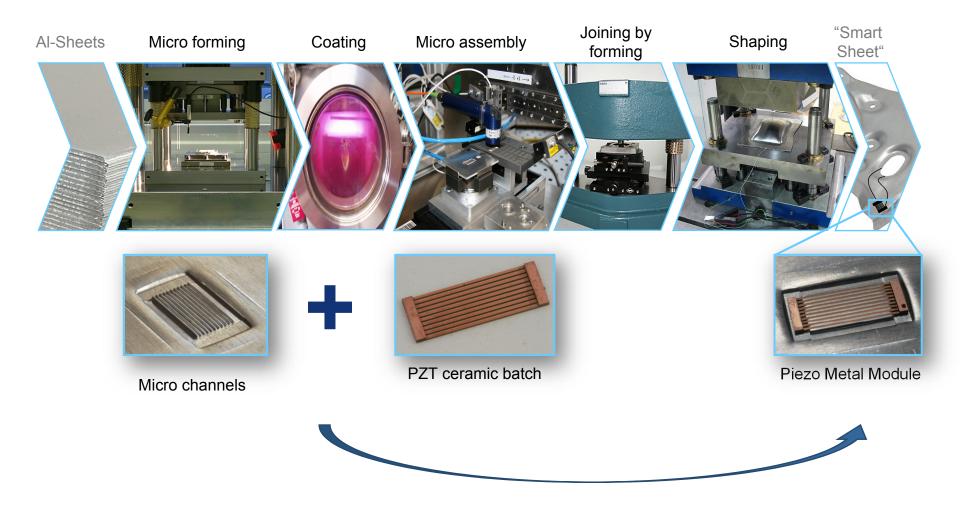
Collaborative Research Centre/Transregio 39 PT-PIESA

High-Volume Production-Compatible Technologies for Light Metal and Fibre Composite-Based Components with Integrated Piezoceramic Sensors and Actuators

Technology development and control concept for vibration assisted forming of micro-channels in aluminium sheets

Schubert, A.; Koriath, H.-J.; Müller, B.; Pierer, A.

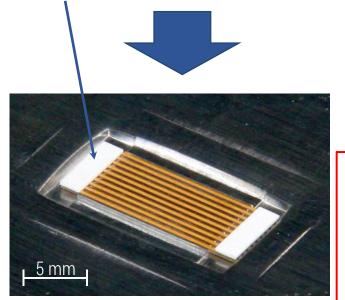
TECHNISCHE UNIVERSITÄT CHEMNITZ

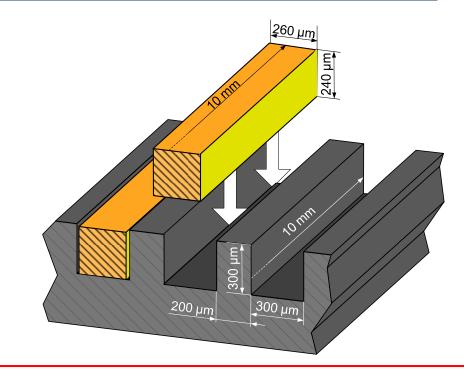


Motivation

- Experimental Procedure
- Integration of Piezo Actuator
- Results
- Summary and Conclusions

Process Chain


CRC/TR 39 PT-PIESA - Lightweight Design by Integrating Functions


Motivation II

CRC/TR 39

Piezo Metal Module – Design principle

- PZT ceramic batch → 10 elements
- Rod dimensions: 0.26 × 0.24 × 10 mm³
- Centre interface electrode for polarisation
- Collecting electrode for electrical interconnection

Objectives in forming of micro channels:

- High degree of deformation at lowest possible forming forces → low bulging and low cross-sectional influence of the sheet
 - Friction reduction: vibration assisted micro forming
 - Relative motion between tool and sample
 - \rightarrow improved lubrication transport

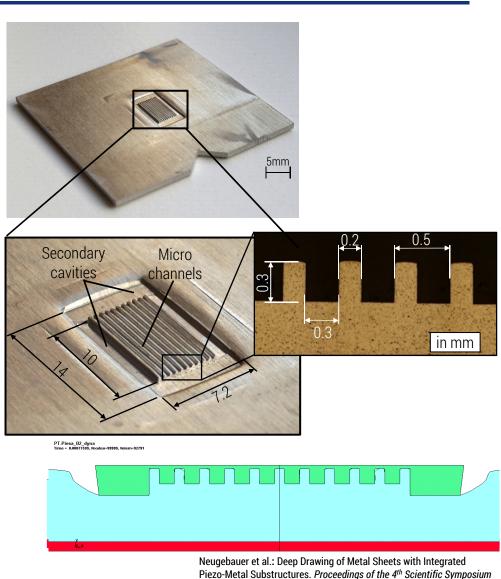
5

Motivation

Experimental Procedure

- Integration of Piezo Actuator
- Results
- Summary and Conclusions

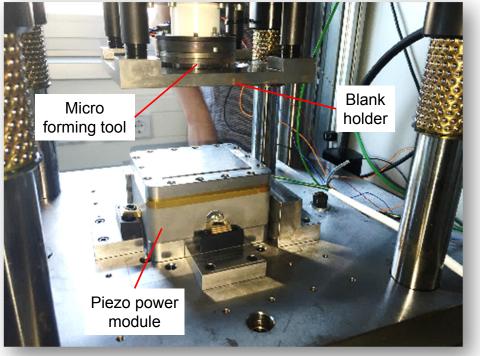
Experimental Procedure I


Micro structured aluminium sheet:

- Alloy: AIMg4.5Mn0.7 (EN AW-5083)
- Sheet thickness $d_0 = 1.5 \text{ mm}$
- 10 channels: $0.3 \times 0.3 \times 10 \text{ mm}^3$ (each)
- Secondary cavities: collecting electrode and flow barrier

Structural demands / challenges:

- Uniform material flow over the entire structure
- Thin webs
- Steep flanks
- Low surface roughness values at channel wall and ground
- High reproducibility: sheet to sheet and pitch


Precision forming press:

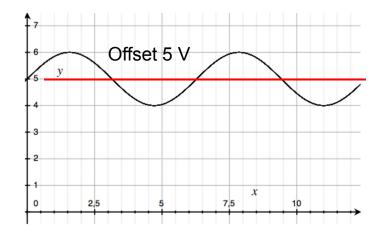
- 200 kN servo precision press
- Force or position controlled
- Position accuracy: 1µm

Piezo actuator:

- CeramTec Piezo Power Module
- Parallel connection of several piezo stacks, hermetically housed
- Blocking force F = 80 kN
- Frequency f up to 50 Hz
- Vibration assistance during entire forming process

Test parameters and characterization

- Reference samples
 → without vibration assistance
- 2 samples for each parameter set
- Characterization:
 - Optical measurement
 - Channel depth (main characterization parameter regarding material flow)
 - 3D profiles

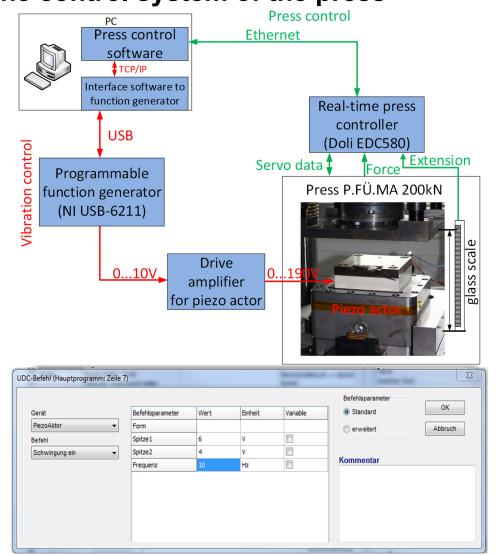

Parameter	Values	
Forming force	70 kN	
Frequency f	(10; 20; 50) Hz	
Amplitude of sine input signal y	(1.25; 2) V	
Lubrication	Fuchs Plantoform MBO 2797 (viscosity: 49 mm ² /s); OEST Platinol V 1937/11 (viscosity: 163 mm ² /s)	

Measuring microscope

3D laser scanning microscope

Sine wave used for vibration assistance

- Motivation
- Experimental Procedure
- Integration of Piezo Actuator
- Results
- Summary and Conclusions

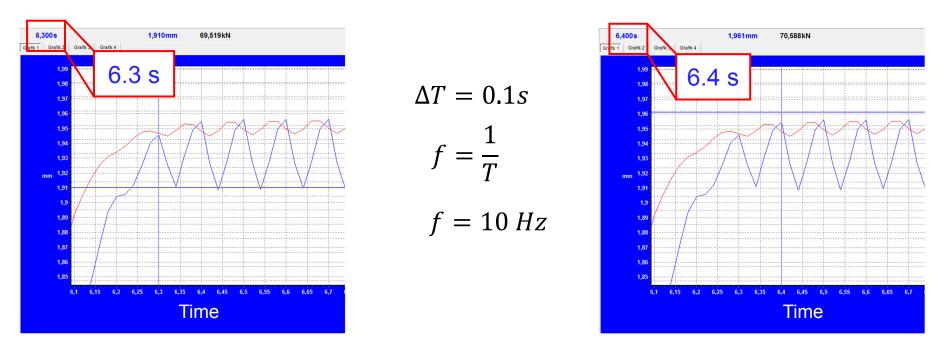

Integration of piezo actuator into the control system of the press

Hardware

- Drive amplifier for piezo actuator with analogue input for command signal
- Programmable function generator with 0...10 V output and USB-interface to industry PC for press control

Software

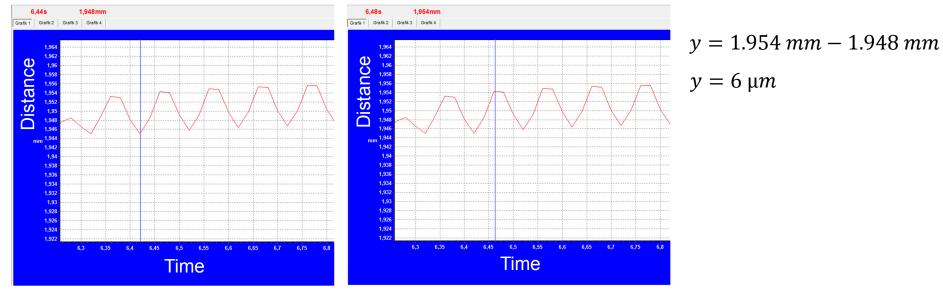
- Interface software (LabVIEW) to programmable function (via USB) generator and press control software (via TCP/IP)
- Command definition for integration of piezo actuator control in block programme:
 - Waveform definition (form, amplitude, offset, frequency)
 - Vibration: On / Off



- Motivation
- Experimental Procedure
- Integration of Piezo Actuator
- Results
- Summary and Conclusions

Results I

Characterization of Piezo actuator during forming process (frequency f)


- Real time data from the press control
- Test at F = 70 kN with f = 10 Hz

Real time data from the press control; Force vs. time (blue line)

Characterization of Piezo actuator during forming process (amplitude y)

Real time data from the press control

Real time data from the press control; Distance vs. time (red line)

<i>F</i> = 70 kN	Parameter	Amplitude	
	10 Hz; 1.25 V	56 µm	
	10 Hz; 2 V	9 µm	
	20 Hz; 1.25 V	2 µm	
	20 Hz; 2 V	35 µm	

CRC/TR 39 PT-PIESA - Lightweight Design by Integrating Functions 13

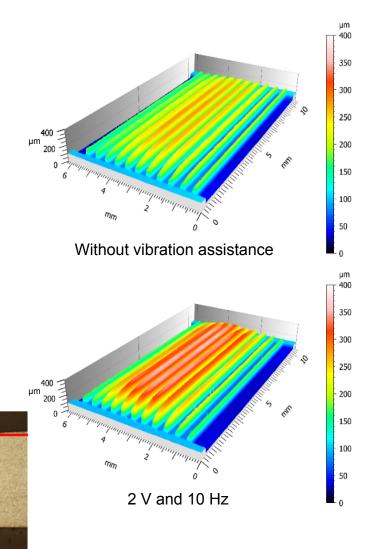
Results III

1.5 mm

- At F = 70 kN not enough stress is induced into the sample to generate a complete uniform channel array (dashed line, figure below)
- Beginning of the forming process: material flow starts in the middle of the structure (channel 5 and 6)
 → highest structure depths
- Deformation starts at the edge of the structure (channels 1 and 10) at the latest
 → lowest channel depths
- Parameter: "Maximum channel depth"
 → deepest channel of a sample

Minimum

channel depth


Parameter: "Minimum channel depth"
 → lowest channels at border of the structure

5

6

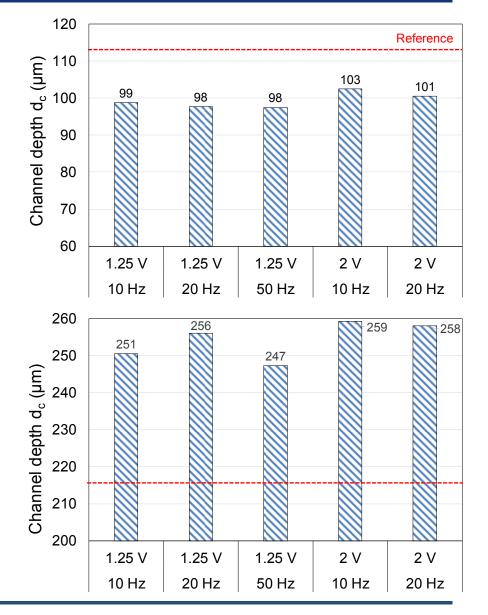
Maximum

channel depth

1000 µm

Results IV

CRC/TR 39


Results with forming oil Plantoform

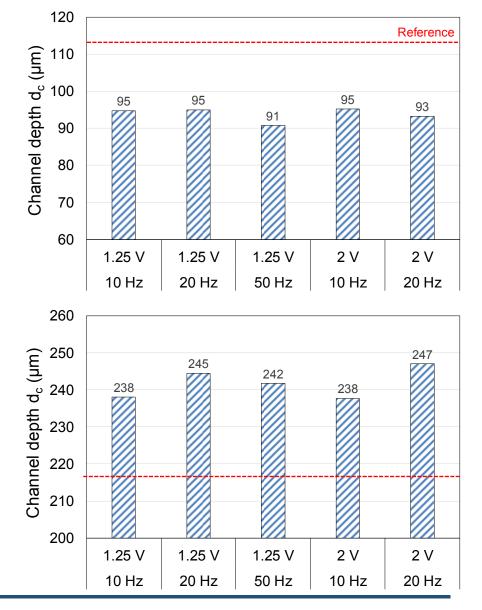
Minimum channel depths

- Increasing frequency f → no significant influence
- Increasing oscillation amplitude y → higher minimum channel depths are achieved
- Minimum channel depths of all vibrationassisted samples are significantly below the reference (9...14 %)

Maximum channel depths

- No clear influence of the frequency onto the channel depth
- Results with higher oscillation amplitude show slightly higher channels depths
- At the centre of the structure all vibration assisted samples show a significant improvement compared to the reference

Results V


Results with forming oil Platinol

Minimum channel depths

- Minimum channel depths are also below the reference
- Channel depths of none parameter combination exceeds d_c = 95 µm, whereas this is the case for all experiments with Plantoform

Maximum channel depths

- Best channel depths of the Platinol test series ($d_c = 247 \ \mu m$) is not better than the lowest Plantoform result ($d_c = 247 \ \mu m$)
- All maximum channel depths of vibration assisted Platinol samples are above the reference value

"Thin oil" Plantoform

	Overall mean channel depth / µm	Δd_c / μm	Increase
Ref.	170	47	-
1.25 V 10 Hz	182	69	7.1 %
1.25 V 20 Hz	184	72	8.2 %
1.25 V 50 Hz	179	68	5.3 %
2 V 10 Hz	191	68	12.4 %
2 V 20 Hz	186	72	9.4 %

"Thick oil" Platinol

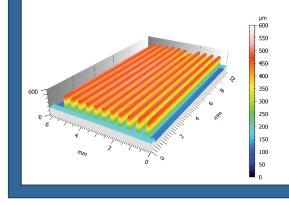
	Overall mean channel depth / µm	Δd _c / μm	Increase
Ref.	170	47	-
1.25 V 10 Hz	175	63	2.9 %
1.25 V 20 Hz	180	65	5.9 %
1.25 V 50 Hz	172	69	1.2 %
2 V 10 Hz	174	63	2.4 %
2 V 20 Hz	178	69	4.7 %

- Stronger improvement with low viscosity oil
- Nearly all parameter setups with Plantoform result in higher increase in mean channel depth compared to Platinol

- Motivation
- Experimental Procedure
- Integration of Piezo Actuator
- Results
- Summary and Conclusions

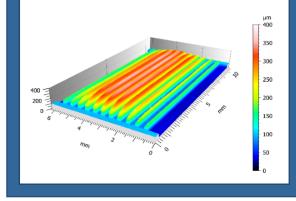
- Experiments concerning vibration assisted micro forming of channels into aluminium sheets were conducted.
- Therefore, lubrication conditions, the oscillating amplitude and the frequency were varied and their influence onto the achievable channel depth and the material flow was studied.
- The vibration assistance in combination with the low-viscosity forming lubricant Plantoform shows a significant improvement regarding deeper channels compared to reference samples.
- A slight trend that a higher amplitude can lead to deeper channels was found.
- With the vibration assistance a larger deformation or material flow could be achieved \rightarrow improvement in channel depth d_c , slightly more than 12 %.

Results for forming of micro channels


Cold micro forming

- Nearly complete tool filling at F = 105 kN
- High tool loads
- High elastic deformation for steel tools
 - Tungsten Carbide tools
 → brittle

Warm micro forming


- Formed at ϑ = 200 °C
- Even material flow over entire structure
 → same height of the
 - structure in cross section and longitudinal
- Complete tool filling at
 F = 80 kN

Vibration assisted micro forming

CRC/TR 39

- Friction reduction compared to cold forming without vibration
- Limited to F = 70 kN (due to actuator)
- Non complete tool filling

Collaborative Research Centre/Transregio 39 PT-PIESA

High-Volume Production-Compatible Technologies for Light Metal and Fibre Composite-Based Components with Integrated Piezoceramic Sensors and Actuators

Thank you for your attention

Deutsche Forschungsgemeinschaft ÐFG

The authors thank the German Research Foundation for the financial support.

TECHNISCHE UNIVERSITÄT CHEMNITZ

