

IISB FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY IISB

International Conference on Silicon Carbide and Related Materials, September 29th – October 4th 2019, Kyoto, Japan

Low-resistance ohmic contact formation by laser annealing of N-implanted 4H-SiC

<u>C. Hellinger ^{1, a}, O. Rusch ^{1, b}, M. Rommel^{1, c}, A. J. Bauer ^{1, d}, T. Erlbacher ^{1, 2, e}</u>

¹ Fraunhofer Institute for Integrated Systems and Device Technology IISB, Erlangen, Germany

² Chair of Electron Devices, University Erlangen-Nuremberg, Erlangen, Germany

^a carsten.hellinger@iisb.fraunhofer.de, ^b oleg.rusch@iisb.fraunhofer.de, ^c mathias.rommel@iisb.fraunhofer.de, ^d anton.bauer@iisb.fraunhofer.de, ^e tobias.erlbacher@iisb.fraunhofer.de

Motivation	Fabrication
 Minimizing power losses of vertical devices by manufacturing low-resistance ohmic contacts and reducing wafer thickness 	 Fabrication of vertical JBS diodes on commercial 100 mm 4H-SiC epitaxial wafers JBS pattern formed by p⁺ implantation
Creating low-resistance ohmic contacts by ion implantation and suitable metallization	JBS diodes with 4 different designs, differing in distance between and width of p ⁺

- Usually post-implant annealing in a high temperature furnace (> 1500°C) necessary to recover lattice and electrically activate the dopants [1]
- Performing thinning step after finishing wafer frontside
- \rightarrow No classic post-implant annealing possible
- → Using a UV laser for post-implant annealing and ohmic contact formation

Laser annealing parameters

Post-implant annealing parameters:

quarter	number of repetitions	energy density [J/cm ²]		overlap [%]		
		1 st pass	2 nd pass	3 rd pass	scan	step
1	1	1.7	2.5	3.0	75	75
2	1	3.0	3.0	3.0	85	75
3	3	1.7	2.5	3.0	75	75

No post-implant annealing

Frequency tripled Nd:YVO₄ with 355 nm wavelength, 80 μ m beamsize, 60 ns pulse duration

Contact annealing parameters:

quarter	energy density [J/cm ²]	overlap [%]			
		scan	step		
1 to 4	3.3	67	50		
Frequency tripled Nd:YVO ₄ with 355 nm wavelength, 80 μ m beamsize, 48 ns pulse duration					

- stripes
- Metallization systems:
 - Schottky: titanium (Ti)
 - Ohmic: silicided Ti (TiSiC)
 - Power metallization: aluminum (AI)
- Temporary bonding of frontside finished device wafer to carrier wafer
- Backgrinding of device wafer to 120 µm
- N implantation on the wafer backside
- Post-implant annealing by laser
- Deposition of nickel as ohmic contact metal
- Forming ohmic contact by laser annealing
- Deposition of solderable stack
- Debonding of temporary bonded device wafer

Parameters of backside implantation

energy [keV]	dose [1/cm²]
90	4E14
50	2.3E14
25	2E14

Results

Discussion

- Sheet resistance in post-implant laser annealed quarters significantly lower than in not-annealed quarter, which is in usual range compared to standard process (fig. a)
- Specific resistance in not-annealed quarter after ohmic contact formation annealing still higher than in post-implant laser annealed quarters (fig. b)
- Voltage drop of 40 mV at 6 A for post-implant laser annealed JBS diodes compared to not-annealed quarter (fig. c)
- Forward voltage at 6 A depending on p⁺ stripe design, but voltage drop independent of the design (fig. d)
- → Positive effect of post-implant laser anneal to forward voltage of studied JBS diodes

Possible explanations

- Activation of implanted dopants and recovering of lattice by laser annealing leading to a high doping near surface [2]
- Formation of carbon layer by evaporation of silicon in the top layer of silicon carbide by laser annealing [3]
- Melt-mediated phase transformation leading to 3C-SiC caused by melting and reconstructing during laser annealing [3]

Summary

- Investigation of pulsed-laser-based tempering of backside N-implanted 4H-SiC
- Voltage drop of 40 mV at 6 A for post-implant laser annealed JBS diodes compared to standard independent of p⁺ stripe design
- Further work necessary like TEM analysis or SIMS measurements

References

- [1] T. Kimoto, "Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications", IEEE Press, Wiley, Singapore (2014)
- [2] C. Boutopoulos, "Laser annealing of AI implanted silicon carbide: Structural and optical characterization". Applied Surface Science 253, Athens (2007)
- [3] I. Choi, "Laser-induced phase separation of silicon carbide", Nature communications, Daejeon (2016)

Forschungsfabrik Mikroelektronik Deutschland

LEB