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Summary 
 

 Investigation of pulsed-laser-based tempering of backside N-implanted 4H-SiC 

 Voltage drop of 40 mV at 6 A for post-implant laser annealed JBS diodes compared  

to standard independent of p+ stripe design 

 Further work necessary like TEM analysis or SIMS measurements 

Fabrication 
 

 Fabrication of vertical JBS diodes on commercial 100 mm 4H-SiC epitaxial wafers 

 JBS pattern formed by p+ implantation 

 JBS diodes with 4 different designs, differing in distance between and width of p+ 

stripes 

 Metallization systems: 

 Schottky: titanium (Ti)  

 Ohmic: silicided Ti (TiSiC)  

 Power metallization: aluminum (Al) 

 Temporary bonding of frontside finished device wafer to carrier wafer 

 Backgrinding of device wafer to 120 µm 

 N implantation on the wafer backside 

 Post-implant annealing by laser  

 Deposition of nickel as ohmic contact metal 

 Forming ohmic contact by laser annealing 

 Deposition of solderable stack 

 Debonding of temporary bonded device wafer 
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Motivation 
 

 Minimizing power losses of vertical devices by manufacturing low-resistance ohmic 

contacts and reducing wafer thickness 

 Creating low-resistance ohmic contacts by ion implantation and suitable metallization 

 Usually post-implant annealing in a high temperature furnace (> 1500°C) necessary 

to recover lattice and electrically activate the dopants [1] 

 Performing thinning step after finishing wafer frontside 

 No classic post-implant annealing possible  

 Using a UV laser for post-implant annealing and ohmic contact formation 
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Laser annealing parameters 
 

 Post-implant annealing parameters: 

 

 

 

 

 

 

 

 

 

 

 Contact annealing parameters: 

 

 

 

 

 

 

 

quarter 
number of 

repetitions 

energy density [J/cm²] overlap [%] 

1st pass 2nd pass 3rd pass scan step 

1 1 1.7 2.5 3.0 75 75 

2 1 3.0 3.0 3.0 85 75 

3 3 1.7 2.5 3.0 75 75 

4 No post-implant annealing 

Frequency tripled Nd:YVO4 with 355 nm wavelength, 80 µm beamsize, 60 ns 

pulse duration 

quarter 
energy density 

[J/cm²] 

overlap [%] 

scan step 

1 to 4 3.3 67 50 

Frequency tripled Nd:YVO4  with 355 nm 

wavelength, 80 µm beamsize, 48 ns pulse duration 

energy [keV] dose [1/cm²] 

90 4E14 

50 2.3E14 

25 2E14 

Parameters of backside implantation 
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Results 
 

 Sheet resistance in post-implant laser annealed quarters significantly lower than in 

not-annealed quarter, which is in usual range compared to standard process (fig. a) 

 Specific resistance in not-annealed quarter after ohmic contact formation annealing 

still higher than in post-implant laser annealed quarters (fig. b) 

 Voltage drop of 40 mV at 6 A for post-implant laser annealed JBS diodes compared to 

not-annealed quarter (fig. c) 

 Forward voltage at 6 A depending on p+ stripe design, but voltage drop independent of 

the design (fig. d) 

 Positive effect of post-implant laser anneal to forward voltage of studied JBS diodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 
 

Possible explanations 

 Activation of implanted dopants and recovering of lattice by laser annealing leading to 

a high doping near surface [2] 

 Formation of carbon layer by evaporation of silicon in the top layer of silicon carbide by 

laser annealing [3] 

 Melt-mediated phase transformation leading to 3C-SiC caused by melting and 

reconstructing during laser annealing [3] 

 

 

 

 

 

 

 

 

(c) Comparison of representative forward characteristics 

of standard and post-implant annealed JBS diodes 
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(a) Sheet resistance measurement after post-implant annealing and NiAl 2.6% sputtering and (b) specific resistance 

after ohmic contact formation annealing 

(a) (b) 

(d) Forward voltages at 6 A of standard and post-implant annealed JBS 

diodes with different designs 

1 2 3 4

1.52

1.54

1.56

1.58

1.60

1.62

1.64

1.66

1.68

1.70

Design

U
F
@

6
A

 [
V

]

 standard

 post-implant anneal

A                            B                           C                           D 

1.50

1.55

1.60

1.65

1.70

U
F
@

6
A

 [
V

]

Design C

 standard

 post-implant annealing


