
The SH-Verification Tool - A Tutorial

Peter Ochsenschläger Jürgen Repp

Roland Rieke

SIT – Fraunhofer - Institute for Secure Telecooperation,

Rheinstr. 75, D-64295 Darmstadt, Germany

E-Mail: {ochsenschlaeger,repp,rieke}@sit.fraunhofer.de

September 30, 2002

Parser

Debugging + Traces

Computation + Analysis

of Reachability Graph

Automata Algorithms

Graph Browser Statistics

Input Initial State

Application oriented

Compositional Method +

Model Checking

Complex Evaluation Tools

Tools for Abstractions +

Enduser Interface

Analysis Kernel

Tools for System Specification

Enduser Interface

Temporal Logic

Homomorphism Editor

Preamble Editor Hierarchy Editor

APA EditorNet Editor

Project Manager

Output Result

Application oriented
Presentation

Editor

Figure 1: Components of the sh-verification tool

1

1 Introduction

The sh-verification tool (SHVT) 1 [ORR00b] supports formal specification, anal
ysis and verification of cooperating systems. Figure 1 shows the structure of
the tool. The main components of the system are the tools for specification, the
analysis kernel, the tools for abstraction and the project manager. It is possible
to extend the tool by different application oriented user interfaces. Small but
typical examples shows the steps for specifying and analysing systems behaviour
using the sh-verification tool.

2 A first APA Example

The presented verification method is described in [ORR00c]. The reader is re
ferred to this paper for notations, definitions and theorems. The method does
not depend on a specific formal specification technique. For practical use it has
to be combined with a specification tool generating labeled transition systems
(LTS 2). The current implementation of SHVT uses asynchronous product au
tomata (APA) [ORRN99] and product nets 3 [BOP89, OP95] as specification
environments. In this tutorial we only consider APA.

APA are a universal and very flexible operational description concept for co
operating systems. It “naturally” emerges from formal language theory [ORR00a].

An APA can be seen as a family of elementary automata. The set of all
possible states of the whole APA is structured as a product set; each state is
divided into state components. In the following the set of all possible states is
called state set. The state sets of elementary automata consist of components of
the state set of the APA. Different elementary automata are “glued” by shared
components of their state sets. Elementary automata can “communicate” by
changing shared state components.

Figure 2 shows a graphical representation of a small asynchronous product
automaton consisting of two elementary automata Send A and Receive B and
state components Data A, Data B and Network, with state sets ZData A ,
ZData B and ZNetwork. The state set of the APA is the product of ZData A ,
ZData B and ZNetwork. The state set of Receive B is the product of ZData B

and ZNetwork. The state set of Send A is the product of ZData A and ZNetwork.
The figure shows the structure of the automaton. The circles represent state
components and a box corresponds to one elementary automaton. The full spec
ification of the automaton includes the transition relations of the elementary
automata and the initial state. The neighbourhood relation N, represented by
the edges, indicates which state components are included in the state of an ele
mentary automaton and may be changed by a state transition of the elementary
automaton. A state transition of automaton Send A may change the content
of Data A and Network while Receive B may change Data B and Network.

1sh abbreviates simple homomorphism
2The semantics of formal specification techniques for distributed systems is usually based

on LTS.
3a special class of high level petri nets

2

Network

Receive_B Send_A

Data_A
Data_B

Figure 2: APA

Formally an Asynchronous Product Automaton consists of a family of State
Sets ZS , S ∈ �, a family of Elementary Automata (Φe, Δe), e ∈ � and a
Neighbourhood Relation N : � P(�); P(X) is the power set of X and �→
and � are index sets with the names of state components and elementary
automata. For each Elementary Automaton (Φe, Δe)

• Φe is its Alphabet and

• Δe ⊆ ��S∈N(e)(ZS) × Φe × ��S∈N(e)(ZS) is its State Transition Relation

For each element of Φe the state transition relation Δe defines state transi
tions that change only the state components in N(e).
An APA’s (global) States are elements of �� (ZS). To avoid pathological
cases it is generally assumed that � =

�
e∈

S

�

∈
(
�
N(e)) and N(e) =� ∅ for all

e ∈ �. Each APA has one Initial State s0 = (q0S)
S∈� ∈ �� (ZS).

In total, an APA � is defined by � = ((ZS)
S∈�, (Φe, Δe)e∈

S

�

∈�
, N, s0).

The behaviour of an APA is represented by all possible sequences of state
transitions starting with initial state s0.
The sequence (s0, (e1, a1), s1)(s1, (e2, a2), s2)(s2, (e3, a3), s3) . . . with ai ∈ Φei

represents one possible sequence of actions of an APA.
State transitions (s, (e, a), s̄) may be interpreted as labeled edges of a directed
graph whose nodes are the states of an APA: (s, (e, a), s̄) is the edge leading
from s to s and labeled by (e, a). The subgraph reachable from the node s0

is called the reachability graph of an APA.

To illustrate how APA are represented in SHVT we consider the modelling
of protocols in the following way: The actions of an protocol agent are modelled
by specifying one or more elementary automata. Each automaton is connected
to one or more state components. The state components that can only be ac
cessed by the automata of one agent are used to model the memory of that
agent. Agents (i.e. elementary automata) communicate via a shared compo

3

nent Network. Sending of a message is modelled by adding the message to the
content of Network, receiving is modelled by removing it from Network. Re
ceive actions of an agent (of an elementary automaton) usually include checks
that some part of the message is equal to some data stored in one of the agent’s
state components.

Network

Receive_B
d:bw

Send_A
a~=::

Data_A
Data_B

<nw>

<nw.shead(a)>

<bw>

<sdelete(d,bw)>

<b.d>

<a>
<stail(a)>

Figure 3: APA Example with Inscriptions

Figure 3 represents two agents A and B communicating via the state compo
nent Network 4. Each of the agents is equipped with a further state component
Data which serves as the agent’s memory.

In the above example data stored on state component Data A can be sent by
the elementary automaton Send A via Network. The elementary automaton
Receive B can read data from Network and store it in the state component
Data B. Every edge of an APA is labeled with two inscriptions describing
the state transition relation of the corresponding elementary automaton. One
denotes the match for the data read from the state component (read-inscription,
denoted by a black arrow � at the beginning of the line), the other denotes the
value that will be returned to the state component (write-inscription, denoted
by a black arrow � at the end of the line). Elementary automata may contain
two different kinds of inscriptions: predicates as in Send A and assignments
to interpretation variables (see below) as in Receive B. A transition of an
elementary automaton may occur if:

•	 read-inscriptions of all edges connecting that automaton with a state com
ponent match the data stored in the respective state component

•	 the predicate in the elementary automaton inscription is true (optional)

•	 every value denoted by the write-inscriptions can be computed.

Let us assume that the state components of our example have the following
initial values:

4You find this APA in “[install-dir]/demo/apas/SimpleAPA/simple.apa”

4

Data_A <(’t1’,’data’).(’t2’,’data’)>

Data_B <::>

Network <::>

:: denotes the empty sequence. Going out from this initial state the following
reachability graph is computed by the tool:

or (t2,data)
(t1,data)
Choise to read (Receive_B)

Network: 1<::>
Data_B: 1<(t1,data)>
Data_A: 1<(t2,data)>

Network: 1<(t1,data)>
Data_B: 1<::>
Data_A: 1<(t2,data)>

Network: 1<(t1,data)>
Data_B: 1<(t2,data)>
Data_A: 1<::>

Network: 1<(t2,data)>
Data_B: 1<(t1,data)>
Data_A: 1<::>

Network: 1<::>
Data_B: 1<(t2,data).(t1,data)>
Data_A: 1<::>

Network: 1<::>
Data_B: 1<(t1,data).(t2,data)>
Data_A: 1<::>

Network: 1<(t1,data).(t2,data)>
Data_B: 1<::>
Data_A: 1<::>

Network: 1<::>
Data_B: 1<::>
Data_A: 1<(t1,data).(t2,data)>
start:

Send_A

Send_A

Send_A Receive_B

Receive_B Receive_B

Receive_B Receive_B

Figure 4: Reachability Graph

For simplicity edges are only labeled by the name of the corresponding
elementary automaton e (instead of (e, a)). In the initial state the elemen
tary automaton SendA can perform a state transition: It assigns the value
of DataA (i.e. (’t1’,’data’).(’t2’,’data’)) to the variable a and checks
that this value is not equal to the empty sequence. It then reads (removes)
(’t1’,’data’).(’t2’,’data’) from DataA and returns (adds) the tail of
(’t1’,’data’).(’t2’,’data’) (i.e. (’t2’,’data’)) to DataA (using the func
tion stail). In the same state transition it reads the content of the state com
ponent Network, which is the empty sequence in the initial state, and assigns
it to the variable nw. It finally writes the value of nw concatenated with the
head of the value of a (i.e. (’t1’,’data’)) to Network.

In this simple case, variables as inscription of edges (e.g. a in the above

5

example) are bound to the complete content of the state component and are
processed completely (there are other types of bindings as well). In contrast,
so-called interpretation variables that occur at the left side of : in inscriptions of
elementary automata are used to express different state transitions with respect
to different values of the interpretation variables. For an elementary automaton
e the different values of the interpretation variables correspond to the elements
of its alphabet Φe.

In our example, d is such an interpretation variable as it occurs as the in
scription of the elementary automaton ReceiveB. First the value of the state
component Network is bound to the standard variable bw. Then each of the
components of the sequence bw is non-deterministically bound to the interpre
tation variable d (indicated by the expression d : bw inside ReceiveB). The
automaton now performs one state transition for each of the components of
bw. This is why ReceiveB can perform no state transition in the initial state:
The initial value of Network is the empty sequence which does not contain any
component.

However, after the first state transition ReceiveB can perform a state tran
sition. Now Network contains (’t1’,’data’), which is assigned first to bw
and then to d. At the same time, (’t1’,’data’) is removed from and the re
sult of sdelete(d,bw) (the sequence bw without the component d) is added to
Network. In the same state transition, ReceiveB reads the content of the state
component DataB, assigns it to b and writes b, concatenated with whatever
component of d it chose to process. In the first state, there is only one compo
nent to choose, namely (’t1’,’data’). In the state transition sequence where
the first and the second state transitions are performed by SendA, the content
of Network is (’t1’,’data’).(’t2’,’data’). Thus in this state ReceiveB

can continue either with d = (’t1’,’data’) or with d = (’t2’,’data’). See
figure 4 for the complete reachability graph.

In our example every state component has the same state set sequence. The
following preamble defines the data type and the function shead used in our
example:

defset tag = { ’t1’, ’t2’ };
defset data = { ’data’};
defset message = pro (tag, data);
defset sequence = seq (message);
defcase shead : sequence>> sequence

shead(x) = if l(x) > 0 then seg(x,1,1)
else ::;

tag and data are finite sets defined by listing their elements, message is the
cartesian product of the sets tag and data. sequence is the set of finite sequences
of elements of the set message including the empty sequence denoted by ::. The
function shead provides the first element of a sequence. The other functions
used in the APA, stail (tail of a sequence) and sdelete (deletes one element in
a sequence) are predefined functions. For more elaborated examples and the
description of the preamble language see [FhG].

6

3

You can read this APA into the APA editor from
“[install-dir]/demo/apas/SimpleAPA/simple.apa”.
Compile the Preamble with the command “File>Compile Buffer”. After “Parser>Load
Preamble” in the APA Editor perform the command “Parser>Analysis”. The
analysis window will be opened an you can compute the reachability graph
with “Start Exhaustive Analysis”. The graph can be drawn with “mouse-r Draw
Graph” on object ”Reachability Graph simple”. The values of the state com
ponents will not be displayed. You can inspect these values for one node with
“mouse-r Show Object”.

Client Server APA Example

Figure 5: Client Server Example

7

To illustrate the usage of the verification method described in [ORR00c] we
consider an example of a system that consists of a client and a server as its
main components. The client sends requests REQ to the server, expecting the
server to produce particular results. Nevertheless, for some reasons, the server
may not always respond to a request by sending a result RES, but may, as
well, reject a request REJ (Figure 7).

Figure 5 shows a APA specification of this example. It is a global model for
the systems behaviour. In this model an elementary automaton can perform
a transition if every of its state components has the value �active�. The initial
value of the shaded state components S 6 and S 2 is active, the others are
inactive. So initially only the elementary automata T 3 and REQ can act.
Note that the resource may eventually be locked forever.

Usually complex systems are specified hierarchically. This is supported by
the project manager of the tool. (In our simple example the specification is
flat.)

The LTS in Figure 6, which is the reachability graph of the APA in Figure 5,
is computed by the tool. For better readability we have inserted the labels of
the active state components into the nodes.

This LTS consists of two strongly connected components (marked by diff
ent colors). Usually the LTS of a specification is too complex for a complete
graphical presentation; there are several features to inspect the LTS.

 S_3

 S_4

 S_5

 S_6

S_2 S_6
 start:

 S_2 S_5

 S_2 S_4

 S_2 S_3

 S_1 S_6

 S_1 S_5

 S_1 S_4

 S_1 S_3

RES

T_3

T_3

REJ

T_2

T_2

T_2

T_2

T_3

T_3

T_7

REQ

T_4

REJ

T_7

VANISH

REQ
REQ

REJ

T_7

T_4
VANISH

VANISH

T_4

VANISH

Figure 6: LTS

Abstraction

In the example the important actions with respect to the client’s behaviour, are
sending a request and receiving a result or rejection.

8

4

Client

Server

REQ RES REJ

Figure 7: Client Server Abstract View

We will regard the whole system running properly, if the client, at no time,
is prohibited completely from receiving a result after having sent a request (cor
rectness criterion).

For the moment, we regard the server as a black box; i.e. we neither consider
its internal structure nor look at its internal actions. Not caring about partic
ular actions of a specification when regarding the specification’s behaviour is
behaviour abstraction. If we define a suitable abstraction for the client/server
system with respect to our correctness criterion, we only keep actions REQ,
RES, and REJ visible, hiding all other actions. This is supported by the
homomorphism editor of the tool (Figure 8).

9

Figure 8: Homomorphisms Editor

An automaton 5 representing the abstract behaviour of the specification can
be computed by the sh-verification tool (Figure 9). It obviously satisfies the
required property. The next step is to check whether the concrete behaviour
also satisfies the correctness requirement mentioned above. For that purpose
we have to prove simplicity of the defined homomorphism.

A-2A-1
start:

(REJ)

(RES)

(REQ)

Figure 9:

Minimal Automaton.

Simplicity of an abstraction can be investigated inspecting the strongly con
nected components of the LTS by a sufficient condition [ORR00c]. The com
ponent graph in Figure 10 (combined with the homomorphic images of the arc
labels of the corresponding graph components) does not satisfy this condition,

the minimal automaton

10

5

so nothing can be said about simplicity.

(REQ)
(RES)
(REJ)
A-1
start:

(REQ)
(REJ)
A-2

Figure 10: Component Graph

We now try to refine the homomorphism such that the sufficient condi
tion for simplicity can be proven. Inspecting the edge between the two nodes
of the component graph shows that the action V ANISH causes the transi
tions between this two components (Figure 11). The refined homomorphism,
which additionally keeps V ANISH visible, satisfies the sufficient condition for
simplicity. Figure 12 shows the corresponding automaton. This automaton ob
viously violates the required property, so the systems behaviour does not satisfy
this property.

(REQ)
(REJ)
A-2

(REQ)
(RES)
(REJ)
A-1
start:

(VANISH)

Figure 11: Component Graph

A-2
A-4

A-3

A-1
start:(REQ)

(REJ)

(REQ)

(VANISH)

(REJ)
(RES)

(VANISH)

Figure 12: Minimal Automaton (with VANISH)

These simplicity investigations, which are supported by the tool, detect
the error in the specification. In [Och92, Och94a] a necessary condition for
simplicity is given. It is based on so called deadlock languages and shows non
simplicity of our REQ-RES-REJ-homomorphism [ORRN99].

To handle the well known state space explosion problem a compositional
method [Och96] [ORR00a] is implemented in the sh-verification tool. This ap
proach can also be used iteratively and provides a basis for induction proofs in
case of systems with several identical components [Och96]. Using our composi
tional method a connection establishment and release protocol has been verified
by investigating automata with about 100 states instead of 100000 states.

11

5

6

Temporal Logic

Our verification approach can also be combined with temporal logic [ORRN99].
In terms of temporal logic, the automaton of Figure 9 approximately satis
fies [ORRN99] the formula G(F(RES)) (G: always-operator, F : eventually
operator; thus G(F(RES)) means ”infinitely often result”), but the system in
Figure 6 does not.

Figure 13: Temporal Logic Formula Editor

This is indeed the case because the abstracting homomorphism is not sim
ple. Using an appropriate type of model checking, approximate satisfaction of
temporal logic formulae can be checked by the sh-verification tool.

Our experience in practical examples shows that the combination of com
puting a minimal automaton of an LTS and model checking on this abstraction
is significantly faster than direct model checking on the LTS.

Applications

Practical experiences have been gained with large specifications:

•	 ISDN and XTP protocols [Klu92, Sch92, OP93]

•	 Smartcard systems [Neb94, Och94b]

•	 Service interactions in intelligent telecommunication systems [CDGE+96,
CDF+96].

12

•	 The tool has also been applied to the analysis of cryptographic protocols
[Bas99, Rud98, Rud99]. In this context an application oriented user
interface has been developed for input of cryptographic formulae and pre
sentation of results in this syntax.

•	 Currently our interest is focused on the verification of binding cooper
ations including electronic money and contract systems. Recently some
examples in that context have been investigated with our tool [Fox98,
Roß98, Kap02].

7 Technical Requirements

The sh-verification tool is implemented in Allegro Common Lisp (currently for
Linux and Windows NT). For more information please contact the authors.

8 Replay the Client Server Example

If you want to replay this example with the SHVT perform the following in
structions:

1. Start the project manager.

2. Read file “[install-dir]/demo/demo.prj”. The project tree with all demo
examples will be shown.

3. Select node	 ”demo APA > Client Server Example >” in the project tree
(mouse-l).

4. Apply ”mouse-r-Edit” to the file ”clsrv-err.apa”, which now is displayed
in the second pane. The APA will be drawn in a new pane.

5. Command: “Parser>Load Preamble”

6. Command: ”Parser > Analysis” will open the analysis window.

7. Command:	 “Start Exhaustive Analysis” - the rechability graph will be
computed (Figure 6).

8. Command: ”Homomorphism Editor” opens the editor for defining abstrac
tions.

9. Read a predefined mapping from “clsrv1.map”.

10. Command: ”File > Compute Minimal Automaton” will compute the mini
mal automaton, which can be drawn with ”mouse-r Draw Graph” on object
”Minimal Automaton clsrc-err” (Figure 9).

11.	 ”mouse-r Check Simplicity” on object ”Minimal Automaton clsrc-err” will
show: ”no decision about simplicity can be made”.

13

12.	 ”mouse-r Determine Connected Components” on object ”Reachbility Graph
clsrv-err” will compute the connected components for further investiga
tion.

13.	 ”mouse-r Draw Graph” on object ”Connected Components of Reachability
Graph clsrv-err” will show the graph from Figure 10.

14.	 ”mouse-r Show Objects” on the edge of this graph followed by ”mouse-r
Show Number of Origin Edges”, ”mouse-r Show Objects” on the current
objects will display the origin edges with the transition vanish.

15. Use command: ”Homomorphism Editor” from the analysis window to refine
the abstraction.

16. Read a predefined mapping from “clsrv2.map”.

17. Command: ”File > Compute Minimal Automaton” will compute the mini
mal automaton, which can be drawn with ”mouse-r Draw Graph” on object
”Minimal Automaton clsrc-err” (Figure 12). The minimal automaton in
dicating the error is computed.

14

9 An alternative model of the client/server example

Here we show an alternative APA representation of the client/server example
in Figure 5, consisting of three elementary automata, � = {C,S, R} , and four
state components, � = {CS, IS, SS,RS} . Figure 14 shows the neighbourhood
relation N.

CS C RRSIS S

SSCLIENT SERVER

Figure 14: Client / Server APA

State transitions of the elementary automaton C represent actions of the
client. Correspondingly actions of the server and the resource manager are
represented by state transitions of S and R respectively. CS and SS represent
“internal” states of the client and the server. IS describes the the states of the
client and server’s interface. RS represents both, internal and interface states
related to the resource manager.

Formally the APA is defined as follows:

state components:
ZCS = ZSS = {idle, active}, ZIS = {emp, req, res − rej} ,

ZRS = {avail, navail, vanished}

This is represented in the tool in the preamble as:

defset Z_CS = { idle, active };

defset Z_SS = { idle, active };

defset Z_IS = { emp, req, res_rej };

defset Z_RS = { avail, navail, vanished };

defset Z_C = pro(Z_CS,Z_IS);

defset Z_S = pro(Z_SS,Z_IS,Z_RS);

defset Z_R = Z_RS;

imitial states:
q0CS = q0SS = idle, q0IS = emp, q0RS = avail .

alphabets:
ΦC = {REQ, T 7} , ΦS = {RES, REJ, T 4} , ΦR = {V ANISH, T 2, T 3} .

This is represented in the tool in the preamble as:

15

� �

defset PHI_C = {REQ, T7};

defset PHI_S = {RES, REJ, T4};

defset PHI_R = {VANISH, T2, T3};

state transition relations:
((idle, emp), REQ, (active, req)),

ΔC =
((active, res − rej), T 7, (idle, emp))

⊂ (ZCS × ZIS) × ΦC ×

(ZCS × ZIS),

The corresponding function in the tool is:

defcase delta_C: pro (Z_C,PHI_C) >> Z_C
delta_C (state,action) =

if state = (idle,emp) & action = REQ then (active,req),
if state = (active,res_rej) & action = T7 then (idle,emp)
else state; ⎧ ⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

((idle, req, avail), T 4, (active, emp, avail)), ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪((idle, req, navail), T 4, (active, emp, navail)),
⎨ ((idle, req, vanished), T 4, (active, emp, vanished)), ⎬

ΔS = ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

((active, emp, avail), RES, (idle, res − rej, avail)), ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⊂

((active, emp, avail), REJ, (idle, res − rej, avail)),

((active, emp, navail), REJ, (idle, res − rej, navail)),
⎩ ⎭((active, emp, vanished), REJ, (idle, res − rej, vanished))

(ZSS × ZIS × ZRS) × ΦS × (ZSS × ZIS × ZRS),

The corresponding function in the tool is:

defcase delta_S: pro (Z_S,PHI_S) >> Z_S
delta_S (state,action) =

if state = (idle,req,avail) & action = T4
then (active,emp,avail),

if state = (idle,req,navail) & action = T4
then (active,emp,navail),

if state = (idle,req,vanished) & action = T4
then (active,emp,vanished),

if state = (active,emp,avail) & action = RES
then (idle,res_rej,avail),

if state = (active,emp,avail) & action = REJ
then (idle,res_rej,avail),

if state = (active,emp,navail) & action = REJ
then (idle,res_rej,navail),

if state = (active,emp,vanished) & action = REJ
then (idle,res_rej,vanished)

else state;

16

(avail, T 3, navail),

ΔR = { (navail, T 2, avail), } ⊂ ZRS × ΦR × ZRS .

(navail, V ANISH, vanished)

The corresponding function in the tool is:

defcase delta_R: pro (Z_R,PHI_R) >> Z_R
delta_R (state,action) =

if state = avail & action = T3 then navail,
if state = navail & action = T2 then avail,
if state = navail & action = VANISH then vanished
else state;

State components correspond to sets of state components in figure 5, as for
example emp ∈ ZIS corresponds to inactive ∈ ZS−4 and inactive ∈ ZS−5. The
alphabets’ elements correspond to the elementary automata in figure 5. As
the system is structured into three components given by the three elementary
automata each alphabet represents the set of “local” actions of the correspond
ing component. Note that APA offer a very flexible concept for structuring
specifications: decreasing the number of elementary automata increases the
cardinality of the alphabets.

R

phi_r:’VANISH’.’T2’.’T3’
delta_R(z_rs,phi_r)~=z_rs,

SS

RS

S

phi_s:’RES’.’REJ’.’T4’
delta_S((z_ss,z_is,z_rs),phi_s)~=(z_ss,z_is,z_rs),

IS

C

phi_c:’REQ’.’T7’
delta_C((z_cs,z_is),phi_c)~=(z_cs,z_is),

CS

<z_rs>
<delta_R(z_rs,phi_r)>

<z_rs>
<p(3,delta_S((z_ss,z_is,z_rs),phi_s))>

<z_ss>
<p(1,delta_S((z_ss,z_is,z_rs),phi_s))>

<z_is>
<p(2,delta_S((z_ss,z_is,z_rs),phi_s))>

<z_is>
<p(2,delta_C((z_cs,z_is),phi_c))>

<z_cs>
<p(1,delta_C((z_cs,z_is),phi_c))>

Figure 15: Client / Server APA

17

Figure 15 shows the Client/Server APA represented in the notation of the
tool. The reachability graph of this APA is isomorphic to the LTS in Figure 6.

If you replay this example analog to the hints in section 8 (select node ”demo
APA > Simple Client Server Example2 >”) please note that the homomorphism
used here (see figure 16) looks quite different. You have to use predicates to
get a mapping corresponding to the one in figure 8.

Figure 16: Client / Server Homomorphism

To make the result more readable the predicates are given short names that
make the minimal automaton look like the one in figure 12.

References

[Bas99] G. Basak. Sicherheitsanalyse von Authentifizierungsprotokollen
– model checking mit dem SH-Verification tool. Diploma thesis,
University of Frankfurt, 1999.

[BOP89] H. J. Burkhardt, P. Ochsenschläger, and R. Prinoth. Product nets
— a formal description technique for cooperating systems. GMD-
Studien 165, Gesellschaft für Mathematik und Datenverarbeitung
(GMD), Darmstadt, September 1989.

18

[CDF+96]	 C. Capellmann, R. Demant, F. Fatahi, R. Galvez-Estrada,
U. Nitsche, and P. Ochsenschläger. Verification by behavior ab
straction: A case study of service interaction detection in intelli
gent telephone networks. In Computer Aided Verification (CAV)
’96, volume 1102 of Lecture Notes in Computer Science, pages
466–469, New Brunswick, 1996.

[CDGE+96] C. Capellmann, R. Demant, R. Galvez-Estrada, U. Nitsche, and
P. Ochsenschläger. Case study: Service interaction detection by
formal verification under behaviour abstraction. In Tiziana Mar
garia, editor, Proceedings of International Workshop on Advanced
Intelligent Networks’96, pages 71–90, Passau, March 1996.

[FhG]	 FhG – Institute for secure Telecooperation, Darmstadt. Simple
Homomorphism Verification Tool – Manual.

[Fox98]	 S. Fox. Sezifikation und Verifikation eines Separation of
Duty-Szenarios als verbindliche Telekoopertation im Sinne des
Gleichgewichtsmodells. GMD Research Series 21, GMD –
Forschungszentrum Informationstechnik, Darmstadt, 1998.

[Kap02]	 Kappes, S. SET (Secure Electronic Transaction) Formale Mod
ellierung und Analyse des Bezahlvorgangs zwischen Kunde und
Händler mit Produktnetzen basierend auf Annahmen des Gle
ichgewichtsmodells. Diploma thesis, University of Frankfurt (in
preparation), 2002.

[Klu92]	 W. Klug. OSI-Vermittlungsdienst und sein Verhältnis zum ISDN
D-Kanalprotokoll. Spezifikation und Analyse mit Produktnetzen.
Arbeitspapiere der GMD 676, Gesellschaft für Mathematik und
Datenverarbeitung (GMD), Darmstadt, 1992.

[Neb94]	 M. Nebel. Ein Produktnetz zur Verifikation von Smartcard-
Anwendungen in der STARCOS-Umgebung. GMD-Studien 234,
Gesellschaft für Mathematik und Datenverarbeitung (GMD),
Darmstadt, 1994.

[Och92]	 P. Ochsenschläger. Verifikation kooperierender Systeme mit
tels schlichter Homomorphismen. Arbeitspapiere der GMD 688,
Gesellschaft für Mathematik und Datenverarbeitung (GMD),
Darmstadt, Oktober 1992.

[Och94a]	 P. Ochsenschläger. Verification of cooperating systems by sim
ple homomorphisms using the product net machine. In J. De
sel, A. Oberweis, and W. Reisig, editors, Workshop: Algorithmen
und Werkzeuge für Petrinetze, pages 48–53. Humboldt Universität
Berlin, 1994.

[Och94b]	 P. Ochsenschläger. Verifikation von Smartcard-Anwendungen mit
Produktnetzen. In B. Struif, editor, Tagungsband des 4. GMD-
SmartCard Workshops. GMD Darmstadt, 1994.

19

[Och96]	 P. Ochsenschläger. Kooperationsprodukte formaler Sprachen und
schlichte Homomorphismen. Arbeitspapiere der GMD 1029, GMD
– Forschungszentrum Informationstechnik, Darmstadt, 1996.

[OP93]	 P. Ochsenschläger and R. Prinoth. Formale Spezifikation und dy
namische Analyse verteilter Systeme mit Produktnetzen. In Infor
matik aktuell Kommunikation in verteilten Systemen, pages 456–
470, München, 1993. Springer Verlag.

[OP95]	 P. Ochsenschläger and R. Prinoth. Modellierung verteilter Systeme
– Konzeption, Formale Spezifikation und Verifikation mit Produk
tnetzen. Vieweg, Wiesbaden, 1995.

[ORR00a]	 P. Ochsenschläger, J. Repp, and R. Rieke. Abstraction and compo
sition – a verification method for co-operating systems. Journal of
Experimental and Theoretical Artificial Intelligence, 12:447–459,
June 2000.

[ORR00b]	 P. Ochsenschläger, J. Repp, and R. Rieke. The SH-Verification
Tool. In Proc. 13th International FLorida Artificial Intelligence
Research Society Conference (FLAIRS-2000), pages 18–22, Or
lando, FL, USA, May 2000. AAAI Press.

[ORR00c]	 P. Ochsenschläger, J. Repp, and R. Rieke. Verification of Coop
erating Systems – An Approach Based on Formal Languages. In
Proc. 13th International FLorida Artificial Intelligence Research
Society Conference (FLAIRS-2000), pages 346–350, Orlando, FL,
USA, May 2000. AAAI Press.

[ORRN99]	 Peter Ochsenschläger, Jürgen Repp, Roland Rieke, and Ulrich
Nitsche. The SH-Verification Tool – Abstraction-Based Verifica
tion of Co-operating Systems. Formal Aspects of Computing, The
International Journal of Formal Method, 11:1–24, 1999.

[Roß98]	 J. Roßmann. Formale Analyse der Business-Phase des First Vir
tual Internet Payment Systems basierend auf Annahmen des Gle
ichgewichtsmodells. Diploma thesis, University of Frankfurt, April
1998.

[Rud98]	 Carsten Rudolph. Analyse krypotgraphischer Protokolle mittels
Produktnetzen basierend auf Modellannahmen der BAN-Logik.
GMD Research Series 13/1998, GMD – Forschungszentrum In
formationstechnik GmbH, 1998.

[Rud99]	 Carsten Rudolph. Automated Analysis of Cryptographic Proto
cols, A Tableau Method for Logics of Authentication. 1999. Sub
mitted to FLAIRS-2000 Special Track on Validation, Verification
& System Certification.

20

[Sch92]	 S. Schremmer. ISDN-D-Kanalprotokoll der Schicht 3. Spezifika
tion und Analyse mit Produktnetzen. Arbeitspapiere der GMD
640, Gesellschaft für Mathematik und Datenverarbeitung (GMD),
Darmstadt, 1992.

21

	Introduction
	A first APA Example
	Client Server APA Example
	Abstraction
	Temporal Logic
	Applications
	Technical Requirements
	Replay the Client Server Example
	An alternative model of the client/server example

