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1 Introduction 

The sh-verification tool (SHVT) 1 [ORR00b] supports formal specification, anal
ysis and verification of cooperating systems. Figure 1 shows the structure of 
the tool. The main components of the system are the tools for specification, the 
analysis kernel, the tools for abstraction and the project manager. It is possible 
to extend the tool by different application oriented user interfaces. Small but 
typical examples shows the steps for specifying and analysing systems behaviour 
using the sh-verification tool. 

2 A first APA Example 

The presented verification method is described in [ORR00c]. The reader is re
ferred to this paper for notations, definitions and theorems. The method does 
not depend on a specific formal specification technique. For practical use it has 
to be combined with a specification tool generating labeled transition systems 
(LTS 2). The current implementation of SHVT uses asynchronous product au
tomata (APA) [ORRN99] and product nets 3 [BOP89, OP95] as specification 
environments. In this tutorial we only consider APA. 

APA are a universal and very flexible operational description concept for co
operating systems. It “naturally” emerges from formal language theory [ORR00a]. 

An APA can be seen as a family of elementary automata. The set of all 
possible states of the whole APA is structured as a product set; each state is 
divided into state components. In the following the set of all possible states is 
called state set. The state sets of elementary automata consist of components of 
the state set of the APA. Different elementary automata are “glued” by shared 
components of their state sets. Elementary automata can “communicate” by 
changing shared state components. 

Figure 2 shows a graphical representation of a small asynchronous product 
automaton consisting of two elementary automata Send A and Receive B and 
state components Data A, Data B and Network, with state sets ZData A , 
ZData B and ZNetwork. The state set of the APA is the product of ZData A , 
ZData B and ZNetwork. The state set of Receive B is the product of ZData B 

and ZNetwork. The state set of Send A is the product of ZData A and ZNetwork. 
The figure shows the structure of the automaton. The circles represent state 
components and a box corresponds to one elementary automaton. The full spec
ification of the automaton includes the transition relations of the elementary 
automata and the initial state. The neighbourhood relation N, represented by 
the edges, indicates which state components are included in the state of an ele
mentary automaton and may be changed by a state transition of the elementary 
automaton. A state transition of automaton Send A may change the content 
of Data A and Network while Receive B may change Data B and Network. 

1sh abbreviates simple homomorphism 
2The semantics of formal specification techniques for distributed systems is usually based 

on LTS. 
3a special class of high level petri nets 
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Figure 2: APA


Formally an Asynchronous Product Automaton consists of a family of State 
Sets ZS , S ∈ �, a family of Elementary Automata (Φe, Δe), e ∈ � and a 
Neighbourhood Relation N : � P(�); P(X) is the power set of X and �→
and � are index sets with the names of state components and elementary 
automata. For each Elementary Automaton (Φe, Δe) 

• Φe is its Alphabet and 

• Δe ⊆ ��S∈N(e)(ZS) × Φe × ��S∈N(e)(ZS) is its State Transition Relation 

For each element of Φe the state transition relation Δe defines state transi
tions that change only the state components in N(e). 
An APA’s (global) States are elements of �� (ZS). To avoid pathological 
cases it is generally assumed that � = 

� 
e∈

S

�

∈
(
�
N(e)) and N(e) =� ∅ for all 

e ∈ �. Each APA has one Initial State s0 = (q0S)
S∈� ∈ �� (ZS). 

In total, an APA � is defined by � = ((ZS)
S∈�, (Φe, Δe)e∈

S

�

∈�
, N, s0). 

The behaviour of an APA is represented by all possible sequences of state 
transitions starting with initial state s0. 
The sequence (s0, (e1, a1), s1)(s1, (e2, a2), s2)(s2, (e3, a3), s3) . . . with ai ∈ Φei 

represents one possible sequence of actions of an APA. 
State transitions (s, (e, a), s̄) may be interpreted as labeled edges of a directed 
graph whose nodes are the states of an APA: (s, (e, a), s̄) is the edge leading 
from s to s and labeled by (e, a). The subgraph reachable from the node s0 

is called the reachability graph of an APA. 

To illustrate how APA are represented in SHVT we consider the modelling 
of protocols in the following way: The actions of an protocol agent are modelled 
by specifying one or more elementary automata. Each automaton is connected 
to one or more state components. The state components that can only be ac
cessed by the automata of one agent are used to model the memory of that 
agent. Agents (i.e. elementary automata) communicate via a shared compo
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nent Network. Sending of a message is modelled by adding the message to the 
content of Network, receiving is modelled by removing it from Network. Re
ceive actions of an agent (of an elementary automaton) usually include checks 
that some part of the message is equal to some data stored in one of the agent’s 
state components. 

Network

Receive_B
d:bw

Send_A
a~=::

Data_A
Data_B

<nw>

<nw.shead(a)>

<bw>

<sdelete(d,bw)>

<b>
<b.d>

<a>
<stail(a)>

Figure 3: APA Example with Inscriptions 

Figure 3 represents two agents A and B communicating via the state compo
nent Network 4. Each of the agents is equipped with a further state component 
Data which serves as the agent’s memory. 

In the above example data stored on state component Data A can be sent by 
the elementary automaton Send A via Network. The elementary automaton 
Receive B can read data from Network and store it in the state component 
Data B. Every edge of an APA is labeled with two inscriptions describing 
the state transition relation of the corresponding elementary automaton. One 
denotes the match for the data read from the state component (read-inscription, 
denoted by a black arrow � at the beginning of the line), the other denotes the 
value that will be returned to the state component (write-inscription, denoted 
by a black arrow � at the end of the line). Elementary automata may contain 
two different kinds of inscriptions: predicates as in Send A and assignments 
to interpretation variables (see below) as in Receive B. A transition of an 
elementary automaton may occur if: 

•	 read-inscriptions of all edges connecting that automaton with a state com
ponent match the data stored in the respective state component 

•	 the predicate in the elementary automaton inscription is true (optional) 

•	 every value denoted by the write-inscriptions can be computed. 

Let us assume that the state components of our example have the following 
initial values: 

4You find this APA in “[install-dir]/demo/apas/SimpleAPA/simple.apa” 
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Data_A <(’t1’,’data’).(’t2’,’data’)>

Data_B <::>

Network <::>


:: denotes the empty sequence. Going out from this initial state the following 
reachability graph is computed by the tool: 

or (t2,data)
(t1,data) 
Choise to read (Receive_B) 

Network: 1<::>
Data_B: 1<(t1,data)>
Data_A: 1<(t2,data)>

Network: 1<(t1,data)>
Data_B: 1<::>
Data_A: 1<(t2,data)>

Network: 1<(t1,data)>
Data_B: 1<(t2,data)>
Data_A: 1<::>

Network: 1<(t2,data)>
Data_B: 1<(t1,data)>
Data_A: 1<::>

Network: 1<::>
Data_B: 1<(t2,data).(t1,data)>
Data_A: 1<::>

Network: 1<::>
Data_B: 1<(t1,data).(t2,data)>
Data_A: 1<::>

Network: 1<(t1,data).(t2,data)>
Data_B: 1<::>
Data_A: 1<::>

Network: 1<::>
Data_B: 1<::>
Data_A: 1<(t1,data).(t2,data)>
start:

Send_A

Send_A

Send_A Receive_B

Receive_B Receive_B

Receive_B Receive_B

Figure 4: Reachability Graph 

For simplicity edges are only labeled by the name of the corresponding 
elementary automaton e (instead of (e, a)). In the initial state the elemen
tary automaton SendA can perform a state transition: It assigns the value 
of DataA (i.e. (’t1’,’data’).(’t2’,’data’)) to the variable a and checks 
that this value is not equal to the empty sequence. It then reads (removes) 
(’t1’,’data’).(’t2’,’data’) from DataA and returns (adds) the tail of 
(’t1’,’data’).(’t2’,’data’) (i.e. (’t2’,’data’)) to DataA (using the func
tion stail). In the same state transition it reads the content of the state com
ponent Network, which is the empty sequence in the initial state, and assigns 
it to the variable nw. It finally writes the value of nw concatenated with the 
head of the value of a (i.e. (’t1’,’data’)) to Network. 

In this simple case, variables as inscription of edges (e.g. a in the above 
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example) are bound to the complete content of the state component and are 
processed completely (there are other types of bindings as well). In contrast, 
so-called interpretation variables that occur at the left side of : in inscriptions of 
elementary automata are used to express different state transitions with respect 
to different values of the interpretation variables. For an elementary automaton 
e the different values of the interpretation variables correspond to the elements 
of its alphabet Φe. 

In our example, d is such an interpretation variable as it occurs as the in
scription of the elementary automaton ReceiveB. First the value of the state 
component Network is bound to the standard variable bw. Then each of the 
components of the sequence bw is non-deterministically bound to the interpre
tation variable d (indicated by the expression d : bw inside ReceiveB). The 
automaton now performs one state transition for each of the components of 
bw. This is why ReceiveB can perform no state transition in the initial state: 
The initial value of Network is the empty sequence which does not contain any 
component. 

However, after the first state transition ReceiveB can perform a state tran
sition. Now Network contains (’t1’,’data’), which is assigned first to bw 
and then to d. At the same time, (’t1’,’data’) is removed from and the re
sult of sdelete(d,bw) (the sequence bw without the component d) is added to 
Network. In the same state transition, ReceiveB reads the content of the state 
component DataB, assigns it to b and writes b, concatenated with whatever 
component of d it chose to process. In the first state, there is only one compo
nent to choose, namely (’t1’,’data’). In the state transition sequence where 
the first and the second state transitions are performed by SendA, the content 
of Network is (’t1’,’data’).(’t2’,’data’). Thus in this state ReceiveB 

can continue either with d = (’t1’,’data’) or with d = (’t2’,’data’). See 
figure 4 for the complete reachability graph. 

In our example every state component has the same state set sequence. The 
following preamble defines the data type and the function shead used in our 
example: 

defset tag = { ’t1’, ’t2’ }; 
defset data = { ’data’}; 
defset message = pro ( tag, data ); 
defset sequence = seq (message); 
defcase shead : sequence>> sequence 

shead(x) = if l(x) > 0 then seg(x,1,1) 
else ::; 

tag and data are finite sets defined by listing their elements, message is the 
cartesian product of the sets tag and data. sequence is the set of finite sequences 
of elements of the set message including the empty sequence denoted by ::. The 
function shead provides the first element of a sequence. The other functions 
used in the APA, stail (tail of a sequence) and sdelete (deletes one element in 
a sequence) are predefined functions. For more elaborated examples and the 
description of the preamble language see [FhG]. 
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You can read this APA into the APA editor from 
“[install-dir]/demo/apas/SimpleAPA/simple.apa”. 
Compile the Preamble with the command “File>Compile Buffer”. After “Parser>Load 
Preamble” in the APA Editor perform the command “Parser>Analysis”. The 
analysis window will be opened an you can compute the reachability graph 
with “Start Exhaustive Analysis”. The graph can be drawn with “mouse-r Draw 
Graph” on object ”Reachability Graph simple”. The values of the state com
ponents will not be displayed. You can inspect these values for one node with 
“mouse-r Show Object”. 

Client Server APA Example 

Figure 5: Client Server Example
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To illustrate the usage of the verification method described in [ORR00c] we 
consider an example of a system that consists of a client and a server as its 
main components. The client sends requests REQ to the server, expecting the 
server to produce particular results. Nevertheless, for some reasons, the server 
may not always respond to a request by sending a result RES, but may, as 
well, reject a request REJ (Figure 7). 

Figure 5 shows a APA specification of this example. It is a global model for 
the systems behaviour. In this model an elementary automaton can perform 
a transition if every of its state components has the value �active�. The initial 
value of the shaded state components S 6 and S 2 is active, the others are 
inactive. So initially only the elementary automata T 3 and REQ can act. 
Note that the resource may eventually be locked forever. 

Usually complex systems are specified hierarchically. This is supported by 
the project manager of the tool. (In our simple example the specification is 
flat.) 

The LTS in Figure 6, which is the reachability graph of the APA in Figure 5, 
is computed by the tool. For better readability we have inserted the labels of 
the active state components into the nodes. 

This LTS consists of two strongly connected components (marked by diff
ent colors). Usually the LTS of a specification is too complex for a complete 
graphical presentation; there are several features to inspect the LTS. 

 S_3 

 S_4 

 S_5 

 S_6 

S_2 S_6 
 start:

 S_2 S_5 

 S_2 S_4 

 S_2 S_3 

 S_1 S_6 

 S_1 S_5 

 S_1 S_4 

 S_1 S_3 

RES

T_3

T_3

REJ

T_2

T_2

T_2

T_2

T_3

T_3

T_7

REQ

T_4

REJ

T_7

VANISH

REQ
REQ

REJ

T_7

T_4
VANISH

VANISH

T_4

VANISH

Figure 6: LTS


Abstraction 

In the example the important actions with respect to the client’s behaviour, are 
sending a request and receiving a result or rejection. 
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Client

Server

REQ RES REJ

Figure 7: Client Server Abstract View 

We will regard the whole system running properly, if the client, at no time, 
is prohibited completely from receiving a result after having sent a request (cor
rectness criterion). 

For the moment, we regard the server as a black box; i.e. we neither consider 
its internal structure nor look at its internal actions. Not caring about partic
ular actions of a specification when regarding the specification’s behaviour is 
behaviour abstraction. If we define a suitable abstraction for the client/server 
system with respect to our correctness criterion, we only keep actions REQ, 
RES, and REJ visible, hiding all other actions. This is supported by the 
homomorphism editor of the tool (Figure 8). 
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Figure 8: Homomorphisms Editor 

An automaton 5 representing the abstract behaviour of the specification can 
be computed by the sh-verification tool (Figure 9). It obviously satisfies the 
required property. The next step is to check whether the concrete behaviour 
also satisfies the correctness requirement mentioned above. For that purpose 
we have to prove simplicity of the defined homomorphism. 

A-2A-1
start:

(REJ)

(RES)

(REQ)

Figure 9:

Minimal Automaton.


Simplicity of an abstraction can be investigated inspecting the strongly con
nected components of the LTS by a sufficient condition [ORR00c]. The com
ponent graph in Figure 10 (combined with the homomorphic images of the arc 
labels of the corresponding graph components) does not satisfy this condition, 

the minimal automaton 

10 

5



so nothing can be said about simplicity.


(REQ)
(RES)
(REJ)
A-1
start:

(REQ)
(REJ)
A-2

Figure 10: Component Graph 

We now try to refine the homomorphism such that the sufficient condi
tion for simplicity can be proven. Inspecting the edge between the two nodes 
of the component graph shows that the action V ANISH causes the transi
tions between this two components (Figure 11). The refined homomorphism, 
which additionally keeps V ANISH visible, satisfies the sufficient condition for 
simplicity. Figure 12 shows the corresponding automaton. This automaton ob
viously violates the required property, so the systems behaviour does not satisfy 
this property. 

(REQ)
(REJ)
A-2

(REQ)
(RES)
(REJ)
A-1
start:

(VANISH)

Figure 11: Component Graph


A-2
A-4

A-3

A-1
start:(REQ)

(REJ)

(REQ)

(VANISH)

(REJ) 
(RES)

(VANISH)

Figure 12: Minimal Automaton (with VANISH) 

These simplicity investigations, which are supported by the tool, detect 
the error in the specification. In [Och92, Och94a] a necessary condition for 
simplicity is given. It is based on so called deadlock languages and shows non
simplicity of our REQ-RES-REJ-homomorphism [ORRN99]. 

To handle the well known state space explosion problem a compositional 
method [Och96] [ORR00a] is implemented in the sh-verification tool. This ap
proach can also be used iteratively and provides a basis for induction proofs in 
case of systems with several identical components [Och96]. Using our composi
tional method a connection establishment and release protocol has been verified 
by investigating automata with about 100 states instead of 100000 states. 
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6

Temporal Logic 

Our verification approach can also be combined with temporal logic [ORRN99]. 
In terms of temporal logic, the automaton of Figure 9 approximately satis
fies [ORRN99] the formula G(F(RES)) (G: always-operator, F : eventually
operator; thus G(F(RES)) means ”infinitely often result”), but the system in 
Figure 6 does not. 

Figure 13: Temporal Logic Formula Editor 

This is indeed the case because the abstracting homomorphism is not sim
ple. Using an appropriate type of model checking, approximate satisfaction of 
temporal logic formulae can be checked by the sh-verification tool. 

Our experience in practical examples shows that the combination of com
puting a minimal automaton of an LTS and model checking on this abstraction 
is significantly faster than direct model checking on the LTS. 

Applications 

Practical experiences have been gained with large specifications: 

•	 ISDN and XTP protocols [Klu92, Sch92, OP93] 

•	 Smartcard systems [Neb94, Och94b] 

•	 Service interactions in intelligent telecommunication systems [CDGE+96, 
CDF+96]. 
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•	 The tool has also been applied to the analysis of cryptographic protocols 
[Bas99, Rud98, Rud99]. In this context an application oriented user
interface has been developed for input of cryptographic formulae and pre
sentation of results in this syntax. 

•	 Currently our interest is focused on the verification of binding cooper
ations including electronic money and contract systems. Recently some 
examples in that context have been investigated with our tool [Fox98, 
Roß98, Kap02]. 

7 Technical Requirements 

The sh-verification tool is implemented in Allegro Common Lisp (currently for 
Linux and Windows NT). For more information please contact the authors. 

8 Replay the Client Server Example 

If you want to replay this example with the SHVT perform the following in
structions: 

1. Start the project manager. 

2. Read file “[install-dir]/demo/demo.prj”. The project tree with all demo 
examples will be shown. 

3. Select node	 ”demo APA > Client Server Example >” in the project tree 
(mouse-l). 

4. Apply ”mouse-r-Edit” to the file ”clsrv-err.apa”, which now is displayed 
in the second pane. The APA will be drawn in a new pane. 

5. Command: “Parser>Load Preamble” 

6. Command: ”Parser > Analysis” will open the analysis window. 

7. Command:	 “Start Exhaustive Analysis” - the rechability graph will be 
computed (Figure 6). 

8. Command: ”Homomorphism Editor” opens the editor for defining abstrac
tions. 

9. Read a predefined mapping from “clsrv1.map”. 

10. Command: ”File > Compute Minimal Automaton” will compute the mini
mal automaton, which can be drawn with ”mouse-r Draw Graph” on object 
”Minimal Automaton clsrc-err” (Figure 9). 

11.	 ”mouse-r Check Simplicity” on object ”Minimal Automaton clsrc-err” will 
show: ”no decision about simplicity can be made”. 
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12.	 ”mouse-r Determine Connected Components” on object ”Reachbility Graph 
clsrv-err” will compute the connected components for further investiga
tion. 

13.	 ”mouse-r Draw Graph” on object ”Connected Components of Reachability 
Graph clsrv-err” will show the graph from Figure 10. 

14.	 ”mouse-r Show Objects” on the edge of this graph followed by ”mouse-r 
Show Number of Origin Edges”, ”mouse-r Show Objects” on the current 
objects will display the origin edges with the transition vanish. 

15. Use command: ”Homomorphism Editor” from the analysis window to refine 
the abstraction. 

16. Read a predefined mapping from “clsrv2.map”. 

17. Command: ”File > Compute Minimal Automaton” will compute the mini
mal automaton, which can be drawn with ”mouse-r Draw Graph” on object 
”Minimal Automaton clsrc-err” (Figure 12). The minimal automaton in
dicating the error is computed. 
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9 An alternative model of the client/server example 

Here we show an alternative APA representation of the client/server example 
in Figure 5, consisting of three elementary automata, � = {C,S, R} , and four 
state components, � = {CS, IS, SS,RS} . Figure 14 shows the neighbourhood 
relation N. 

CS C RRSIS S

SSCLIENT SERVER

Figure 14: Client / Server APA 

State transitions of the elementary automaton C represent actions of the 
client. Correspondingly actions of the server and the resource manager are 
represented by state transitions of S and R respectively. CS and SS represent 
“internal” states of the client and the server. IS describes the the states of the 
client and server’s interface. RS represents both, internal and interface states 
related to the resource manager. 

Formally the APA is defined as follows: 

state components: 
ZCS = ZSS = {idle, active}, ZIS = {emp, req, res − rej} ,

ZRS = {avail, navail, vanished}

This is represented in the tool in the preamble as: 

defset Z_CS = { idle, active };

defset Z_SS = { idle, active };

defset Z_IS = { emp, req, res_rej };

defset Z_RS = { avail, navail, vanished };


defset Z_C = pro(Z_CS,Z_IS);

defset Z_S = pro(Z_SS,Z_IS,Z_RS);

defset Z_R = Z_RS;


imitial states: 
q0CS = q0SS = idle, q0IS = emp, q0RS = avail . 

alphabets: 
ΦC = {REQ, T 7} , ΦS = {RES, REJ, T 4} , ΦR = {V ANISH, T 2, T 3} . 

This is represented in the tool in the preamble as: 
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defset PHI_C = {REQ, T7};

defset PHI_S = {RES, REJ, T4};

defset PHI_R = {VANISH, T2, T3};


state transition relations: 
((idle, emp), REQ, (active, req)),


ΔC = 
((active, res − rej), T 7, (idle, emp)) 

⊂ (ZCS × ZIS) × ΦC ×


(ZCS × ZIS), 

The corresponding function in the tool is: 

defcase delta_C: pro (Z_C,PHI_C) >> Z_C 
delta_C (state,action) = 

if state = (idle,emp) & action = REQ then (active,req), 
if state = (active,res_rej) & action = T7 then (idle,emp) 
else state; ⎧ ⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

((idle, req, avail), T 4, (active, emp, avail)), ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪((idle, req, navail), T 4, (active, emp, navail)),
⎨ ((idle, req, vanished), T 4, (active, emp, vanished)), ⎬

ΔS = ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

((active, emp, avail), RES, (idle, res − rej, avail)), ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⊂


((active, emp, avail), REJ, (idle, res − rej, avail)),

((active, emp, navail), REJ, (idle, res − rej, navail)),
⎩ ⎭((active, emp, vanished), REJ, (idle, res − rej, vanished))


(ZSS × ZIS × ZRS) × ΦS × (ZSS × ZIS × ZRS),


The corresponding function in the tool is: 

defcase delta_S: pro (Z_S,PHI_S) >> Z_S 
delta_S (state,action) = 

if state = (idle,req,avail) & action = T4 
then (active,emp,avail), 

if state = (idle,req,navail) & action = T4 
then (active,emp,navail), 

if state = (idle,req,vanished) & action = T4 
then (active,emp,vanished), 

if state = (active,emp,avail) & action = RES 
then (idle,res_rej,avail), 

if state = (active,emp,avail) & action = REJ 
then (idle,res_rej,avail), 

if state = (active,emp,navail) & action = REJ 
then (idle,res_rej,navail), 

if state = (active,emp,vanished) & action = REJ 
then (idle,res_rej,vanished) 

else state; 
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(avail, T 3, navail),

ΔR = { (navail, T 2, avail), } ⊂ ZRS × ΦR × ZRS .


(navail, V ANISH, vanished)


The corresponding function in the tool is: 

defcase delta_R: pro (Z_R,PHI_R) >> Z_R 
delta_R (state,action) = 

if state = avail & action = T3 then navail, 
if state = navail & action = T2 then avail, 
if state = navail & action = VANISH then vanished 
else state; 

State components correspond to sets of state components in figure 5, as for 
example emp ∈ ZIS corresponds to inactive ∈ ZS−4 and inactive ∈ ZS−5. The 
alphabets’ elements correspond to the elementary automata in figure 5. As 
the system is structured into three components given by the three elementary 
automata each alphabet represents the set of “local” actions of the correspond
ing component. Note that APA offer a very flexible concept for structuring 
specifications: decreasing the number of elementary automata increases the 
cardinality of the alphabets. 

R

phi_r:’VANISH’.’T2’.’T3’
delta_R(z_rs,phi_r)~=z_rs,

SS

RS

S

phi_s:’RES’.’REJ’.’T4’
delta_S((z_ss,z_is,z_rs),phi_s)~=(z_ss,z_is,z_rs),

IS

C

phi_c:’REQ’.’T7’
delta_C((z_cs,z_is),phi_c)~=(z_cs,z_is),

CS

<z_rs>
<delta_R(z_rs,phi_r)>

<z_rs>
<p(3,delta_S((z_ss,z_is,z_rs),phi_s))>

<z_ss>
<p(1,delta_S((z_ss,z_is,z_rs),phi_s))>

<z_is>
<p(2,delta_S((z_ss,z_is,z_rs),phi_s))>

<z_is>
<p(2,delta_C((z_cs,z_is),phi_c))>

<z_cs>
<p(1,delta_C((z_cs,z_is),phi_c))>

Figure 15: Client / Server APA 
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Figure 15 shows the Client/Server APA represented in the notation of the 
tool. The reachability graph of this APA is isomorphic to the LTS in Figure 6. 

If you replay this example analog to the hints in section 8 (select node ”demo 
APA > Simple Client Server Example2 >”) please note that the homomorphism 
used here (see figure 16) looks quite different. You have to use predicates to 
get a mapping corresponding to the one in figure 8. 

Figure 16: Client / Server Homomorphism 

To make the result more readable the predicates are given short names that 
make the minimal automaton look like the one in figure 12. 
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[ORRN99]	 Peter Ochsenschläger, Jürgen Repp, Roland Rieke, and Ulrich 
Nitsche. The SH-Verification Tool – Abstraction-Based Verifica
tion of Co-operating Systems. Formal Aspects of Computing, The 
International Journal of Formal Method, 11:1–24, 1999. 

[Roß98]	 J. Roßmann. Formale Analyse der Business-Phase des First Vir
tual Internet Payment Systems basierend auf Annahmen des Gle
ichgewichtsmodells. Diploma thesis, University of Frankfurt, April 
1998. 

[Rud98]	 Carsten Rudolph. Analyse krypotgraphischer Protokolle mittels 
Produktnetzen basierend auf Modellannahmen der BAN-Logik. 
GMD Research Series 13/1998, GMD – Forschungszentrum In
formationstechnik GmbH, 1998. 

[Rud99]	 Carsten Rudolph. Automated Analysis of Cryptographic Proto
cols, A Tableau Method for Logics of Authentication. 1999. Sub
mitted to FLAIRS-2000 Special Track on Validation, Verification 
& System Certification. 

20 



[Sch92]	 S. Schremmer. ISDN-D-Kanalprotokoll der Schicht 3. Spezifika
tion und Analyse mit Produktnetzen. Arbeitspapiere der GMD 
640, Gesellschaft für Mathematik und Datenverarbeitung (GMD), 
Darmstadt, 1992. 

21



	Introduction
	A first APA Example
	Client Server APA Example
	Abstraction
	Temporal Logic
	Applications
	Technical Requirements
	Replay the Client Server Example
	An alternative model of the client/server example

