Trench Gate Integration into Planar Technology for Reduced On-resistance in LDMOS Devices

<u>Tobias Erlbacher¹</u>, Gudrun Rattmann¹, Anton J. Bauer¹, Lothar Frey^{1,2} ¹ Fraunhofer Institute for Integrated Systems and Device Technology, Erlangen, Germany; ² Chair of Electron Devices, University of Erlangen-Nuremberg, Germany

LEB

	Gate oxide module		
	3.3V	5V	20V
20V Devices			
Standard LDMOS $(L = 6.8 \mu m)$	62	63	58
ITG-LDMOS (<i>L</i> = 8.3μm)	64 (+3%)	66 (+5%)	59 (+2%)
AN ITG-LDMOS (<i>L</i> = 6.8μm)	51 (-21%)	53 (-16%)	48 (-17%)
50V Devices			
Standard LDMOS $(L = 8.0 \mu m)$	217	209	145
ITG-LDMOS $(L = 9.5 \mu m)$	153 (-29%)	151 (-28%)	117 (-18%)
AN ITG-LDMOS $(L = 8.0 \mu m)$	110 (-49%)	110 (-47%)	94 (-36%)
Absolute D , values are in mO mars?			

• Impact of vertical field plate is clearly visible with increasing trench depth

• Increase in drain leakage current not visible below 25V and 70V for the 20V and 50V LDMOS devices, respectively

→ Existing design of wells (RESURF) is suitable for trench gate integration

Electrostatic potential near trench region for 50V device with 20V gate oxide

ITG LDMOS

Output characteristics (Kirk-effect limitations)

Summary of maximum drain voltages for 20V and 50V LDMOS devices

	Gate oxide module		
	3.3V	5V	20V
20V Devices			
Standard LDMOS	24.9V	32.2V	27.4V
ITG-LDMOS	28.1V	> 35V	34.9V
AN ITG-LDMOS	29.5V	> 35V	34.0V
50V Devices			
Standard LDMOS	53.2V	53.2V	52.8V
ITG-LDMOS	50.8V	52.3V	50.8V
AN ITG-LDMOS	50.7V	52.8V	50.8V

 Integrated trench gate LDMOS exhibits acceptable immunity to Kirk effect • Higher device currents in ITG LDMOS result in lower breakdown voltage - Trench drift region (n-well) has not been optimized for current conduction

• 20V devices (w/o RESURF): Vertical field plate increases breakdown voltage • 50V devices (w/ RESURF): Higher drain currents reduce breakdown voltage

Integration of trench gate technology into an existing LDMOS layout

- Significant reduction of $R_{DS,on}$ is achievable
- Blocking behavior is not deteriorated
- Immunity to Kirk effect is satisfactory
- ITG LDMOS devices can be fabricated without changes to process flow or to well implants (RESURF design)
- Existing LDMOS devices remain operational \rightarrow extended library

Verification of simulation results by demonstrator fabrication is

Further optimization of integration scheme is under investigation