INTERNATIONAL LASER SYMPOSIUM & INTERNATIONAL SYMPOSIUM »TAILORED JOINING« 2016

© Fraunhofer IWS

concept

February 23 - 24, 2016, Dresden

Dresden

Contents

- Motivation and challenges
- Development of a new joining concept
- Conception of the overall system
- Welding results
- Summary

Motivation

- State of the art: Riveting common joining technology of aircraft fuselages parts
- This leads to larger structural masses and cycle times...
- Number of overlap joints $\downarrow \rightarrow$ structural mass $\downarrow \rightarrow$ costs \downarrow
- Welding of fuselage parts by using friction stir welding has great potential

Challenges

- Long welds
- Accessibility only from outer side
- Welds can have cylindrical and spherical curvatures
- High accuracy necessary (butt joint)

To reach the goal:

- Machine and clamping concept suitable for long welds
- Clamping mainly from outer side
- 3D capability of machine concept
- Performance of every process step within one fixture

Development of a New Joining Concept

 Development of a 3D-capable machine concept comprising a trolley and a stiffening system as well as a clamping system

Approach:

- "Lean FSW Tooling", costs ↓
- Concept: "Multi Use Vacuum Assisted eXoskeleton

Process Steps:

Development of a New Joining Concept MUVAX – 3D Demonstrator

Challenge:

Representation of all relevant curvatures within one demonstrator

Evaluation of all functionalities:

- Clamping of welding parts
- Milling for joint preparation
- Friction stir welding of the demonstrators
- Unclamping the welded part

Well-defined radii on the demonstrator

Development of a New Joining Concept MUVAX – Trolley

Ball screw motor

 $v_f = 1.2 \text{ m/min}$

 $F_{\text{max}} = 5 \text{ kN}$

Wheel set with integrated brake system

Scheme of movement:

Development of a New Joining Concept

MUVAX – Rail and Clamping System

- Rail system: 3 D-bent tubes
 - **Rail 1:** reference rail → fixed
 - Rail 2: parallel movable to the demonstrators longitudinal axis
- Rails and vacuum pads mounted together

DRESDEN concept

Development of a New Joining Concept

MUVAX – Dynamic Bolts

Conception of the Overall System

Conception of the Overall System

Evaluation of the overall system:

- Clamping with vacuum
- Milling of the vacuum clamped parts
- ■Welding of the demonstrators

Principle of MUVAX kinematics

Welds in butt joint and bead on plate condition (v_f 200 ... 900 mm/min)

Welding Results - Details

- No lack of penetration
- Critical stop & go zone shows only a slightly changed texture
- At stop position: Characteristic weld flash behind the tool

Typical cross section of a MUVAX-welded joint

Summary

- Entirely new machine concept for welding (FSW) of large thin-walled structures developed
- 3D-capability of the system proved
- Dynamic bolt system successfully tested
- Welding of demonstrator panels successfully conducted

Thank you for your attention!

Co-Authors:

Andreas Grimm¹, René Eger², Jens Standfuß¹, Gunther Göbel², Eckhard Beyer^{1, 3}

¹ Fraunhofer IWS, ² HTW Dresden, ³ TU Dresden

Contact:

Dipl.-Ing. Sebastian Schulze Fraunhofer IWS Winterbergstraße 28 01277 Dresden, Germany

Phone +49 351 83391-3565 +49 351 83391-3210 Fax

E-Mail sebastian.schulze@iws.fraunhofer.de

This project was financially supported by:

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

This project was conducted in collaboration with:

www.iws.fraunhofer.de

