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Abstract

Although computer vision and other machine perception
have made great progress in recent years, corresponding
high-level components have not progressed that fast. We
present a general purpose framework for high-level situa-
tion recognition that is suited for arbitrary application do-
mains and sensor setups. Our approach is hierarchical as
opposed to monolithic and we focus on modeling expert
knowledge with Fuzzy Metric Temporal Logic and Situa-
tion Graph Trees rather than learning from training data.
To demonstrate the power and flexibility of our approach,
we present case studies in two different settings: guiding
the operator’s attention in video surveillance and automatic
report generation in smart environments. Our results show
that this approach can yield a conceptually exhaustive situ-
ation recognition for diverse input modalities and applica-
tion domains.

1. Introduction
As the power and flexibility of computer vision and other

machine perception increases, so does the need for high-
level components that fuse multiple modalities into a single
world model. We aim to bridge the gap between outputs
from machine perception and a semantic understanding of
the observed scene. First, the collection of low-level in-
formation provided by perception is converted into atomic
predicates. Then, these predicates are fed into a reasoning
engine containing the domain knowledge to deduce corre-
sponding facts on a semantic level. Our system can han-
dle arbitrary application domains and sensor setups, two of
which are presented as case studies in this paper.

The goal in the surveillance case study is to guide an
operator’s focus of attention. Predefined situations should
be highlighted in large amounts of video data in order to re-
duce the operator’s workload. The experiments for this case
study are based on the well-established CAVIAR dataset
[1]. It contains situations with annotated ground truth for
people walking alone, meeting with others, window shop-
ping, entering and exiting shops, fighting, passing out, and
leaving a bag in a public place. Figure 1, Figure 4, and Ta-
ble 1 correspond to the lbpugt sequence from CAVIAR
where somebody leaves a bag and picks it up later. Figure 5,
Figure 3, and Table 2 correspond to the ms3ggt sequence
where three people walk around and meet each other.

The smart environments case study is situated in a con-
trol room context. A control room is a place where high-
ranking officers work together to lead their forces in man-
aging a crisis situation. Our goal in this case study is to au-
tomatically generate reports about the situation in the con-
trol room. For the corresponding experiments, we created
synthetic data based on a real fire brigade control room ex-
ercise. The data consists of the control room interior, per-
son tracks, orientations, gestures, and speech for six officers
(see Figure 7). We recognize situations related to the group
formations, phases, and activities that are typical to control
room operation.

The proposed system for high-level situation recognition
can handle other applications and sensor setups as well.
Furthermore, our system can provide perception with top-
down information and predict situations in the near future.
We discuss related work in Section 2 and our methods are
described in Section 3. The experiments are discussed in
Section 4 and we conclude this contribution in Section 5.
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Figure 1. An example sequence from the CAVIAR dataset [1]. A
person leaves a bag and walks away (green), upon which our sys-
tem raises an alarm. Over 400 frames later the person returns and
picks up his bag and the alarm is withdrawn (magenta).

2. Related Work

Recent surveys dealing with the high-level recognition
of situations in image sequences are [3, 17, 25]. The field
can be divided into three types of approaches. (1) Statisti-
cal approaches compute the likelihood of a situation given
an image sequence by learning graph models (e.g. dynamic
Bayesian networks) from labeled training data [2, 7, 8, 21].
(2) Syntactic approaches apply nested production rules as
used in formal grammars. Subsequently, they parse the
generated situation strings [12, 15]. (3) Description-based
approaches are built upon the formulation of temporal and
spatial properties of situations [14]. Temporal relations are
usually expressed using interval temporal logic [4]. High-
level situation recognition was further improved by contri-
butions such as [26], increasing efficiency, and [22], in-
creasing the complexity of recognized situations using hi-
erarchical structures. To deal with uncertainty in input
data, [16] and [24] combined logical and probabilistic ap-
proaches. They use first order predicate logic with weighted
rules as input for a Markov Logic Network. Advanced
methods for image and video understanding and the sub-
sequent report generation in natural language are presented
in [13] and [27].

Our own approach uses the conceptual description of sit-

uations with Fuzzy Metric Temporal Logic (FMTL) and Sit-
uation Graph Trees (SGTs) described in [20]. FMTL and
SGTs were applied to traffic scenarios in [6, 10] and [11, 9]
apply them to human behavior. Our framework offers sev-
eral advantages when compared to approaches that learn
from training data. Formalizing expert knowledge is easy
and existing sets of rules can be extended with minimal ef-
fort. Furthermore, the reasons for arriving at a certain con-
clusion are human understandable. And most importantly,
no training data is needed. Especially in complex domains,
high-dimensional search spaces are difficult or impossible
to cover without an enormous amount of training data.

The contribution of this paper consists of several parts.
First, we developed a domain independent rule dictionary
that can be applied to both the surveillance case study and
the smart environment case study. These rules were then
combined in two sets of SGTs using temporal and hierarchi-
cal composition. Furthermore, we apply a fuzzy exhaustive
graph traversal on the SGTs to recognize multiple situations
in parallel. Furthermore, our work is not limited to the de-
scription of a person’s motion behavior. Instead, we have
incorporated other input modalities and we will continue to
do so in the future. Finally, we will show that our frame-
work can deduce sophisticated situations in various appli-
cation domains.

3. Methods
Nagel described a generic layered model for cognitive

vision systems in [19]. It was modified in [5] to satisfy the
needs of multimodal sensors and actuators. Figure 2 depicts
our specific instantiation of this model.

The Interactive Subsystem (IS) encompasses the Sensor
Actuator Level (SAL) which can contain data in various
modalities. Sensors can be cameras, microphones, haptic
sensors, or anything else that is available. Actuators can in-
clude displays, speakers, and motors. As video is the dom-
inant source of perception in our research, we explain this
layered model for the vision case only. When using audio
and other signals, the model can be extended accordingly.

The image signal information from SAL is passed to the
Quantitative Layer (QL). It is comprised of the Image Sig-
nal Level (ISL), the Picture Domain Level (PDL), and the
Scene Domain Level (SDL). In the ISL, video information
is encoded in pixels. Adding information about local fea-
tures, edges, or any other construct that uses more than one
pixel leads to the Picture Domain Level (PDL). It allows
tasks such as person detection and object detection. In the
subsequent Scene Domain Level (SDL), information such
as person tracks, orientations, and gestures is stored. Addi-
tionally, scene knowledge is added in this level, e.g. scene
geometry. This information can be either generated auto-
matically or added manually.

Up to this point all information is of a quantitative na-
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Figure 2. Cognitive vision system adapted from [5, 19]. The In-
teractive Subsystem (IS) stores the information from sensors and
actuators, the Quantitative Layer (QL) consists of 1D pixel infor-
mation (ISL), 2D image information (PDL), and 3D scene geome-
try information (SDL). The dotted boxes represent the perceptual
modalities that are currently used. The Conceptual Layer (CL)
stores conceptual knowledge as FMTL rules and SGTs.

ture. In order to reach a semantic understanding from these
large amounts of noisy quantitative information, the sys-
tem needs formalized expert knowledge about the domain
in question. In the Conceptual Layer (CL), this knowledge
is split up into primitive knowledge and high-level knowl-
edge. The primitive knowledge is represented as a set of
domain independent Fuzzy Metric Temporal Logic (FMTL)
rules in the Conceptual Primitives Level (CPL). It contains
rules about spatiotemporal relations in the physical world.
Finally, the Behavior Representation Level (BRL) contains
high-level knowledge represented as Situation Graph Trees
(SGT). These SGTs employ the domain independent FMTL
rules to recognize high-level situations. The SGTs are do-
main specific because they require conceptual, abstract in-
terpretations that go beyond the spatiotemporal physical do-
main.

Each level of the model is bidirectionally connected to
the next. Typically, most information flows bottom-up, but
there are also cases where the top-down direction plays an
important role. A good example is the guided deployment
of sensors and other resources to improve coverage of inter-
esting situations. We continue with a detailed description of
the Conceptual Layer (CL).

3.1. Conceptual Primitives Level

On the transition from SDL into CPL, quantitative in-
formation is transformed into primitive conceptual knowl-
edge. The fuzziness that is involved here exists in two
forms: vagueness and uncertainty. Vagueness means that
number intervals cannot be mapped directly to concepts as
concepts are often vague. There is no clear distinction be-
tween moving fast and moving very fast for example, the
transition is smooth. Uncertainty in this context typically
stems from the lower levels supplying uncertain informa-
tion. If the lower levels supply confidence values, the higher
levels should be able to handle these appropriately in their
reasoning. Both vagueness and uncertainty are expressed
by a number between 0 and 1. To turn low-level confi-
dence values and high-level conceptual vagueness into com-
bined truth values, several s-norms and t-norms are avail-
able: Zadeh, Lukasiewicz, Product, and Gödel, among oth-
ers [18]. FMTL is a temporal predicate logic with fuzzy
truth values [10] that can handle vagueness and uncertainty
in combined truth values.

The inference on FMTL predicates is performed with the
inference engine F-LIMETTE [23]. We developed a rule
dictionary for our case studies in surveillance and smart en-
vironments. Many rules in this dictionary are used in both
case studies, demonstrating rule reusability. Other rules
have to be adapted to the given domain. Two example rules
are shown below. The � is the always operator and the other
operators have the conventional meaning from first order
logic.

� { [ ♦−2 Distance(p, q, d−2) ∧
♦−1 Distance(p, q, d−1) ∧

Distance(p, q, d0) ∧
♦1 Distance(p, q, d1) ∧
♦2 Distance(p, q, d2) ∧

Derivative(d−2, d−1, d0, d1, d2, d
′) ∧

DistanceChangeCategory(d′, c) ]→
DistanceChange(p, q, c) }

� { ∀ p [ HasType(p, agent) →
∃ q [ HasType(q, chair) ∧ AtSeat(p, q) →

EverybodyAtSeat() ] ] }

The first rule infers DistanceChange(p, q, c), telling us
how the distance is changing between two agents or objects.
The rule requests the Euclidian distance between p and q for
the surrounding time interval from t = −2 to t = 2 (indi-
cated by ♦−2 through ♦2). Then, the derivative d′ of these
five distances is calculated and fuzzily mapped to the values
for c: decreasing, constant, increasing. The mapping is per-
formed by three displaced trapezoidal truth functions with



Figure 3. Part of the Situation Graph Tree (SGT) used in the surveillance scenario described in Section 4.1. An SGT represents the expert
knowledge about the situations to be detected. In this case WalkTogether, StandTogether, SplitUp, JoinFaster, and Join. Each
box represents a situation scheme that can be specialized conceptually (thick edges) and temporally (thin edges). Boxes at the top left and
top right of a situation scheme indicate that it is a start situation scheme and end situation scheme respectively. The numbers on the edges
assign their priority for the traversal.

the one for constant centered around 0. The second rule in-
fers EverybodyAtSeat(). Its condition AtSeat(p, q) also
uses a trapezoidal truth function so that the rule also fires if
an agent is close to a chair. The rules in the CPL are mostly
concerned with spatial relations and temporal relations on
short time intervals.

3.2. Behavior Representation Level

The BRL is the highest level in the layered model in Fig-
ure 2. The Situation Graph Trees (SGTs) used in this level
can be edited with the graphical user interface described
in [5]. This tool also performs the fuzzy exhaustive graph
traversal described in Section 3.2.2

3.2.1 Situation Graph Trees

At this level the primitive logic predicates from the CPL
are aggregated and structured in SGTs to model high-level
conceptual situations. Figure 3 depicts an SGT which rep-
resents the expected behavior of agents. It consists of situ-
ation schemes which can be start and/or end nodes in the
SGT. Each situation scheme has a unique name, a state
scheme and an action scheme. The state scheme consists of
state predicates in Fuzzy Metric Temporal Logic (FMTL) as
described in Section 3.1 which is used as a precondition for
the instantiation of the given situation scheme. If a situation
has been instantiated for a certain agent or object, the corre-
sponding action scheme is instantiated. In SGTs it is possi-
ble to specialize each situation in a conceptual and temporal
manner. Prediction edges are used to link a situation with



a possible subsequent situation to model knowledge about
possible temporal developments of situations. Specializa-
tion edges connect more general situations to more specific
ones in a hierarchical structure. For conceptual specializa-
tion additional state predicates are added to the more spe-
cific situation schemes whereas for temporal specialization
the situation is broken up into several situation schemes.

3.2.2 Exhaustive Situation Analysis

A situation graph traversal algorithm performs the situation
analysis. Until now the algorithm has found only one in-
stantiation of a situation for each agent or object at each
point in time [6, 11]. Considering the fact that several
situations can be an adequate description simultaneously
and that the uncertainty from lower levels requires multi-
ple hypotheses, this algorithm is insufficient for our pur-
pose. Therefore, we extended it to a fuzzy exhaustive graph
traversal. It starts with the instantiation of a new agent or
object in the first start situation scheme of the root graph.
In case the state scheme of a particular situation scheme
can be instantiated, the algorithm traverses along its spe-
cialization edges. If a new start situation scheme is found
the traversal continues recursively from there. If this fails,
the algorithm tries to proceed at one time-step ahead while
crossing prediction edges to instantiate situation schemes
until an end situation is reached. After having finished
the traversal of the specialization it continues in the more
general situation until the end situation scheme in the root
graph is reached. The traversal algorithm follows all exist-
ing alternatives in specialization and temporal development
meaning that it is concurrently considering different situ-
ation schemes with different instantiations. This allows a
fuzzy exhaustive recognition of situations and their differ-
ent instantiations.

4. Experiments

We present experimental results from two different case
studies. Section 4.1 describes our experiments on video
surveillance data and Section 4.2 describes the smart en-
vironments case study.

4.1. Video Surveillance

For evaluating video sequences in surveillance applica-
tions the well-known CAVIAR dataset is chosen [1]. The
scenes of this dataset are challenging, there are multiple
people and objects involved, and a variety of different
actions is performed: walking alone, meeting with oth-
ers, window shopping, entering and exiting shops, fight-
ing, passing out, and leaving a bag in a public place. The
hand-labeled ground truth annotation per frame consists
of names, positions, orientations, roles, and more for the

Figure 4. Part of an SGT representing the knowledge about leav-
ing a bag and raising an alarm and picking the bag up later and
withdrawing the alarm. The situation scheme ED SIT0 gets spe-
cialized if the distance between the agent and the bag is small.

agents and objects involved. As our aim is to evaluate high-
level situation recognition we assume fair results in the QL.
This is why the CL only uses the available hand-labeled in-
formation of the position of each agent and object and their
names.

Our system can recognize situations involving one agent
or object (e.g. moving slowly to the right), multiple agents
and objects (e.g. picking up a bag or two people meeting),
and situations involving agents, objects, and locations (e.g.
leaving a bag in a specific area). Figure 4 shows part of an
SGT that can recognize interactions between a person and
a bag. ED SIT4 is instantiated if a person and a bag are de-
tected close to each other. Then, ED SIT3 raises a warning
if the distance between the person and the bag increases. As
soon as their distance is notSmall (ED SIT2), an alarm is
raised. And if the person returns to the object (ED SIT1 to
ED SIT4), the alarm is withdrawn.

Table 1 shows an output snippet for CAVIAR’s lbpugt
sequence (see Figure 1). Our system recognizes a person at



Time Truth value Predicate
456 1.000 Agent(a)
504 0.735 HasType(c, bag)
505 0.242 DistanceChange(a, c, increas.)
505 0.242 Distance(a, c, notSmall)
519 0.154 HasType(c, bag)
520 1.000 DistanceChange(a, c, increas.)
520 0.564 Distance(a, c, notSmall)
552 1.000 DistanceChange(a, c, increas.)
552 1.000 Distance(a, c, notSmall)
991 0.627 HasType(c, bag)

1028 1.000 Agent(a)

Table 1. Output and intermediate predicates of the situation recog-
nition corresponding to Figure 1. Note the increasing truth value
of Distance while the agent leaves the bag.

frame 456 and a bag at frame 504. At 505, the person is
leaving the bag, but only with a low truth value. At 552, the
truth values increase as the person leaves the bag proper,
causing an alarm. And finally, at 991, the alarm is with-
drawn as the person picks up his bag again. These results
reflect the situations in Figure 1 very well, and we achieve
comparable results on other CAVIAR sequences involving
luggage.

In the ms3ggt sequence of the CAVIAR dataset people
are walking together, standing still, splitting up, and joining
each other (see Figure 5). Figure 3 depicts part of an SGT
which can recognize the behavior of small groups. In this
experiment we apply this SGT to the ms3ggt sequence and
Table 2 and Figure 5 show a meaningful excerpt of the ob-
tained result. At time point 350 person 1 and 2 are walking
together, at 390 they are standing together, and at 402 both
are splitting up. Then person 3 approaches, at 410 person 1
and 3 are standing together, and at 441 person 1 and 3 are
walking together. Our system successfully recognized the
high-level situations occurring in the CAVIAR dataset with
a few minor errors due to imprecise ground-truth.

4.2. Smart Environments

Collecting the complex experimental data that we need
for the smart environments case study is very laborious, and
we did not find any suitable existing datasets. Because syn-
thetic data can serve the purpose of enhancing high-level
algorithms very well, we decided to generate XML data
with a dedicated PyQt tool (see Figure 7). It allows us to
generate realistic data with very little effort. In the future,
additional challenges will be added by adding interpolation,
noise, uncertainty, and a more sophisticated array of percep-
tual modalities.

The simulation is based on an actual fire brigade con-
trol room exercise (see Figure 6). From around twenty par-
ticipants in the exercise, we modeled the six most promi-

Figure 5. Sequence with multiple people and their recognized be-
havior (see Table 2). At frame 350 person 1 and 2 are walking
together (green), at frame 390 they are standing together (red), at
402 they split up (cyan), at 410 person 3 stands together with per-
son 1 (red) and finally, at 441 person 1 and 3 are walking together
(green).

Time Truth value Predicate
350 0.550 WalkTogether(a1, a2)
390 0.552 StandTogether(a1, a2)
402 1.000 SplitUp(a1, a2)
410 1.000 StandTogether(a1, a3)
441 1.000 WalkTogether(a1, a3)

Table 2. Output of the situation recognition for the sequence dis-
played in Figure 5.

nent roles, each with his own table and chair: commanding
officer (CO), messenger (M), units officer (S1), maps of-
ficer (S2), strategy officer (S3), and supplies officer (S4).
Furthermore, the simulation contains two doors, a message
hatch, and two planning boards. The area of the room is
scaled down from 8m · 8m to 800px · 800px and divided
into 15 zones.

Person tracks, orientations, gestures, and speech are ma-
nipulated through mouse manipulation. We created 360
snapshots this way, corresponding to 30 minutes of data
with one snapshot every five seconds. This should be in-
creased to at least one snapshot per second in order to recog-



nize temporal developments such as accelerating and mov-
ing towards an object. From Figure 7, the system recognizes
that CO is working individually in the CO zone, S4 and M
are having a conversation in the S4 zone, and S1, S2, and
S3 are doing teamwork in the map zone (compare to Figure
6). These situations, among others, have been successfully
recognized in a running system.

The rule Teamwork(p, q, r, z) is shown below. It looks
for occurrences of three people working together in a zone z
(e.g. Teamwork(s1, s2, s3,mapZone) in Figure 7). The
condition In(p, z) needs to be satisfied for all three agents
and Interacts(p) for at least one of them. For In(p, z),
p and q get their types checked and e is set to 0.5m, which
should be interpreted as half the width of the zone z’s vague
border. Then, the position of p and the position and size of
z are retrieved. These are used in IR(m, a, b, c, d) which
uses a trapezoidal function to determine to what degree xp

and yp are in the correct range. For xp (and equivalently for
yp), the truth value rises to 1 between xz−e and xz +e and
it falls back to 0 between xz + wz − e and xz + wz + e.
Effectively, the predicate In(p, z) evaluates to 1 if p is at
least 0.5m inside the zone z and In(p, z) evaluates to 0 if
p is at least 0.5m outside z. For Interacts(p), agent p has
to be speaking or pointing at least once in the immediate
temporal surroundings.

� ∀ p, q, r, z {
[ In(p, z) ∧ In(q, z) ∧ In(r, z) ∧

( Interacts(p) ∨ Interacts(q) ∨ Interacts(r) ) ] →
Teamwork(p, q, r, z) }

� ∀ p, z { Type(p, agent) ∧ Type(z, zone) ∧ e = 0.5 ∧
Pos(p, xp, yp) ∧ Pos(z, xz, yz) ∧ Size(z, wz, hz) ∧

IR(xp, xz − e, xz + e, xz + wz − e, xz + wz + e) ∧
IR(yp, yz − e, yz + e, yz + hz − e, yz + hz + e) →

In(p, z) }

� ∀ p { [ ♦−1 ( Speaks(p) ∨ Points(p) ) ∨
( Speaks(p) ∨ Points(p) ) ∨

♦1 ( Speaks(p) ∨ Points(p) ) ] →
Interacts(p) }

5. Conclusion
We presented our ongoing work on a general purpose

framework for high-level situation recognition. To show
the power and flexibility of our approach, we discussed
two case studies: one for guiding the operator’s attention
in video surveillance and one for automatic report genera-

Figure 6. The smart environments case study is based on an actual
fire brigade control room exercise. This particular snapshot shows
the following situations: teamwork, one-on-one conversation, and
individual work.

Units Map

Comms o�ce Lounge
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S3S4
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Figure 7. Our simulation tool for generating experimental data in
the smart environments case study. Our system can deduce all
three activities visible in this snapshot concurrently: teamwork at
the map display, one-on-one conversations, and individual work.

tion in smart environments. Our framework fuses the out-
put from all available perceptual components into a single
world model. Then, low-level data is fed into FMTL rules
to deduce spatiotemporal relations. SGTs containing the
domain knowledge combine these relations in hierarchical
and temporal tree structures to deduce high-level situations.

This work contains the following contributions. We de-
veloped a domain independent dictionary of Fuzzy Metric
Temporal Logic rules that is applicable to the two cases
studies presented in this paper. In the first case study, the
goal is to guide the operator’s attention to predefined situ-
ations in video surveillance. The second case study is con-
cerned with automatic report generation in smart environ-



ments, particularly for control room operations. Further-
more, the situations that are to be recognized in these case
studies are modeled in Situation Graph Trees, incorporat-
ing the domain independent dictionary of FMTL rules. In
our experiments, we have successfully evaluated all exam-
ples discussed above. Corresponding quantitative evalua-
tions will be performed in the near future and we will ex-
tend our input modalities with 3D pose estimation, moving
objects, and display interaction. The joint handling of un-
certainty and vagueness will also play an important role in
our future work.
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