
15.08.1997,
triese01497.title.logo

A publication by Fraunhofer IESE

Modelling the Application Domains of
Software Engineering Technologies

Technical Report

Author:
Andreas Birk

In part supported by
ESPRIT Project no. 23239 “PROFES”

IESE-Report No. 014.97/E
Version 1
August 14, 1997

Fraunhofer Einrichtung
Experimentelles

IESE

Software Engineering

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
IESE transfers innovative software deve-
lopment techniques, methods and tools
into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps
them to establish a competetive market
position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

iiiCopyright  Fraunhofer IESE 1997

Abstract

The effectiveness of software engineering technologies depends very much on
the situation in which they are applied. In order to further improve software
development practices we need to investigate and document the application
domains of technologies. A first step toward a deeper understanding is to
develop an appropriate modelling formalism that allows us to explicitly describe
our current knowledge and to utilize the knowledge within software engineer-
ing research and practice.

This paper suggests a modelling formalism for describing application domains of
software engineering technologies. It relies on established techniques from soft-
ware domain analysis and software engineering measurement. A lifecycle pro-
cess for acquisition and use of technology domain models is presented. The
models can be used for supporting systematic reuse of technologies during
planning of software projects and improvement programmes.

Keywords Domain Modelling, Knowledge Acquisition, Reuse

iv Copyright  Fraunhofer IESE 1997

Introduction

1Copyright  Fraunhofer IESE 1997

1 Introduction

Software management wants to make informed decisions. It seeks for decision
support to identify the technologies that meet best the goals and characteristics
of a software project or improvement programme.

A scenario of informed project planning could look as follows: The manager
defines the goal of the project, e.g., to produce highly reliable software, and
describes the known characteristics of the project (e.g., average time con-
straints, highly experienced engineers, object-oriented development, control
software, etc.). Then, he/she enters these characteristics into a software-engi-
neering information system and receives a recommended technology through
which the goal can be achieved in the given context situation.

To date, this scenario is a vision. Neither do we have comprehensive repositories
of best practice that are structured according to relevant goals and context char-
acteristics, nor have we much documented experience about the context depen-
dencies of software engineering technologies that would allow us to construct
such repositories from scratch.

Aim of the work reported in this paper is to support the reuse of software engi-
neering technologies through explicit models of their application domains. The
targeted result is a repository of best practice that packages technologies
together with information about when they should be used.

Strategy of our work is to (1) assess the dependencies between technologies
and their application context, (2) develop a modelling schema for describing
technology application domains, (3) describe the lifecycle of technology domain
models (i.e., their construction through knowledge acquisition and their use
within decision support for project planning), and (5) use these techniques for
developing domain models of selected technologies (e.g., software verification
techniques). In addition we develop software tools for the automated support
of technology domain analysis and decision support. The results are evaluated
empirically in industrial environments.

This paper presents a modelling schema for defining domain models of software
engineering technologies. It relies on established techniques from software
domain analysis and software engineering measurement. The lifecycle of tech-
nology domain models is described. It covers domain analysis through knowl-
edge acquisition and decision support during planning of software projects and
improvement programmes.

Introduction

2 Copyright  Fraunhofer IESE 1997

Our assumption is that many of today’s software quality and improvement
needs can be satisfied through more focused and better informed application of
software engineering technologies. Every technology has its specific contexts
where it can be applied successfully. In other situations other technologies are
more appropriate. In addition, we assume that there exists much knowledge
about the application domains of software engineering technologies in the
minds of experienced software professionals. But this knowledge has seldom
been acquired and documented explicitly. Hence, it can hardly be accessed and
reused.

The work presented here is being conducted at the Fraunhofer Institute for
Experimental Software Engineering (Fraunhofer IESE). We have gained experi-
ence with the assessment of software engineering technologies in numerous
industrial measurement programmes. This work is directly related to ESPRIT
project Profes1 that develops a method for improving software processes based
on customer-driven product quality factors in the embedded systems domain.
Therefore, the relationships between process parameters (e.g., technologies),
the project context, and product quality factors are investigated at three indus-
trial sites.

The structure of the paper is as follows: Sections 2 to 3 briefly introduce the
basic concepts underlying this work, namely software engineering technologies,
domain analysis, and software engineering measurement. Core of this paper is
Section 5 that presents a knowledge representation scheme for modelling appli-
cation domains of software engineering technologies. The lifecycle of technol-
ogy domain models is outlined in Section 6. Finally, the results are discussed and
conclusions are drawn (Sections 7 and 8).

1 ESPRIT project no. 23239 “Product-focused improvement of embedded software processes”
(cf. http:/www.iese.fhg.de/Profes)

Software Engineering

Technologies

3Copyright  Fraunhofer IESE 1997

2 Software Engineering Technologies

Throughout this paper, software engineering technology is used as generic term
for denoting techniques, methods, and tools. A technique is a basic algorithm or
set of steps to be followed in constructing or assessing software (cf. [BCR94a]).
For instance, code reading by stepwise abstraction is a technique for assessing
code.

A method is an organized approach based upon applying some technique.
A method has associated with it a technique, as well as a set of guidelines about
how and when to apply the technique, when to stop applying it, when the tech-
nique is appropriate and how we can evaluate it. For instance, a method will
have associated with it a set of entry and exit criteria and a set of management
supports. Code inspection is a method based upon some reading technique,
which has a well-defined set of entry and exit criteria as well as a set of manage-
ment functions defined for how to manipulate the technique (cf. [BCR94a]).
A tool is a computer-based implementation of a technique or method.

Software engineering technologies are used for constructing or analysing soft-
ware. During project planning, a software development process is designed by
integrating several techniques, methods, and tools (cf. [BCR94a]).

As example technology throughout this document, we focus on verification
technologies such as testing and reading techniques. These technologies have
achieved a high maturity but there is still need for further investigation of their
application domains.

Domain Analysis

4 Copyright  Fraunhofer IESE 1997

3 Domain Analysis

Domain analysis is the process of identifying and organizing knowledge about
some class of problems (i.e., the problem domain) to support the description
and solution of those problems [AP91]. Typically, domain analysis supports the
reuse of software architectures and components when specifying and imple-
menting software systems. It has been argued that also other artifacts such as
processes, technologies, and prediction models should be subject to reuse
(“comprehensive reuse”) [BR91].

Software domain analysis is the first step within the domain engineering pro-
cess, prior to the specification and implementation of a reuse infrastructure
[Ara89]. It produces a model of the domain that allows to specify, talk about,
and model systems in that domain. Domain models structure repositories of
reusable artifacts in order to support their identification and retrieval.

A common technique for domain modelling is faceted classification (cf. [PF87]
[Pri87]). It originally stems from library science and is used there for describing
and categorizing literature titles. An entity is characterized through multiple fac-
ets. Each facet contains a list or taxonomy of terms that describe its possible
occurrences. Table 1 shows an example faceted classification scheme. A reus-
able component is characterized as tuple over the facets, e.g., (Programming
language: C, Amount of reuse: less than 40%, Experience of developers: aver-
age, Size of project: small (one-site)).

Table 1 Example faceted classification scheme for classifying code verification technologies.

programming lan-

guage

amount of reuse experience of

developers

size of

project

Fortran

Ada

C

C++

Java

Smalltalk

less than 10%

less that 40%

less than 70%

70% or more

low

average

high

small (one-site)

large (one-site)

multi-site

Domain Analysis

5Copyright  Fraunhofer IESE 1997

Technology domain analysis is widely analogous to software domain analysis
(see Table 2) such that techniques and principles from software domain analysis
can be transferred and adopted. Faceted classification is useful for describing
the application domains of software engineering technologies. It allows for an
intuitive characterization of technology application contexts.

Unlike the description of software components the modelling of technology
domains usually involves abstract terms for which no generally shared definition
exist. Examples are “average experience of developers” and “large project
team”. In order to be operational, the faceted classification scheme should be
complemented by explicit definitions of the involved terms. A useful technique
for operational definition of abstract software engineering concepts can be
adopted from software engineering measurement. It is introduced in the follow-
ing section.

Table 2 Analogies between software domain analysis and technology domain analysis.

Software domain analysis concepts Technology domain analysis concepts

Executable software system Enactable software engineering process

Software component Software engineering technology

Software architecture Lifecycle methodology

Software architecture element Lifecycle phase

Domain = Environment in which the software

system is executed (e.g., business process,

technical system)

Domain = Environment in which the software

engineering process is enacted (e.g., software project, soft-

ware organization)

Software Engineering

Measurement

6 Copyright  Fraunhofer IESE 1997

4 Software Engineering Measurement

Software engineering measurement is a technique or method that applies soft-
ware measures to software engineering objects (e.g., code, design documents,
development activities, etc.) to achieve a predefined goal. Software measures
assign objects in the software engineering world to objects in a formal system
(i.e., numbers or symbols). Typical goals of software engineering measurement
are to better understand software, to manage software processes, or to guide
process improvement (cf. [BCR94c] [SEL94]).

Figure 1 The strategy of GQM-based software engineering measurement,and an example goal, question,
and measure.

A common approach to software engineering measurement is Goal/Question/
Metric (GQM) [BCR94b] [GHW95] [BDR96]. It defines principles, documents,
and processes for goal-oriented measurement in software engineering. GQM-
based measurement starts with identifying a goal of measurement (see Figure
1). The goal is then defined operationally in terms of software measures. This is
done through a process of hierarchical decomposition via the identification of
questions that ask for the information needed to achieve the goal. The decom-
position is determined by a person who shares the view from which the goal is
defined (e.g., quality assurance manager). Figure 1 depicts the decomposition
schematically and shows example goal, question, and measure.

For each measure a data collection procedure is defined. The collected data is
interpreted in order to achieve the goal, following the inverse of the decomposi-
tion structure. The GQM approach assures that information about abstract
aspects of software engineering can accurately be derived from empirical data in
a context- and view-specific manner.

Goal: “Evaluate the effectiveness of code inspections
from the viewpoint of a quality assurance manager.”

Question: “What is the distribution of faults by life cycle
phase of detection before delivery?”

Measure: “Totoal number of faults detected in detailed
design phase”

G

Q

MM

Q

MM

de
fin

e

in
te

rp
re

t

Software Engineering

Measurement

7Copyright  Fraunhofer IESE 1997

The unambiguous decomposition of abstract software engineering concepts
into operational measures as it is provided through the GQM approach is a solu-
tion to the problem of lacking definitions for intuitive terms that can appear in
faceted classification schemes for technology application domains (see Section
3). For that reason, the knowledge representation schema for technology
domain models that is presented in the next section integrates principles from
faceted classification with principles from GQM.

Modelling Technology

Application Domains

8 Copyright  Fraunhofer IESE 1997

5 Modelling Technology Application Domains

This section introduces a modelling scheme for defining application domains of
software engineering technologies. In the following, we refer to this scheme as
technology domain model or just domain model. A technology domain model
must accurately reflect the nature of software engineering technologies and
their usage. It must also be appropriate for its later use within decision support.
Therefore, we first describe the conceptual basis of and requirements on tech-
nology domain models. Then the modelling scheme is presented.

5.1 Conceptual Basis

Our aim is to describe the class of context situations (e.g., kinds of software
projects) in which a software engineering technology can be applied success-
fully. Successful application of a technology (e.g., reading by stepwise abstrac-
tion) means that using the technology for a particular task (e.g., code verifica-
tion) leads to achieving a desired goal (e.g., highly reliable software). Whether a
technology can be applied successfully depends on the characteristics of the
context situation (e.g., programming language, amount of reuse, experience of
developers, etc.). This conceptual model is depicted in Figure 2.

Given a technology, its task, and its goal, we want to model the context charac-
teristics under which the technology can be applied successfully. This set of con-
text characteristics describes the domain of the technology. A domain comprises
all concrete situations that share the defined characteristics.

A domain model depends on the viewpoint from which it has been derived. For
instance, experienced software developers will describe a domain differently
than project managers. Without further validation, a domain model is only valid
in the overall environment in which it has been derived. Usually, the environ-
ment of a domain model is the software development organization whose
projects are classified by the model.

Modelling Technology

Application Domains

9Copyright  Fraunhofer IESE 1997

Figure 2 Conceptual model of technology application underlying domain analysis for software engineering
technologies.

5.2 Requirements

Based on the conceptual model and the assumptions presented in the previous
sections, the following requirements on a knowledge representation scheme for
domain models can be identified:

• A domain model should describe an application domain in intuitive terms
that meet the language of project planners who use it and experienced soft-
ware professionals from whom it is acquired.

• A domain model should describe an application domain in an unambiguously
and operationally, such that every real situation can be classified in terms of
the domain model.

• A domain model should reference the technology, its application field, its
goal, and the overall environment for which the domain model has been
derived.

• A domain model should be marked as being specific to the viewpoint and
the environment from which it has been derived.

At a first glance, the requirements on intuitive and unambiguous representation
of context characteristics seem to contradict each other. The knowledge repre-
sentation scheme presented in the following section is designed such that both
requirements are fulfilled.

5.3 Domain Models

This section introduces a knowledge representation scheme for defining tech-
nology application domains. It fulfils the requirements imposed in the previous
section.

Technology Goal

Context

Task

impacts

applied to achieve

Modelling Technology

Application Domains

10 Copyright  Fraunhofer IESE 1997

Overall structure

A technology domain model consists of four parts (see Figure 3): header, intui-
tive domain model, operationalisation, and operational domain model.

The header relates the domain model to its technology, task, goal, viewpoint,
and environment. The intuitive domain model is a faceted classification scheme
that describes the domain using terms from the language of software profes-
sionals. The operationalisation translates the intuitive domain model into an
operational domain model following the principles of GQM.

Header

A header contains five parts: technology, task, goal, viewpoint, and environ-
ment.

For every repository of domain models, a taxonomy of allowed contents should
be defined for each part of the header. Figure 4 shows some example taxono-
mies. A goal can be stated as combination of a type of software product and a
product quality.

Intuitive domain model

An intuitive domain model has the form of a faceted classification scheme. Each
facet is represented by a domain factor such as “Programming language” or
“Size of project”. Each domain factor is defined through a set of discrete values
(“possible values”). A facet of a concrete domain is characterized through one
or more values (“actual values”) from the set of possible values. A domain factor
together with its actual value(s) is called domain characteristic.

Each domain factor has associated with it a concise definition in natural lan-
guage that expresses the semantics of the factor. For instance, “Size of project
team” can be defined as: “Size of the project team in (a) average number of
person months over the entire duration of the project and (b) structure of the
project team (one-site vs. multi-site). Project team involves all persons who are
designing, implementing, and verifying the software product. Related hardware
or marketing personnel who participate in requirements specification or valida-
tion activities are not considered.”

Operationalisation

The operationalisation maps the intuitive domain factors to concrete domain
factors that belong to the operational domain model (see below). There are
three kinds of mappings:

• Direct operationalisation

Modelling Technology

Application Domains

11Copyright  Fraunhofer IESE 1997

• Functional operationalisation

• Vague operationalisation

Direct operationalisation is to be used for intuitive domain factors that can
already be determined unambiguously for every real context situation. An exam-
ple is “Programming language”.

Functional operationalisation is to be used for intuitive domain factors that
should be decomposed in one or more elementary domain factors. The relation-
ship between the elementary factors and the intuitive ones must be defined in a
numerical or logical function. An example is “Amount of reuse” which can be
calculated from the total number of modules and the number of reused mod-
ules.

Vague operationalisation is to be used for intuitive domain factors that can be
traced down to more elementary factors, but for which the relationship
between the factors can not be defined precisely. Every possible value of such a
domain factor should be defined as linguistic variable using a fuzzy set [Zad94].
An example is “Experience of developers”.

Modelling Technology

Application Domains

12 Copyright  Fraunhofer IESE 1997

Figure 3 Structure of technology domain models.

Header

Technology: Reading by stepwise abstraction
Task: Code verification
Goal: High reliability of software product
Viewpoint: Quality assurance manager
Environment: New Software Solutions Inc.

Intuitive Domain Model

Domain Factor

Operationalisation

Direct Functional Vague

Operational Domain Model

Domain

Actual Value

Possible Values

Domain Factor

Fortran
Ada
C
C++
Java
Smalltalk

Programming
language

Programming …

less than 10 %
less than 40 %
less than 70 %
70 % or more

Amount
of reuse

Percentage of …

low
average
high

Experience
of developers

Number of …

small (one-site)
large (one-site)
multi-site

ep
of project

Size of …

Fortran
Ada
C
C++
Java
Smalltalk

Prog.
lang.

{Positive
cardinal
value}

Total numb.
of modules

{Positive
cardinal
value}

Numb. of
reused mod.

{Positive
cardinal
value}

Years of
experience

Operationalisation Operationalisation Operationalisation

A = (R / T) x 100
Y

Y
Y

Id …

…

…

Characteristic

Definition

Technology Domain Model

… … … …

Modelling Technology

Application Domains

13Copyright  Fraunhofer IESE 1997

Operational domain model

The operational domain model consists of a set of domain characteristics that
with real-world phenomena which can be clearly be determined for every con-
text situation. Usually, the domain factors of an operational domain model are
more elementary than those of the intuitive domain model. The structure of
both kinds of domain models is the same.

Figure 4 Example software engineering taxonomies that can be appropriate for use within technology domain mod-
els: Tasks (cf. [RV95]), products (cf. [RV95]) , product goals(cf. [ISO91]) , and viewpoints (cf. [RV95]).

Product Quality

Quality

- Functionality

- Reliability

- Usability

- Efficiency

- Maintainability

- Portability

Time

Cost

Viewpoints

Software development

Project management

Configuration management

Quality assurance

Tasks

Software lifecycle

Requirements engineering

Design

Coding

Verification

Validation

Project management

Configuration management

Software engineering
measurement

Products

Software product

Software development
process model

Problem description

Requirements description

System Design

Code

Project plan

Configuration plan

Measurement plan

Technology Domain Model

Lifecycle

14 Copyright  Fraunhofer IESE 1997

6 Technology Domain Model Lifecycle

This section presents the targeted lifecycle of technology domain models. First,
the construction of domain models is addressed briefly. Then, it is outlined how
domain models can be used for systematically selecting and reusing technolo-
gies during the planning of software projects and improvement programmes.

Domain models can be derived through various strategies: experiments and
quasi-experiments, case studies, software measurement programmes, subjective
experience reports, theoretical analysis, knowledge acquisition, and others. We
focus on knowledge acquisition backed up with theoretical analysis, because
this is expected to be the most efficient way for achieving useful initial results. A
knowledge acquistion process has been defined that involves open and struc-
tured interviews for operationalising and defining the intuitive domain models.

Knowledge acquisition involves the risk of leading to less accurate results than
empirical method. We expect to avoid this risk by a systematic and theoretically
well-grounded knowledge acquisition method, the conducting of multiple inter-
views with different experts, and finally the careful use of the domain models
within a decision support method that integrates the discerning of a human
decision maker.

Given a repository of domain models available, how can it be used for support-
ing technology selection during project planning? In order to be valuable for
project planning, such a repository should contain domain models for multiple
technologies that share the same task, goal, viewpoint, and environment. Figure
5 depicts the overall process of technology selection using domain models.

Technology Domain Model

Lifecycle

15Copyright  Fraunhofer IESE 1997

Figure 5 Systematic selection of software engineering technologies using domain models.

Initially, task and goal for which a suitable technology is searched are deter-
mined This allows to retrieve the associated operational domain model as well
as all available intuitive domain models from the repository of domain models.
The operational domain model is used to characterize the given context situa-
tion. The intuitive domain model is abstracted from this characterisations. The
actual selection of the technology is performed based on intuitive domain mod-
els. The technology is selected whose intuitive domain model matches best the
intuitive domain model of the current context situation. This is an interactive
procedure, in which a human decision maker is involved and assisted by decision
support techniques such as multiple-attribute decision methods (MADM)
[MP97].

Repository of
technology domain

models

Context
Situation

Task

Goal

Operational
Domain
Model

Intuitive
Domain
Model

all available
intuitive domain models
for given task and goal

Selected Technology

characterize

retrieve

Similarity analysis of
intuitive domain models
using MADM

abstract

select

(an interactive process
involving a human decision
maker)

Discussion

16 Copyright  Fraunhofer IESE 1997

7 Discussion

Related work is currently performed at University of Nebraska-Lincoln by Scott
Henninger and at University of Maryland by Carolyn Seaman, Victor Basili, and
others. Henninger’s approach aims at gaining experiences on technology usage
and domains and formalizing the experiences gradually as knowledge grows
and matures [HLR95] [Hen96]. He uses a case-based repository to collect experi-
ences from software practitioners during the course of their daily work. These
experiences can be used directly in order to complement existing manuals and
handbooks. They also provide the basis for detailed elaboration of and abstrac-
tions from the recorded cases. Henninger emphasizes that experiences are
domain-specific an that their formalization goes hand in hand with a better
understanding and definition of domains.

At University of Maryland, focus is put on identifying and evaluating methods
for eliciting domain information [BBT94] that utilize qualitative and quantitative
techniques of empirical research. The work is being conducted in co-operation
with NASA’s Software Engineering Laboratory at Goddard Space Flight Centre
aiming at identifying similarities between different software development units
that allow for the systematic transfer of software engineering knowledge and
experiences.

The presented schema for modelling application domains of software engineer-
ing technologies is a formalization of the object context of reusable artifacts (in
our case technologies) that has been introduced by Basili and Rombach [BR91].
It supports the retrieval and reuse of technologies following the experience fac-
tory paradigm [BCR94a].

The technology domain modelling schema has been evaluated and shown its
appropriateness using existing data from industrial software measurement pro-
grammes. Currently, the knowledge acquisition method for technology domain
analysis is being refined and tool support for knowledge formalisation is being
developed. It will then be evaluated in a case study with a industrial software
organisation.

The decision support method is also being refined and a software prototype for
supporting technology selection is being developed. It will be realized on top of
a case-based reasoning system that provides a repository of domain models and
functionality for similarity-based retrieval [AB+97]. The interactive procedure for
technology selection will utilise selected multiple-attribute decision methods
[MP97].

Conclusion

17Copyright  Fraunhofer IESE 1997

8 Conclusion

A modelling schema has been presented for describing the application domains
of software engineering technologies. It is designed for being constructed
through knowledge acquisition and used for technology selection during the
planning of software projects and improvement programmes. The modelling
schema has been successfully evaluated using existing data from software mea-
surement programmes.

The lifecycle of domain models has been outlined, covering knowledge acquisi-
tion and decision support for technology selection and reuse. Knowledge acqui-
sition is beneficial for uncovering still implicit knowledge of experienced soft-
ware professionals. Support for technology selection and reuse leads to more
informed decision making and planning in software engineering.

The schema for technology domain modelling is the first step toward automated
decision support for technology selection and reuse. It guides the refinement
and formalisation of technology selection and knowledge acquisition processes.
Repositories and software tools can be designed that implement the models and
processes.

The presented approach to technology domain modeling is expected to provide
us with a repository of technology / context dependencies. This will deepen our
understanding of success factors for technology application. Software engineer-
ing practice can benefit through the systematic selection of technologies for
given tasks and goals. Software engineering research can gain a more compre-
hensive empirical basis for the focused development and tailoring of best prac-
tice technologies.

Acknowledgements

18 Copyright  Fraunhofer IESE 1997

9 Acknowledgements

The author thanks Klaus-Dieter Althoff, Lionel Briand, Frank van Els, Markus
Hoffmann, Oliver Laitenberger, Dietmar Pfahl, Günther Ruhe, and Carsten Tautz
for their comments and the discussions on this paper and the reported work.
This work has been partly supported by the CEC through ESPRIT project no.
23239, “Profes”.

References

19Copyright  Fraunhofer IESE 1997

10 References

[AB+97] Klaus Althoff, Andreas Birk, Christiane Gresse, Carsten Tautz. “CBR
for experimental software engineering”. To appear in: Brigitte Bar-
tsch-Spörl et al. Case-Based Reasonig Technology from Foundations
to Applications. Springer, Berlin, 1997. (in preparation).

[AP91] G. Arango and R. Prieto-Diaz. Domain analysis concepts and
research directions. In G. Arango and R. Prieto-Diaz (Eds.), Domain
Analysis and Software Systems Modeling (pp. 9–33). IEEE Computer
Society, Washington, DC, 1991.

[Ara89] G. Arango. Domain analysis: From art form to engineering disci-
pline. In Proc. of the Fifth International Workshop on Software
Specification and Design (pp. 152–159). IEEE Computer Society,
Washington, DC, 1989

[BBT94] V. Basili, L. Briand, and W. Thomas. Domain Analysis for the Reuse
of Software Development Experiences. In Proc. of the 19th Annual
Software Engineering Workshop, NASA/GSFC, Greenbelt, MD,
December, 1994.

[BCR94a] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experi-
ence Factory. In John J. Marciniak, editor, Encyclopedia of Software
Engineering, volume 1, pages 469–476. John Wiley & Sons, 1994.

[BCR94b] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Goal
Question Metric Paradigm. In John J. Marciniak, editor, Encyclope-
dia of Software Engineering, volume 1, pages 528–532. John Wiley
& Sons, 1994.

[BCR94c] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Mea-
surement. In John J. Marciniak, editor, Encyclopedia of Software
Engineering, volume 1, pages 646–661. John Wiley & Sons, 1994.

[BDR96] Lionel C. Briand, Christiane M. Differding, and H. Dieter Rombach.
Practical guidelines for measurement-based process improvement.
Technical Report ISERN-96-05, Fraunhofer Institute for Experimental
Software Engineering, Sauerwiesen 6, 67653 Kaiserslautern, Ger-
many, 1996.

[BR91] Victor R. Basili and H. Dieter Rombach. Support for comprehensive
reuse. Software Engineering Journal, 6(5):303-316, September,

References

20 Copyright  Fraunhofer IESE 1997

1991.

[GHW95] Christiane Gresse, Barbara Hoisl, and Jürgen Wüst. A process model
for GQM-based measurement. Technical Report STTI-95-04-E, Soft-
ware Technologie Transfer Initiative Kaiserslautern, Fachbereich
Informatik, Universität Kaiserslautern, D-67653 Kaiserslautern,
1995.

[Hen96] Henninger, “Accelerating the Successful Reuse of Problem Solving
Knowledge Through the Domain Lifecycle,” Fourth International
Conference on Software Reuse, Orlando, FL, 1996 , pp. 124-133.

[HLR95] S. Henninger, K. Lappala, A. Raghavendran “An Organizational
Learning Approach to Domain Analysis”, Seventeenth International
Conference on Software Engineering - ICSE-17, (Seattle, WA),
1995, pp. 95-104.

[ISO91] ISO/IEC. Information technology - Software product evaluation -
Quality characteristics and guidelines for their use. ISO/IEC standard
9126. Geneva, Switzerland, 1991

[MP97] M. Molloghasemi, J. Pet-Edwards. Making multiple-objective deci-
sions. IEEE Computer Society Press, Washington, DC, 1997.

[PF87] R. Prieto-Diaz and P. Freeman. Classifying software for reusability.
IEEE Software, 4(1):6–16, January 1987.

[Pri87] R. Prieto-Diaz. Domain analysis for reusability. In Proc of COMPSAC
87: The Eleventh Annual International Computer Software & Appli-
cations Conference (pp. 23–29). IEEE Computer Society, Washing-
ton, DC, 1987.

[RV95] H. Dieter Rombach, Martin Verlage “Directions in Software Process
Research” Advances in Computers, Volume 41, Marvin V. Zelkowitz
(Ed.), Pages 1-63, Academic Press, Boston, MA, 1995.

[SEL94] National Aeronautics and Space Administration. Software measure-
ment guidebook. Technical Report SEL-84-101, NASA Goddard
Space Flight Center, Greenbelt MD 20771, July 1994.

[Zad94] L. Zadeh. Soft computing and fuzzy logic. IEEE Software, 11(6):48–
56, November 1994.

15.08.1997,
triese01497.docinfo

Copyright © 1997, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: Modelling the Application
Domains of Software
Engineering Technologies

Date: August 14, 1997
Report: IESE-014.97/E
Version: 1
Status: Final
Distribution: Public

