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Abstract— In applications such as 3D plane segmentation
of road traffic environments using u/v-disparity-histograms,
line extraction is a key component and has to be as fast
and precise as possible. Hough Transform is a good way
to detect straight lines but specific line segments limited by
start and end points are still to be determined. The Line
Patterns Hough Transform (LPHT) introduced by Yip[1]
directly delivers potential start and end points using the
principle of relative connectivity. But this approach poses
some challenges, too. We modified his idea to use Standard
Hough Transform (SHT) together with relative connectivity
for a fast and robust line segment extraction even in environ-
ments strongly affected by noise and clutter. Furthermore, we
demonstrate the benefit of modified LPHT and relative con-
nectivity for object segmentation in noisy Synthetic Aperture
Radar (SAR) or infrared (IR) data.

Keywords: Line Patterns Hough Transform, LPHT, line detection,
line extraction, foreground background segmentation.

1. Introduction
The Standard Hough Transform (SHT) [2], [3] is a

widely spread method for line segmentation due to its easy
implementation and good performance. It has some draw-
backs such as the slow computation time or high memory
requirements. Over the years, several variations like the
Fast Hough Transform or the Randomized Hough Transform
were introduced to handle these problems. But there are also
some other demanding challenges:

1) Similarity: Maxima in the Hough accumulator close
to each other lead to similar straight lines.

2) Connectivity: Collinear and contiguous points create
maxima in Hough accumulator space, but maybe are
not part of the same line segment [3].

3) Start/Endpoints: Maxima in Hough accumulator rep-
resent straight lines. If line segments are desired, they
have to be extracted subsequently.

In his work, Yip [1] deals with all five mentioned prob-
lems including computation time and memory requirements,
but with a more detailed discussion on the latter three.
He proposes a modified Hough Transform, namely the
Line Patterns Hough Transform (LPHT), to directly extract
potential start and end points of line segments. Therefore, he

uses the principle of relative connectivity of points along a
line segment instead of straight lines. Relative connectivity
is defined as “the relationship of a set of collinear and
equidistant points with regard to contiguity” [1]. The benefits
and problems of his idea will be shown and discussed in
section 2.

With the LPHT, start and end points of areas with strong
relative connectivity can be found. However, these start and
end points are not yet combined to line segments. Thus, the
assignment of start to end points is a sophisticated topic
within the LPHT with no straightforward standard solution.
In our application of 3D plane segmentation, where fast and
precise line segmentation in u-/v-disparity-histograms is the
main challenge, this assignment appeared to be difficult and
not reliable. In section 4 we present a way to use modified
LPHT with regards to relative connectivity in combination
with the SHT to get accurate line segments in real-time
facing the three mentioned problems. This approach has
been successfully applied for line segment extraction in [4]
and [5], but the segmentation process was not described in
detail and, hence, will be the focus of this paper.

In further experiments, we discovered that the princi-
ple of relative connectivity without SHT is also suitable
for object segmentation and performs well especially in
highly noisy and cluttered environments. Synthetic Aperture
Radar (SAR) or infrared (IR) data often suffers from strong
speckle noise. Additionally, SAR data has several more
characteristics, which make precise object segmentation
difficult. We demonstrate the profit of using the modified
LPHT to segment ships in TerraSAR-X satellite images for
maritime surveillance. Some background information about
TerraSAR-X data processing can be found in [6].

Related work
We divide the related work in two topics: Line segment

extraction based on Hough Transform and object segmenta-
tion in IR or SAR image.

Standard Hough accumulator space has two dimensions:
Straight line slope and offset. In [7], line segments are
extracted by extending the Standard Hough accumulator to
a three-dimensional space considering the image’s x-axis
as spatial information, too. Detected maxima in 3D Hough
space correspond to straight lines with already known range
in x-direction for the related line segment. Thus, the line



segment can be cut out from the straight line. In [8],
the Connectivity Weighted Hough Transform (CWHT) is
introduced: Connectivity between two points is calculated
by the number of edge points divided by the number of non-
edge points lying on the line segment between them. This
connectivity is used as weight for the entry of these two
points to the accumulator of Randomized Hough Transform
(RHT). Kamat et al. [9] point out, that maxima in Standard
Hough accumulator have butterfly shape. In the area of this
butterfly shape, information about start and end point is
contained, too. By detecting not only the maximum but also
a window area framing the butterfly shape, start and end
point can be determined. In [10], a detailed introduction
to neighborhood mapping between the input image and
the Hough accumulator space is given. It is possible to
make a straight line segment neighborhood in the image
consistent with a straight line segment neighborhood in the
accumulator. In image processing applications, this mapping
has to be approximated: A line segment in the image can be
represented by a quadrangle in the accumulator space.

For the segmentation of aircraft objects in infrared images,
Li et al. [11] use Otsu thresholding, contour tracking and a
scan line filling algorithm to get object blobs without dis-
turbing holes and gaps. A combination of Otsu thresholding
and Negative Selection algorithm is used in [12] to segment
objects with noisy and blurred edges in infrared images.
In [13], object segmentation in SAR images is discussed. A
Wiener filter is applied to remove speckle noise but preserve
edges. In the follow-up, four segmentation techniques are
compared to each other with the result that CFAR-like meth-
ods and approaches tracing the object boundaries perform
best. Refer to [14] for further information about Constant
False Alarm Rate (CFAR). In [15], a CFAR-algorithm is
applied for initial ship detection in TerraSAR-X images. The
combination of row- and column-wise median filtering is
used to suppress speckle noise. Finally, an iterative algo-
rithm is executed, evaluating the segmentation quality with
convexity measurement of the object blob on the one hand,
and trying to maximize this quality on the other. This way,
typical SAR blooming effects are suppressed.

This paper provides the following organization: The orig-
inal LPHT-algorithm is presented in section 2, while the
proposed modification is introduced in section 3. Example
applications results are demonstrated with line segmentation
in section 4 and with object segmentation in section 5.
Finally, conclusions are given in section 6.

2. The original LPHT-algorithm
The basic ideas of the original LPHT-algorithm as pro-

posed by Yip [1] are presented in this section. Besides
the general concept, a brief description of the principle
of relative connectivity is given. With an evaluation and
discussion we point out the motivation for our proposed
modification.
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Fig. 1: The concept of the original LPHT-algorithm.

2.1 Concept
The concept is displayed in Fig. 1. Different kinds of

input images are possible such as gradient images or u/v-
disparity-histograms (see section 4). The LPHT uses relative
connectivity to emphasize potential start and end point with
a high accumulation value in the Line Patterns Hough
accumulator. Due to the conceptual design of the LPHT,
the spatial dimensions of this accumulator are equal to
horizontal and vertical image dimension. Thus, potential start
and end points in the accumulator are at the same position as
in the input image. This is a difference to the SHT, where
the two spatial dimensions of the Hough accumulator are
given by the number of discretization steps for potential
straight line slopes and offsets. These are for example angle
θ and algebraic distance ρ of the normal parameterization
x · cos θ + y · sin θ = ρ proposed by Duda and Hart [3] to
be used as straight line representation in SHT.

As long as the highest value in the Line Patterns Hough
accumulator exceeds a specific threshold, this peak is in-
terpreted as start point and a well-fitting, related end point
is determined. This start and end point combination is then
deleted from the accumulator and the next global maximum
is searched. Other ways of assigning start and end points
are possible as well: Yip [1] proposed to take all local
maxima exceeding a specific threshold and perform a kind
of multi-hypothesis assignment evaluating all combinations
and choosing the best. This might cause big computational
effort, so we decided to implement the approach shown in
Fig. 1.

2.2 Accumulated relative connectivity
Principal component of the LPTH is the calculation of

relative connectivity. Line Patterns Hough accumulator is the



result of this calculation emphasizing potential start and end
points. High values for relative connectivity are achieved
for a set of collinear, equidistant, and contiguous points and
subsequently added to the accumulator.

For the algorithm description, we closely follow the
connectivity theory of Duda and Hart [3], and Yip [1]. The
algorithm to calculate accumulated relative connectivity is
shown as pseudo-code in [1]. The input image is scanned
pixel by pixel in vertical and horizontal direction for points
potentially belonging to a line segment. If pixel intensity
I(x, y) at image position (x, y) exceeds a specific intensity
threshold t, the pixel is considered for this belonging. This
leads to the binary belonging function B:

B(x, y) =

{
1, if I(x, y) ≥ t
0, if I(x, y) < t.

For a set of collinear and equidistant points Pi(xi, yi)
with i ∈ {1, . . . , n} and ∀i: B(xi, yi) = 1 , the relative
displacement (∆x,∆y) is given by

∆x = x2 − x1
∆y = y2 − y1.

For being a start point, P1 has to satisfy the constraint

B(x1, y1) = 1 and B(x1 −∆x, y1 −∆y) = 0.

The definition of Pn being an end point is done analogously

B(xn, yn) = 1 and B(xn + ∆x, yn + ∆y) = 0.

n is the connectivity number, since

B(xn + ∆x, yn + ∆y) = B(x1 + n ·∆x, y1 + n ·∆y) = 0

and

B(x1 + i ·∆x, y1 + i ·∆y) = 1 ∀i ∈ {0, . . . , n− 1}.

To store this found relative connectivity, n is entered to
the Line Patterns Hough accumulator at start and end point
position (x1, y1) and (xn, yn).

2.3 Discussion
A big set of consecutive equidistant and collinear points

causes high accumulation values. Since the considered rela-
tive displacement ∆ between points is gradually incremented
during processing, small gaps in the input data can be
handled when ∆ gets bigger. This makes the approach robust
even in noisy and cluttered environments. But considered
relative displacement has to be limited by a maximum
threshold ∆max to avoid noise in the accumulator. Weak
relative connectivity caused by small connectivity number n
causes noise in the accumulator, too, but can be suppressed
easily by the accumulation constraint n > m with m being
the threshold for minimum accumulation. Three parameters
are affecting the quality of the relative connectivity strongly:

1) Intensity threshold t:
This is the most important parameter as it is actuating
the number of potential line segment points.

2) Maximum relative displacement ∆max:
As already mentioned, this parameter is used to avoid
split line segments. On the other hand, it can cause
merged line segments, if it is getting too big. Thus,
∆max should be chosen small in case of weak noise
and bigger for strong noise.

3) Minimum accumulation threshold m:
In our experiments, we simply set m = 2, because we
worked on noisy data and wanted to keep all available
connectivity information.

The estimated complexity for calculating relative connec-
tivity with this algorithm is O(M · N · logM · logN) for
an input image of size M × N . The computational effort
is closely related to the number of potential line segment
points. Major problem of the LPHT is the assignment of
related start and end points. In input images, where many
line segments are expected, the assignment of start and end
points can lead to confusion and high computation time.
However, SHT will be harmed in that case either. But with
our modification, we found a way to handle such situations.

3. The proposed modification
In the original algorithm for accumulated relative connec-

tivity, two-dimensional input images are processed, while
in our modification one-dimensional coverage histograms
coming from the SHT are considered. Thus, main component
of our modification is the combination of SHT and LPHT
to benefit from their advantages: Getting straight lines but
no start/end points from SHT and getting start/end points
without danger of confusion in 2D Line Patterns Hough
accumulator from LPHT. This way, not only the computation
time is reduced, but also the assignment of start and end
points is easier.

3.1 Concept
In Fig. 2, the concept of our modification is shown. SHT

is used to calculate the Standard Hough accumulator of
the input image. If the global maximum exceeds a specific
threshold, the related straight line is considered for the
further steps: A coverage histogram is initialized, where the
number of bins is equal to the length of the straight line.
For each point of the straight line a coverage area in the
input image is scanned and for each found, covered point,
the related histogram bin is incremented. Fig. 4 shows the
idea of covered points and coverage area (ε region in red).

Now, the LPHT is calculated only for this coverage his-
togram. Just the two highest accumulation values (maxima)
are taken as start and end point for the line segment. In a
final step, the covered points in the input image are deleted
from the Standard Hough accumulator to avoid the problems
of similarity and connectivity for the next cycle.
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Fig. 2: The concept of the modified LPHT-algorithm in
combination with SHT.

3.2 Modified LPHT and discussion
The modified algorithm for calculation of accumulated

relative connectivity is presented as pseudo-code in algo-
rithm 1. While the original algorithm was processing two-
dimensional input images, the modified version works on
one-dimensional input arrays such as coverage histograms.
Hence, the Line Patterns Hough accumulator is much smaller
as in the original algorithm, since it has the same size as
the coverage histogram. The complexity has been reduced
to O(N · logN) with N being the number of bins in the
histogram. Furthermore, the search for fitting start and end
points has been reduced from 2D to a 1D search problem.

The computational effort for calculating the SHT to get
the best straight line is comparable to the LPHT without
start/end point assignment. But determining line segments
in coverage histograms is much easier and faster than in the
input image even with respect to deletion of covered points
from the Standard Hough accumulator.

With our proposed modification it is possible to get precise
line segments in real-time even when processing input data
severely affected by noise. Some examples are given in the
following sections about applications.

4. Line segmentation
The proposed modification of LPHT will now be used

segment 3D planes in point clouds coming from a Time
Of Flight (TOF) camera. In most cases, plane segmenta-
tion in 3D point clouds under the occurrence of clutter
is achieved by considering planes parallel to the image
plane only. Therefore, many algorithms filter noisy image

Algorithm 1 Modified accumulation of relative connectivity.
/* let H be the coverage histogram */
/* let N be the number of histogram bins */
/* let t be the histogram bin value threshold */
/* let n be the number of found collinear points */
/* let m be the accumulator acceptance threshold */
/* let A be the Line Patterns Hough accumulator */
for x1 = 1 to N do

if H(x1) ≥ t then
for x2 = x1 + 1 to x1 + ∆max do

if H(x2) ≥ t then
dx = x2 − x1
if H(x1 − dx) < t then

/* found start point */
xn = x2
n = 2
ready = 0
while ready = 0 do

if H(x1 + dx) ≥ t then
/* found another line point */
n = n+ 1
xn = xn + dx

else
/* found end point */
ready = 1

end if
end while
if n ≥ m then

/* found enough line points */
/* enter start point to accumulator */
A[x1] = A[x1] + n
/* enter end point to accumulator */
A[xn] = A[xn] + n

end if
end if

end if
end for

end if
end for

data using local homogeneity criterion, as presented in [16].
Other algorithms make usage of 2D image segmentation
algorithms to segment depth points, e.g., unseeded region
growing [17]. Our presented 3D point cloud segmentation
algorithm is more related to stereo image processing, in
particular disparity image segmentation using disparity his-
tograms. This approach was first introduced by [18] for
road plane extraction. In [19], the proposed method was
extended for robust object detection as well. Even in noisy
and cluttered environments, these algorithms provide reliable
segmentation of planes which are parallel to one of the image
plane axes.

An example for disparity histograms is shown in Fig. 3.
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Fig. 3: Color coded range image and corresponding u-/v-
histograms. 1/d is the reciprocal distance value.

In the follow-up, we will continue calling them disparity
histograms as they have been named in the literature, unless
we use reciprocal distance values instead of disparities. In
the color coded range image, warm colors correspond to near
distances and cold colors to far distances. The u-/v-disparity-
histograms are generated by considering each pixel in the
range image and accumulating its reciprocal distance value
in each histogram along the u-/v-axis of the image coordinate
system respectively. Thus, the 3D plane segmentation prob-
lem can be reduced to a 2D line segmentation problem in the
resulting histogram images. Line segmentation is performed
for each histogram image respectively. Noise in the range
image causes noise in the histograms and potentially leads
to undesirably split and merged line segments. With modified
LPHT we aim to handle this problem.

4.1 Line segment extraction
Fig. 2 depicts the concept of line segment extraction.

With SHT we generate the Hough accumulation space,
where the highest values define strong straight lines in the
histogram image. The best line segment of the strongest
straight line is extracted using proposed 1D LPHT. After-
wards, the histogram pixels covered by the line segment
are removed from both the Hough space and the histogram
image. The algorithm continues finding and analyzing the
next maximum in the Hough space, until a certain abort
criterion is satisfied.

4.1.1 Hough Transform
After histogram construction, straight lines must be ex-

tracted in both u- and v-disparity-histogram images. Thereby
we use SHT. By definition, no vertical lines can exist in the
u-disparity-histogram image. So we are able to narrow the
Hough space’s dimension to search for straight lines only for
angular values θ = [0 + ε, π − ε]. Likewise, no horizontal

lines can exist in the v-disparity-histogram image, so the
Hough space dimension is limited to θ =

[
−π2 + ε, π2 − ε

]
.

The histogram values can be projected directly into the
Hough space. By weighting the Hough transform with
the histogram’s accumulation values, strong points in the
histogram cause higher peaks in the Hough space:

ρu(θ) =

(
u cos θ +

1

d
sin θ

)
acc
[
u,

1

d

]
(1)

ρv(θ) =

(
1

d
cos θ + v sin θ

)
acc
[

1

d
, v

]
(2)
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Fig. 4: Line pattern analysis using coverage histogram and
modified LPHT.

4.1.2 Line pattern analysis
Maximum values in the calculated Standard Hough spaces

correspond to strong lines in the histogram images. By
definition, lines given by Hough parameters (ρ, θ) do not
have start or end points. Hence, the next step is to extract
line segments. For this we calculate the coverage histogram
considering only the points in the u-(v-)histogram image
matched by the straight line defined by (ρ, θ), and some
ε region (see Fig. 4).

All values in this ε region are accumulated per column
(row) in the u-(v-)disparity-histogram image, so that each
column (row) along the straight line has its own coverage
value. Next, we apply the modified LPHT by calculating
relative connectivity along the 1D coverage histogram. In
the top left image of Fig. 4, the line mask is shown
as a red line, while the three images on the right show
the coverage histogram and the calculation of accumulated
relative connectivity along the coverage histogram. The red
circle marks the resulting line segment.

After line segment extraction, the points belonging to the
segment are removed from both the Hough space and the
histogram image. This allows the segmentation method to
be sensitive even for small but important line segments, as
seen in Fig. 5.

The computation time is between 40 and 60ms for
segmentation of all objects in u- and v-disparity-histogram
images. The TOF image has a size of 176× 144 pixels.
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Fig. 5: Extracting and removing line segments from Hough
space and histogram image until abort criterion is satisfied.

5. Object segmentation

In the follow-up, we present a method for object segmen-
tation using only the modified LPHT without SHT. We use
it to extract contours of maritime objects in TerraSAR-X
images. Synthetic Aperture Radar (SAR) is an imaging
technique using radar waves. Strong reflections are displayed
as high intensity values and weak reflections as low intensity
values. Hence, ships appear in the image as bright, elongate
blobs. TerraSAR-X is a German satellite giving SAR images
in high resolution of up to 1.5 × 1.5m per pixel. In our
experiments, we used resolution of 3× 3m per pixel. Thus,
it is possible to cover a bigger area in one image, which
is an important aspect for maritime surveillance. In a first
step, object hypotheses are extracted using CFAR algorithm.
Each hypothesis is given in the center of a region of interest
(ROI) image of 300×300 pixels. They are the input images.

Precise object segmentation is desired to accurately esti-
mate size and orientation of ships. Furthermore, segmenta-
tion quality is affecting a subsequent classification step to
distinguish between ships and clutter objects significantly as
we already found out in [20]. However, it is a difficult task as
SAR data is heavily influenced by speckle noise. In addition,
object appearance can change very much from image to
image depending on many factors such as incidence angle of
the sensor, ship orientation, ship motion, ship consistence,
and weather. Typical SAR noise effects besides speckle noise
are paraxial blooming, smearing, and weak contrast. These
effects are shown in the lower row of Fig. 7.

clustering of edge pixelsLine Patterns Hough accumulator segmentation result

mod. LPHT in four different directions

Fig. 6: Scanning the SAR image with modified LPHT.

5.1 Proposed segmentation method
Typical speckle noise reduction e.g., by using median

filter is not necessary for our approach. The SAR image
is scanned row-wise using the modified LPHT-algorithm.
Resulting relative connectivity is stored in an accumulator
of same size as the input image like in original LPHT. The
important intensity threshold parameter t is determined data-
driven by using a quantile in the ROI’s intensity histogram.
This is possible as expected minimum and maximum ship
sizes are barely known. By considering each row separately,
we aim to find either low relative connectivity in case of no
object or high relative connectivity in case of object. Maxima
will arise in the area of the object contour even if small gaps
exist in the object blob. Scanning is not done horizontally,
but diagonally to suppress paraxial blooming. Due to the
principle of relative connectivity, ascending intensity values
create clear maxima in the accumulator, while descending in-
tensities cause slight smearing. To suppress this effect, row-
wise scanning is performed four times diagonally in different
directions as demonstrated in Fig. 6. LPHT emphasizes the
object structure significantly as seen in the Line Patterns
Hough accumulator. For object contour segmentation, it is
sufficient now to use a Canny-like edge filter directly on
the accumulator and a standard clustering algorithm on the
resulting gradient image.

Some examples are shown in Fig. 7, where object seg-
mentation especially in situations of strong noise and clutter
is pointed out. The runtime is between 50 and 60ms per
object. For satellite applications this is absolutely suitable.

6. Conclusions
Line Patterns Hough Transform (LPHT) originally pro-

posed by Yip [1] can be used to directly extract potential
start and end points of line segments from images. It is using
the principle of relative connectivity between line segment
points. However, it can be difficult to assign these found
start and end points to each other especially in noisy and



Fig. 7: Examples for object segmentation in noisy and
cluttered SAR images using modified LPHT.

cluttered environments. We propose a combination of Stan-
dard Hough Transform (SHT) and LPHT. The original LPHT
is modified to make it work with reduced complexity, i.e.
on one-dimensional coverage histograms. These coverage
histograms are calculated along straight lines detected with
SHT by accumulating all covered line segment points in an
ε region. Thus, the problem of start/end point assignment
has been reduced significantly. On the same time, relative
connectivity makes this approach robust against strong noise
and clutter. This is demonstrated in an example application
of plane segmentation in 3D point clouds. Furthermore,
modified LPHT can be used without SHT for precise object
segmentation in noisy SAR and IR data.

Acknowledgement
TOF image segmentation was partially supported by Min-

istry of Economic Affairs of Baden-Württemberg, Germany.
TerraSAR-X segmentation was supported with funds from
German Bundesministerium für Wirtschaft und Technologie
(BMWi) and DLR Space Agency. The TerraSAR-X images
have been provided by DLR and infoterra GmbH.

References
[1] R. K. K. Yip, “Line Patterns Hough Transform for Line Segment

Detection”, in Proceedings of the 1994 IEEE Region 10’s Ninth
Annual International Conference (TENCON’94). Theme: Frontiers of
Computer Technology, pp. 319-323, August 22-26, 1994.

[2] P. V. C. Hough, “Method and Means for Recognizing Complex Pat-
terns”, U.S. Patent 3,069,654, 1962.

[3] R. O. Duda, P. E. Hart “Use of the Hough Transform to Detect Lines
and Curves in Pictures”, Communications of the ACM, vol. 15, no. 1,
January 1972.

[4] M. Teutsch, T. Heger, T. Schamm, J. M. Zöllner, “3D-Segmentation
of Traffic Environments with U/V-Disparity supported by Radar-given
Masterpoints”, in Proceedings of the 2010 IEEE Intelligent Vehicles
Symposium, San Diego, CA, USA, June 21-24, 2010.

[5] T. Schamm, A. Rönnau, J. M. Zöllner, “Fast 3D Time of Flight Data
Segmentation using the U-V-Histogram Approach”, in Proceedings
of the Third International Conference on Intelligent Robotics and
Applications (ICIRA), Shanghai, China. November 10-12, 2010.

[6] G. Saur, S. Estable, K. Zielinski, S. Knabe, M. Teutsch, M. Gabel, “De-
tection and Classification of manmade Offshore Objects in TerraSAR-X
and RapidEye Imagery: Selected Results of the DeMarine-DEKO
Project”, in Proc. of IEEE OCEANS, Santander, Spain, June 6-9, 2011.

[7] J. Cha, R. H. Cofer, S. P. Kozaitis, “Extended Hough transform for
linear feature detection”, Pattern Recognition, vol. 39, issue 6, 2006.

[8] M. C. K. Yang, J.-S. Lee, C.-C. Lien, C.-L. Huang, “Hough Transform
Modified by Line Connectivity and Line Thickness”, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 19, no. 8,
August 1997.

[9] V. Kamat, S. Ganesan, “A robust Hough transform technique for
description of multiple line segments in an image”, in Proceedings
of the 1998 International Conference on Image Processing (ICIP),
Chicago, IL, USA, October 4-7, 1998.

[10] S. Du, B. J. van Wyk, C. Tu, X. Zhang, “An Improved Hough
Transform Neighborhood Map for Straight Line Segments”, IEEE
Transactions on Image Processing, vol. 19, no. 3, March 2010.

[11] J. Li, Z. Long, Y. Li, R. Tang, “A Modified Segmentation Algo-
rithm for Infrared Image”, in Proceedings of the 2010 International
Conference on Optoelectronics and Image Processing (ICOIP), Haiko,
Hainan, China, November 11-12, 2010.

[12] D. Fu, X. Wang, X. Han, “An Extraction of Infrared Occluded-object
Based On Maximum Variance and Negative Selection”, in Proceedings
of the 2008 International Workshop on Education Technology and
Training & 2008 International Working on Geoscience and Remote
Sensing, Shanghai, China, December 21-22, 2008.

[13] P. Subashini, M. Krishnaveni, S. Kumar Thakur, “Coupling optimal
method of segmentation with restoration for target detection in SAR
images”, in Proc. of The 2nd International Conference on Computer
and Automation Engineering (ICCAE), Singapore, Febr. 26-28, 2010.

[14] D. J. Crisp, The state-of-the-art ship detection in synthetic aperture
radar imagery, Research Report DSTO-RR-0272, Defence Science and
Technology Organisation, Edinburgh, Australia, 2004.

[15] M. Gabel, Untersuchung von Schiffssignaturen in TerraSAR-X-
Bildern, diploma thesis, Universität Karlsruhe (TU), Germany, 2009.

[16] B. Fardi, J. Dousa, W. Gerd, B. Elias, A. Barke, “Obstacle detection
and pedestrian recognition using a 3D PMD camera”, in Proc. of 2006
IEEE Intelligent Vehicles Symposium, Tokyo, Japan, June 13-15, 2006.

[17] T. Schamm, J. M. Zöllner, S. Vacek, J. Schröder, R. Dillmann, “Ob-
stacle detection with a photonic mixing device-camera in autonomous
vehicles”, International Journal of Intelligent Systems Technologies and
Applications, vol. 5, pp. 315–324, November 2008.

[18] R. Labayrade, D. Aubert, J.-P. Tarel, “Real time obstacle detection in
stereovision on non flat road geometry through ”v-disparity” represen-
tation”, in Proceedings of the 2002 IEEE Intelligent Vehicle Symposium,
pp. 646–651, Versailles, France, June 17-21, 2002.

[19] Z. Hu, F. Lamosa, K. Uchimura, “A complete u-v-disparity study for
stereovision based 3d driving environment analysis”, in Proceedings
of the Fifth International Conference on 3-D Digital Imaging and
Modeling (3DIM), pp. 204–211, Ottawa, Canada, June 13-16, 2005.

[20] G. Saur, M. Teutsch, “SAR signature analysis for TerraSAR-X-based
ship monitoring”, in Proc. of SPIE Vol. 7830, Image and Signal
Processing for Remote Sensing, Toulouse, France, Sept. 20-22, 2010.


