
Accepted manuscript; © IEEE Journal of Photovoltaics; final version available at DOI:10.1109/JPHOTOV.2018.2870532

IEEE JOURNAL OF PHOTOVOLTAICS 1

Review of Statistical and Analytical Degradation
Models for Photovoltaic Modules and Systems

as Well as Related Improvements
Sascha Lindig , Ismail Kaaya, Karl-Anders Weiß, David Moser , and Marko Topic

Abstract—In this work, we investigate practical approaches of
available degradation models and their usage in photovoltaic (PV)
modules and systems. On the one hand, degradation prediction
of models is described for the calculation of degradation at system
level where the degradation mode is unknown and hence the physics
cannot be included by the use of analytical models. Several statis-
tical models are thus described and applied for the calculation of
the performance loss using as case study two PV systems, installed
in Bolzano/Italy. Namely, simple linear regression (SLR), classical
seasonal-decomposition, seasonal- and trend-decomposition using
Loess (STL), Holt–Winters exponential smoothing and autoregres-
sive integrated moving average (ARIMA) are discussed. The per-
formance loss results show that SLR produces results with highest
uncertainties. In comparison, STL and ARIMA perform with the
highest accuracy, whereby STL is favored because of its easier im-
plementation. On the other hand, if monitoring data at PV module
level are available in controlled conditions, analytical models can be
applied. Several analytical models depending on different degrada-
tions modes are thus discussed. A comparison study is carried out
for models proposed for corrosion. Although the results of the mod-
els in question agree in explanation of experimental observations,
a big difference in degradation prediction was observed. Finally,
a model proposed for potential induced degradation was applied
to simulate the degradation of PV systems maximum power in
three climatic zones: alpine (Zugspitze, Germany), maritime (Gran
Canaria, Spain), and arid (Negev, Israel). As expected, a more
severe degradation is predicted for arid climates.

Index Terms—Degradation models, performance loss, photo-
voltaic (PV) modules, PV systems, service life prediction.

I. INTRODUCTION

B ECAUSE of high costs and limited efficiencies, photo-
voltaic (PV) applications were exclusively used for space
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applications until the 1970’s and 1980’s. In the beginning of
the 1970’s, the dramatic price increase for fossil fuels and an
energy uncertainty because of the oil crisis raised the aware-
ness for a need of change in the energy supply [1]. Since then,
the interest in renewable energies and solar energy in particular
has increased, which in turn led through scientific achievements
to a steady reduction in installation costs and performance im-
provements of terrestrial PV systems. In the late 1990’s, the
first large-scale PV systems were installed [2]. Nowadays, PV
module manufacturers guarantee a performance reduction of no
more than 20% within 25 years of operation at standard test
conditions (STC) (modules tested indoor under TSTC = 25 ◦C,
GSTC = 1000 W/m2, AM 1.5) and even started to guarantee a
maximum degradation of 1%/year for the first ten years. Never-
theless, the actual performance throughout the lifetime is quite
uncertain and unpredictable. Laboratory or field determination
of PV modules service life under real environmental conditions
requires an unacceptable length of time.

PV systems are affected by continuous cycles of temperature,
humidity, irradiation, mechanical stress, and soiling. These en-
vironmental mechanisms cause different degradation modes to
take place within a PV module and reduce the performance
of the system. Therefore, it is necessary to develop diagnostic
techniques, lower the performance uncertainty, and predict the
behavior of PV systems with higher accuracy.

Commonly two approaches, statistical and analytical meth-
ods, are used for evaluating degradation rates of PV modules
and systems. This report describes quantitative degradation and
service lifetime models currently used for PV modules and rec-
ommends further improvements. A review of available models
and improvements is crucial for accurate life-time calculations
of future energy PV systems. The first part of this work focuses
on available metrics of variables and the most common statis-
tical models to retrieve the performance loss based on these
metrics. The second part deals with analytical models, which
pinpoint specific degradation modes and their possible impact
on the performance of PV systems.

We believe that a more precise prediction of PV sys-
tem performance and the capability of linking performance
losses to relevant degradation modes will increase public trust
in solar energy. Additionally, it will help stakeholders such
as investors, PV plant owners, operation and maintenance,
and insurance companies as well as other parties involved
to favor more beneficial and accurate business models and
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to more efficiently operate and maintain PV systems in the
future.

II. PV MODULES DEGRADATION MODES

Degradation modes are effects that irreversibly degrade the
performance of a PV module/system or may cause safety prob-
lems [3]. A great number of different degradation modes are
observed in PV modules, both under outdoor operation and in-
door testing. The most commonly observed degradation modes
include [3]: light induced degradation (LID), solder fatigue
failure, silver grid finger delamination, bypass diode failure,
delamination, cell cracks, corrosion, polymeric discoloration,
ultraviolet (UV) degradation of the cell, polymeric mechani-
cal failure, and potential induced degradation (PID). Each of
these degradation modes has different causes and is triggered
by different stress factors. Apart from the modes listed, differ-
ent technical risks, which affect the PV performance and the
resulting costs, were found by Moser et al. [4]: glass breakage,
snail track, defective backsheet, hotspot, soiling, overheating,
and failure junction box. An occurring degradation mode can
have an increasing impact on the PV performance over time. It
develops either in isolation or in combination with other degra-
dation modes or technical risks and might lead to the failure of
a PV module. The term failure for electrotechnical devices is
defined as “the termination of the ability of an item to perform
a required function” [5]. While this definition serves as a clear
guideline for most devices, the failure of a PV component is
somewhat more complex. For example, although a PV module
can still be technically usable, its power output might be too low
to verify the continuation of its operation from an economical
point of view. Within the scope of this work, a failure is defined
as the necessity to replace a PV component, because of its ulti-
mate, economic or safety-related failure. A clear understanding
of the definition of a degradation mode is also still a challenge
and stress should be put on common nomenclature to define
the same degradation mode with the same terminology. For the
moment, accelerated aging tests are being utilized in the study
of some of these modes. However, there is no proof/evidence
that the results from these tests reflect what exactly happens to
the modules in outdoor conditions.

III. DEGRADATION MODELING

Degradation models are used to relate a test item’s estimated
failure time with the wear and tear during its usage period.
The failure time is defined as the end of the lifetime of a PV
component because of its failure. Degradation models help to
quantify the performance loss PV modules and systems are
experiencing under operation. Degradation in PV systems is the
reduction in efficiency with which a PV system is converting
light of the sun into electricity over time [6]. This appears at
all levels of a PV system, be it at cell, module or system level.
To model PV module degradation modes, the knowledge of
internal loads like temperature, chemical conditions, irradiance,
and mechanical loads in/on the PV module is required. One very
important part is to convert external loads to internal loads of
the module.

Models for degradation are generally either data-driven
or derived from physical principles via stochastic processes.
Although data-driven models are more commonly applied to
analyze degradation data, viewing degradation through stochas-
tic processes helps researchers to theoretically characterize the
degradation process. Therefore, a coupling of both models could
enhance the knowledge of what is happening in PV systems.
Data-driven models help to examine the overall performance
loss of a system over time and by using analytical models
conclusions of what triggered these losses might be derived.

A. Data-Driven Models

Data-driven models are often empirical employed to estimate
degradation rates based on statistical analysis of given data sets.
The goal of the statistical analysis is to calculate the trend of
the PV performance time-series and to translate the slope of the
trend to an annual loss rate, in units of %/year [7]. Although these
models can provide consistent performance loss rates (PLRs),
which are useful for data extrapolation and service life predic-
tions, they do not directly provide evidence for the degradation
modes taking place in the module. Other effects such as diffuse
soiling, snow, shading or module mismatch have also a direct
impact on the performance trend. Therefore, it is more accurate
to talk about a PLR rather than a degradation rate.

B. Analytical Models

Analytical models are based on the physical/chemical theo-
ries of a specific degradation mode. These models represent the
mechanism involved in complex physical/chemical processes.
For well-known PV module degradation modes, several analyt-
ical models to forecast PV module degradation are available.
All these models are based on the principle of understanding
the underlying process, but they are still only heuristic models,
which do not include the influence of material parameters.

In the following chapters, we discuss the most commonly
used performance loss models.

IV. PERFORMANCE LOSS MODELS

Before applying any statistical model, the observed data are
generally treated using filtering techniques depending on factors
like irradiance or standard deviation ranges and subsequently
averaged or added up over certain time periods. This step is
performed as data preparation to minimize outliers and noise
and to remove values corresponding to inhomogeneous irradi-
ance conditions on the irradiance sensor and the PV system [8].
Afterwards, a performance metric can be applied to a pretreated
data set and the PLR is calculated by using statistical methods.
These steps are necessary to minimize seasonal oscillations and
to eliminate outliers resulting in the reduction of the overall un-
certainty in the estimation of the PLR. In the following, a short
overview of the most common performance metrics as well as
statistical methods is presented. In Section IV-C, a comparison
of the statistical models in question is performed on a case study
with data of two PV systems installed at the airport of Bolzano
in Italy.
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A. Performance Metrics

Statistical performance loss models need to be applied on cer-
tain PV system performance-rating parameters. The parameters
are expressed through performance metrics, which are mea-
sured or calculated in a specified interval. Performance metrics
are ideal to compare the performance of different systems in
different climates. They can be categorized into three different
groups. These are: 1) electrical parameters directly taken from
I–V curves recorded either outdoor or indoor and corrected to
STC, 2) empirical metrics such as PVUSA [9], the 6-k-values
performance model (applied in the PVGIS online tool) [10] or
the Sandia models [11], and 3) normalized and/or corrected met-
rics such as performance ratio [7]. Great care has to be taken
when selecting performance metrics. The choice as well as pos-
sible corrections such as corrected power for temperature and
irradiance [12] will influence the results. Therefore, the out-
come of a certain performance loss model applied on a specific
performance metric needs to be evaluated and put into context
to understand the validity of the results.

1) Evaluation of I–V Curves: Electrical parameters of the
I–V curve include power, voltage, and current at the maximum
power point, the open circuit voltage, and the short circuit cur-
rent. With these parameters, it is possible to calculate the fill
factor. A PV systems performance loss is observable when com-
paring the values of periodically performed measurements of
systems in operation [13]. If an unexpected decline in one of
the parameters appears, the affected modules can be examined
indoors or outdoors, for example, with electroluminescence or
thermal imaging cameras. For detailed characterization, indoor
measurements can lead to the most accurate results. However,
removing PV modules from the field is time consuming with
the possibility of damaging the modules during transport and
handling. These considerations need to be taken into account
to decide which strategy to follow depending on the extent and
the complexity of the detected problem and which stakeholders
are involved. For example, for insurance claims, outdoor mea-
surement may be sufficient while certified indoor measurements
could be required for PV module warranty claims.

2) Empirical Metrics: The empirical metrics presented are
models, which aim to obtain performance data while taking
into account the dependence between the PV system output and
prevailing outdoor conditions [9]. The idea is to receive PV
system performance parameter like the efficiency or the maxi-
mum power through the application of formulas, which consist
of empirical coefficients and weather data. Two widely used
models are the 6-k-values performance model and PVUSA.
The 6-k-values performance model describes system perfor-
mance through the relative efficiency ηREL correlated to STC as
a function of in-plane irradiance GPOA and module temperature
Tmod [14]

ηREL(G′, T ′) = 1 + k1ln(G′) + k2ln(G′)2 + k3T
′

+ k4T
′ln(G′) + k5T

′ln(G′)2 + k6T
′2. (1)

Equation (1) has to be fitted to experimental data to obtain the
empirical coefficients k1 − k6. Hereby, the normalized in-plane
irradiance G′ = G/GSTC and the normalized temperature T ′ =

Tmod − TSTC are considered. An average performance model for
each PV type is considered and the k-coefficients are calculated
using data from different modules of the same PV technology
[10], [14]. This model creates a matrix instead of a single well-
defined value for the maximum power point.

Within the PVs for utility scale and applications project, an-
other widely used model, PVUSA, was developed [15], [16].
While calculating corrected power values, it is assumed that
the PV system current primarily depends on irradiance and the
voltage on module temperature Tmod. Tmod in turn is strongly de-
pendent on ambient temperature, irradiance, and wind speed. A
regression of the systems maximum power output is performed
against PVUSA test conditions (PTC) by

PMPP = GPOA(A + BGPOA + CTam + DuW )

(GPTC = 1000 W/m2, TPTCA M
= 20 ◦C, uW = 1 m/s). (2)

First, measurements at high irradiance values (G ≥ 800 W/m2)
in the plane of array (POA) are selected and fitted to calculate
monthly values for the coefficients A, B, C, and D, applying
multivariate regression. Afterwards, the coefficients are used to
receive monthly ratings at PTCs (substituting meteorological
data values). It should be noted that this methodology is op-
timized for crystalline silicon PV. An adapted version of the
equation including another coefficient E was developed to con-
sider thin-film technologies [7], [9].

3) Normalized and Corrected Metrics: Normalized and/or
corrected metric parameters are useful when comparing dif-
ferent PV technologies in different climates. Here, PV system
performance data are either normalized to comparable, unit-free
metrics or corrected in respect to outdoor conditions. One of the
most commonly used metrics is the performance ratio (PR),
which is an adequate indicator for the quality of a PV installa-
tion. The PR is calculated by dividing the final (or array) yield
Yf (a) (depending if ac- or dc-power is evaluated) with the ref-
erence yield Yref [17]. The yields are ratios of measured values
of power or irradiance with values obtained under STC

PR =
Yf

Yref
=

PAC/PSTC

GPOA/GSTC
(3)

PRDC =
Ya

Yref
=

PDC/PSTC

GPOA/GSTC
. (4)

When studying the PV performance, it is advisable to use dc-
related performance metrics in order to eliminate possible influ-
ences because of inverter degradation or misbehavior.

A promising correction method, presented by Belluardo et al.
[18], evaluates the irradiance and temperature corrected power
under STC conditions as follows:

PT ,Gcorr = Pmax
GSTC

G

1
1 + γ(Tmod − TSTC).

(5)

Here, γ is the temperature coefficient of the PV systems power
at STC, which is stated on the datasheet. Since γ is retrieved
at 1000 W/m2 and highly temperature dependent, a preliminary
data filtering, similar to the filter applied in PVUSA, should be
performed to assure the accuracy of the temperature coefficient
in use.
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Methods, which correct absolute values like power, voltage
or current, can be additionally normalized by dividing the cor-
rected value by the nominal installed value under STC. This step
simplifies a possible comparison between different PV systems.
A clear advantage of these rating techniques is the possibility to
evaluate the performance loss in any desired time resolution.

B. Purely Statistical Methods

Statistical analysis methods are used to retrieve trends of per-
formance time-series. These time-series are some sort of perfor-
mance metrics, which are discussed in Section IV-A. The slope
of a trend function can be interpreted as the PLR. It is possible
to accumulate these ratings for any given time resolution into an
easily comparable annual aging value. The difficulty is to find
a good estimation of the PLR since the application of a certain
statistical method on a performance metric and a defined filter
determines the result significantly. Statistical analysis methods
can be divided into model-based methods like linear regression,
classical seasonal decomposition (CSD), Holt–Winters (HW)
exponential smoothing or autoregressive integrated moving av-
erage (ARIMA) and nonmodel-based methods such as seasonal
and trend decomposition using Loess (STL). In the following,
these commonly used methods are described.

1) Simple Linear Regression (SLR): Performance metrics of
any kind are most commonly applied on linear regression be-
cause of the straight-forward approach. The fitted trend line is
given by

ŷ = at + b. (6)

Hereby, a represents the gradient and b is the intercept with the
y-axis. The SLR-algorithm uses the method of least squares. The
idea of this method is to sum up squared values of the difference
between trend line and actual measurement points and to find
the minimum value for this sum. Squares are used to add up only
positive numbers and to put more weight on more widely scat-
tered residuals. This method overemphasizes outliers as well as
seasonal variations and can result in large uncertainties. Because
of that, performance metrics, which reduce seasonal oscillation
should be applied if the SLR-algorithm is used.

2) Classical Seasonal Decomposition: Another commonly
used statistical model is CSD. By using CSD, the seasonality
and a certain irregular component are separated from a set of
measured time-series data to receive a clear trend over time.
This technique helps to get a fast idea of a performance loss
of the system in question. The trend is obtained by applying a
centered moving smoothing on a time-series with a certain sea-
sonal period m. When using monthly data, the seasonal period is
usually set to 12. Here, the first value is computed by averaging
over the first 12 months. Due to the 12-month centered moving
average, 6 months at the beginning and 6 months at the end of
the observation period are not included in the computation. To
calculate the seasonality, the trend is subtracted from the mea-
sured data and each month throughout the years of surveillance
is averaged. What remains at the end is an irregular component
[19]. Depending on the stability of the seasonal component,
an additive or a multiplicative model is used as shown in the

equations below

ŷ = Tt + St + et , ŷ = Tt × St × et . (7)

Here, T is the trend, S the seasonality, and e the remaining part
of the data [7].

3) HW Seasonal model: The HW seasonal model contains
a forecast equation and three smoothing equations as shown
below

ŷt+1|t = lt + bt + st−S+1 (8)

lt = A(yt − st−S ) + (1 − A)(lt−1 + bt−1) (9)

bt = B(lt − lt−1) + (1 − B)bt−1 (10)

st = C(yt − lt−1 − bt−1) + (1 − C)st−S . (11)

Here, lt is the level, bt the slope, and st the seasonal component.
A, B, and C are smoothing parameters. If monthly data are
evaluated, the period of seasonality, S, equals to the value of 12.
The HW model is either additive or multiplicative, depending
on the seasonal behavior. In case of evaluating a PV systems
performance, the additive method should be selected because
the seasonal variations are approximately constant throughout
the series. The seasonal component is then computed in absolute
terms and has a mean of around zero. The level equation (9) is a
weighted average between the seasonally adjusted observation
(yt − st−S ) and the nonseasonal one-step-ahead forecast (lt−1 +
bt−1). The slope is a weighted average of the level at time t
minus the level at t − 1, and the trend at t − 1. The selection
of smoothing parameters determines how fast the exponential
weights decline over the past observations. The HW method can
be especially useful for computing the future behavior of a PV
system [7], [20], [21].

4) Autoregressive Integrated Moving Average: ARIMA is a
model, which can contain several methods in a multiplicative
way and can be described as ARIMA (p, d, q) (P, D, Q). Here,
p is the auto-regressive, d the differencing, and q the moving
average order as well as P is the seasonal autoregressive, D
the seasonal differencing, and Q the seasonal moving average
order. Due to the flexibility of the model, seasonal variations,
errors, outliers, and level shifts can be addressed in a proper
way. ARIMA is applied using the following [7]:

φ(T )φS (TS ) �d �D
S yt = φ(T )φS (TS )et (12)

T is the delay operator, φ(T ) = (1 − φ1T − · · · − φpT
p) is an

autoregressive polynomial in T of degree P, φ(TS ) is an au-
toregressive polynomial in TS of degree PS , φ(T ) a mov-
ing average polynomial in T of degree q, and φS (TS ) is a
moving average polynomial of degree QS in TS . Apart from
that, �d = (1 − T )D is a nonseasonal differencing operator
and �D

S = (1 − TS )d is a seasonal differencing operator and
grasps nonstationarity in the relevant location in consecutive
periods [22].

The stationarity of the time-series determines the optimal
ARIMA model; a transformation using differencing to achieve
stationarity might be indispensable. Stationarity is described by
a constant mean and variance, resulting in a nonexisting trend
and the graph seems more like white noise. There are different
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ways to difference a time-series, the simplest and most common
way being first-order differencing [23]

ŷ = yt − yt−1. (13)

Here, the differenced value is the change between two consecu-
tive values of the original time-series. The resulting time-series
has T-1 values. Seasonal or second-order differencing are further
examples of how to create stationarity within the time-series in
question.

The heart of the ARIMA model is the application of autore-
gression. To perform an autoregression, the desired variable is
computed by applying a linear combination of past values of the
variable. The general form of an autoregressive model of order
p is

ŷ = c + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + et (14)

where c is a constant and et is the remainder.
The moving average model used within ARIMA has a dif-

ferent purpose than the one for CSD. Here, the moving average
uses past forecast errors in a model similar to a regression. The
aim of the moving average model is to predict a forecast instead
of smoothing the trend cycle of past values [21].

While using the software environment R, the function seas, a
function within the R-package “seasonal” which automatically
performs seasonal adjustments, automatically calculates the op-
timal ARIMA (p, d, q)(P, D, Q) variables to apply on the data
set [24]. For the application of ARIMA within Section IV-C, the
extracted parameters for both systems are (0, 1, 1) (0, 1, 1).

5) Seasonal–Trend Decomposition Using LOESS: STL is a
continuation of CSD and Loess is a method to estimate nonlinear
relationships. The centered moving average is replaced by a
locally weighted regression to extract the trend [25]. Because
of that, the estimates become more robust and are less affected
by missing data and outliers. Similar to CSD, STL decomposes
a seasonal time-series into three components (trend, seasonal,
remainder) and is described by

Yt = Tt + St + Rt. (15)

STL contains an inner and an outer loop. Every time a run within
the inner loop is performed, the seasonal and trend components
are updated. The number of runs within the inner loop are mostly
equal to 1 or 2. The outer loop includes an inner loop followed
by a calculation of robustness weights. This calculation serves
as an input for the following inner loop to decrease the im-
pact of transient, abnormal behavior on the trend and seasonal
parts [26].

To better grasp the idea of Loess, the method is explained
when applied within the software R. Here, two parameters have
to be chosen, the trend window and the seasonal window. The
seasonal window is either periodic or the span of the Loess win-
dow for seasonal extraction. The smaller the values, the faster
the trend and seasonal components can change. A high value
for the seasonal window forces the seasonal part to be peri-
odic, in this case just the means for the monthly values are used
(seasonal component for January is mean of all January val-
ues). After calculating the seasonally adjusted data, (measured
data minus seasonality) the trend is Loess-smoothened. This

is done by applying local regression on a data window with a
certain width. The regression curve is fitted to the data within
the window. The closer the points are to the center of the win-
dow (higher weight), the greater is the impact on the regression
line calculation. The weight is reduced on those points that are
furthest from the regression curve. The whole step of regression
and weighting is repeated several times to receive a point on the
Loess-curve, which is at the center of the window. By moving the
window across the data, the complete Loess curve is computed.
What follows is that each point of the Loess curve is the intersect
of a regression curve and the center of the respective window.

C. Comparison of Statistical Models

The statistical models presented are applied on the uncor-
rected performance ratio data sets of a mono-crystalline (mc-
Si) and an amorphous silicon (a-Si) system using the software
R. The mc-Si system contains 14 PV modules and has a rated
power of 1960 Watt-peak (Wp). The second installation includes
12 amorphous silicon modules with a power of 1200 Wp. The
observed data have a resolution of 15 min and were averaged
over whole months. The systems in question were installed in
Bolzano/Italy in August 2010 and are evaluated for seven years
from March 2011 until February 2018 in order to eliminate
initial degradation effects such as the Staebler–Wronski effect
or short-term LID. The monitored data are prefiltered to ex-
clude data with performance ratio values below 1% and above
200% and a POA irradiation of less than 50 W/m2 and more
than 1500 W/m2. This was done to remove extreme outliers
and measurement errors. The simplicity of the filter was chosen
to intensify possible deviations among the models. The irradi-
ance data are recorded with a pyranometer. For each model,
the relative annual PLRs, the corresponding uncertainty and the
intercept with the y-axis are given. The PLR of the more sophis-
ticated models are calculated by applying a linear regression to
the respective trend, which was extracted through the statistical
model. To receive the yearly relative PLR and the corresponding
uncertainty, the following formulas are used [27]:

PLR =
12a

b
(16)

uPLR =

√
√
√
√

((
12
b

)2

× u2
a +

(−12a

b2

)2

× u2
b

)

(17)

where a and b are the fitting coefficients of the linear regres-
sion, u2

a,b the variances of these fitting coefficients, and uPLR

the standard deviation of the PLR. This uncertainty calculation
corresponds to a confidence interval of 68%.

Two definitions of the PLR can be found in the literature,
in relative terms as PLR = 12a/b or absolute with PLR = 12a
[18]. Here, the relative PLR was chosen because it makes it eas-
ier to generalize the findings to the energy yield of the array using
the initial yield of the plant. The results of these calculations are
less aimed to deliver the best possible combination of filtering
techniques, performance metrics, and statistical models but are
intended to provide a direct comparison between the presented
analysis methods. While the uncertainties of the resulting PLRs
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Fig. 1. Comparison of statistical models on PR-data, circles represent PLR including uncertainties (primary axis), triangles represent initial PR (secondary axis),
on the left is mc-Si system, on the right is a-Si system.

TABLE I
COMPARISON OF STATISTICAL MODELS

were used to rate the statistical models, the remainder, where
applicable, serves as a validation of the parameter fit. The re-
mainder should have Gaussian white noise properties, such as
being uncorrelated and normally distributed.

In Fig. 1, the relative PLRs, uncertainties and initial PR values
are given. The initial value is the intercept with the y-axis.
The stated uncertainty is the uncertainty of the PLR against the
extracted trends, computed by the individual statistical methods.

It can be seen that the performance of the mc-Si system
degrades 0.5%–0.6% per year, the one of a-Si close to 1.8% per
year. Because of cabling and other system losses the initial PR
value is below the theoretical value under STC. As expected,
linear regression shows in both cases the highest uncertainty.
For all other cases, a trend was first filtered from the data set
on which a linear regression was performed. This step leads to
an outcome with higher certainties. While all more advanced
methods show similar results with regards to the uncertainty of
the mc-Si system, STL and ARIMA outperform the others when
applied to the a-Si system.

In case of CSD, the loss ratio is for both systems higher
in comparison and probably overestimated. In Section IV-B2, it
was mentioned that, when using CSD, the first and last months of
the data set are lost due to the applied centered moving average.
This is visible in Fig. 2. Here, the extracted trend-lines of the PR
of the mc-Si system using CSD and STL are shown. Within the
first six months of observation, the trend of the PR has a roughly
stable value. When applying CSD, this time period is not taken

Fig. 2. Trend-lines of CSD- (red-straight) and STL-model (blue-dotted) of
unfiltered monthly PR-data of a mc-Si system.

into account and because of this, the decrease is stronger over
time. This in turn results additionally in an overestimation of
the initial PR value.

Table I summarizes the models in respect to different char-
acteristics of time-series. In general, SLR might serve as a first
indication of a PLR determination but is not suited for accurate
calculations due to its simplistic approach. It has been shown
that the more sophisticated selected analysis methods perform
very similar for crystalline systems, both in the estimation of
the initial PR and the PLR. An exception hereby is the usage
of CSD for short time-series. The exclusion of the first and last
observations can falsify the final PLR. When a thin-film system
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is subject of the calculations, STL and ARIMA show the best
results.

When applying HW, ARIMA or STL, it is very important to
perform crucial modeling steps with great care to receive the
optimal results. In case of ARIMA, the time-series has to be
transformed in order to reach stationarity. Since PV time-series
are highly seasonal, a seasonal differentiation is essential. For
the same reason, the seasonal window parameter within STL
has to be set as periodic and the additive method is preferred
when using the HW model.

Filtering is an integral part when computing PLR values.
If performance metrics are corrected using temperature coeffi-
cients, which are retrieved at a POA irradiance of 1000 W/m2,
an appropriate POA irradiance should be selected. Within this
work, the preliminary filter are treating outliers and values cor-
responding to measurement errors not sufficiently. This was
done on purpose to amplify the impact of outliers and measure-
ment inaccuracies on the final results. SLR and CSD treat all
values with similar weights and are therefore strongly affected
by outliers. HW’s weighted average, STL’s locally weighted
regression, and the combination of similar techniques within
ARIMA are well suited for outlier handling.

Another statistical method worth mentioning is the year-on-
year model developed by Sunpower [28] and later improved by
NREL [29]. It is implemented within the Python RdTools for
the analysis of PV data. This method has a complete different
approach as the here discussed models, as it is using a loss rate
distribution instead of one single value. The gradient between
two related data points in consecutive years (hour, day, week,
month) determine a single PLR. The median of this gradient,
the gradients of all remaining data points of that two years,
and all following years determine the final performance loss
per year. The power loss rates are computed using a 100% per-
formance baseline value. This approach is excluded within this
study. A comparison is difficult to perform because the initial
value is preset and, in contrast with the performed computations,
the data aggregation is done in an irradiance-weighted manner.
Nevertheless, this approach is of special interest if high quality
field irradiance data are not available because it can compute
the PR based on a modeled clear-sky irradiance.

V. MODELING SPECIFIC DEGRADATION MODES

USING ANALYTICAL MODELS

In order to explain experimental observations of different
degradation modes, analytical models are developed based on
the physical/chemical theories of the degradation mode in ques-
tion. These models are environmental stress oriented. The hy-
potheses of a particular degradation mode are built depending on
specific environmental stresses applied, and on the assumption
that the kinetics of a specific degradation mode are influenced by
one dominating process. Electrical parameters such as power at
maximum power point (Pmax), short circuit current (ISC), shunt
(Rsh), and series resistance (Rs) are commonly modeled as
degradation indicators. Hence, the environmental stresses and
their interactions with the PV module components are assessed
based on the reduction of the initial electrical parameter at time

(t = 0) before aging and at time (t = t) after aging or in the
field.

A. Degradation Models for Corrosion

Corrosion is one of the most occurring degradation modes
in PV modules [30]. Corrosion is caused by the presence of
high temperature and high humidity in the module. Humidity
can enter the module through the backsheet or the layers of
the encapsulant and spread into the module [31], weakening
the adhesive bonds between the interfaces. One hypothesis is
that humidity, which catalyzes corrosive processes, leads to a
formation of acetic acid through the hydrolysis of vinyl-acetate
monomers present in the EVA [32]–[34]. Corrosion attacks the
metallic connections of PV cells and results in a loss of adhesive
strength between the cells and the metallic frame, as well as an
increased leakage current and therefore a loss in performance
[32]. Empirical models based on power at maximum power
point and series resistance as degradation indicators have been
proposed to model corrosion according to [35]–[37]. The models
are as follows.

1) The Model of Pan [35]

Pmax

Pmax(0)
= exp(−RD tβ ). (18)

2) Pmax and Rs Models According to Braisaz [36]

Pmax =
1 − exp(−B)

1 + exp(RD t − B)
(19)

Rs = Rs(0) + exp(RD t − B) (20)

where Pmax and Rs are the output power and series resistance
at time (t), Pmax(0) and Rs(0) are the power output and series
resistance at time (t = 0), β is the experimental parameter, B
is a coefficient to be defined, and RD is the degradation rate
determined according to (21), (22), and (23).

1) Models for Degradation Rate (RD ) Calculation: Kinetic
models are developed on the primary assumption that the rate
of degradation is proportional to the concentration of water in
PV modules and that the rate constant has a Arrhenius temper-
ature dependence. Three models according to [19] and [38] are
proposed, namely the Peck’s model, the Eyring model, and the
exponential model.

Peck’s model:

RD.Peck = A exp
(

− Ea

kB T

)

RHn. (21)

Eyring model:

RD.Eyring = A exp
(−Ea

kB T
− b

RH

)

. (22)

Exponential model:

RD.Exp = A exp
(−Ea

kB T

)

. exp(m × RH). (23)

Here, Ea is the activation energy of the degradation process
[eV], T the module temperature [K], kB is the Boltzmann con-
stant (8.62 × 10−5 eV/K), and RH is the relative humidity [%].
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TABLE II
COMPARISON OF MODELS FOR DEGRADATION RATE

A, n, b, and m are model parameters. RD [%/h] is the inverse of
the mean time to failure at a given condition. In order to obtain
A, Ea , n, b, and m in (21), (22), and (23), the equations can be
fitted to experimental data or represented on a logarithmic scale
by a straight line, using the following equations:

ln(RD.Peck) = ln(A) −
(

Ea

kB T

)

+ n × ln(RH) (24)

ln(RD.Eyring) = ln(A) −
(

Ea

kB T

)

− b

RH
(25)

ln(RD.Exp) = ln(A) −
(

Ea

kB T

)

+ m × RH. (26)

A plot of ln(RD ) versus 1/T [K] gives an Arrhenius plot with
a slope Ea/kB and an intercept ln(A).

2) Comparison of Corrosion Models: The models of Peck,
Eyring, and exponential were applied to fit indoor data sets
(damp heat at 85C/85% RH), of two c-Si modules, with module
1 showing a good performance stability compared with module
2. The models were compared based on the extracted parame-
ters (see Table II) as well as the deviation from the fitted data
points. All models are consistent concerning the influence of
the activation energy on the degradation rate and that the pre-
dicted values are in the range of literature values for polymeric
materials, which usually range between 0.6 and 2.0 eV [39].
Nevertheless, the Eyring model shows a significant difference
in the extracted activation energy in comparison to that of Pecks
and the exponential model. It also has the highest percentage
deviation of fitted data points in both cases. Therefore, from this
study, we can conclude that the Peck’s model has a better fit
compared with the other models.

Degradation models are utilized for the simulation of power
output degradation for module 1 to predict its performance
in three climatic zones: alpine (Zugspitze, Germany), mar-
itime (Gran Canaria, Spain), and arid (Negev, Israel), assuming
the degradation is because of corrosion according to Pan and
Braisaz. The module temperature is given for a standard c-Si
PV module type glass-backsheet construction installed at the
three test sites and relative humidity was calculated from ambi-
ent conditions according to [40]. For all the simulations, annual

Fig. 3. Module 1. Maximum power degradation models of Pan (P) and Braisaz
(B), simulated for three climates: Zugspitze (green), Gran Canaria (blue), and
Negev (purple).

mean values of temperature and relative humidity were used.
In both cases, the Peck’s model was used for degradation rate
calculation and both models were fitted to indoor data to extract
the model parameters.

Both models show that temperature is the most relevant fac-
tor that influences the PV degradation process, visible by the
power losses depicted in Fig. 3. This can be seen by a small loss
through lower degradation in power for the module installed at
Zugspitze, where the climate is characterized by low tempera-
tures and high levels of relative humidity. However, the models
completely differ in degradation predictions. According to the
simulations, the model of Pan converges at a relatively fast rate
compared with the one of Braisaz. This could be due to the in-
fluence of the model coefficients such as B and β. Moreover, the
time parameter for the Pan model follows a power law, hence β
might be an accelerating factor.

B. Degradation Models for PID

PID has been observed in all PV technologies and in almost
all operating climates. It does not occur so frequently, but if
it does, its effect can lead to a severe performance loss within
a short period [4], [41]–[44]. In general terms, PID is caused
by the difference in potential between the cells and the sup-
port structure of the module. This difference drives a leakage
current that can lead to power degradation. Different types of
PID occur depending on the module technology. For crystalline
silicon PV, two degradation modes can be identified, PID-p (for
polarization or passivation) and PID-s (for shunting). PID-p is
a temporary and reversible degradation of the passivation layer,
which reduces the performance due to a surface recombination
increase [45]–[47]. PID-s is because of a leakage current in-
volving an ionic flow of Na+ from the glass, encapsulant or cell
surface into the cell, diffusing into the silicon stacking faults and
shunting the cell [48]. The sodium incorporation in the Si sur-
face degrades primarily the FF, the Voc, and finally the Isc. The
relevant stress factors for PID-s include [42]; high temperature,
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TABLE III
PIDHACKE MODEL

relative humidity, system voltage, light, bias-junction potential,
and injected carriers. The models proposed for PID degradation
according to [36], [43], [44], [49]–[51] are as follows.

1) Pidhacke Model: A parabolic model was proposed by
Hacke et al. [44] to fit the power degradation of c-Si modules

Pmax

Pmax(0)
= 1 − A exp

(

− Ea

kB T

)

RHn × t2. (27)

The constants A and n are determined by fitting the equation
to experimental results. The parameters have to be determined
for each module type. This parabolic model is applicable to the
beginning of the degradation phases of PID-s, as it can fit the
beginning of a sigmoid and does not describe the stabilization
phase of the sigmoidal curve. Annigoni et al. [49] used the
indoor data to determine coefficients of the model for distinct
aging contributions (temperature, relative humidity, and time)
and then applied the model including a voltage term in (28) to
outdoor PID degradation for different climates

Pmax

Pmax(0)
= 1 − A exp

(

− Ea

kB T

)

RHn × t2 × U. (28)

In this study, a similar approach is adopted to extract the model
coefficients in Table III and to simulate maximum power degra-
dation because of PID in three climatic zones; alpine (Zugspitze,
Germany), maritime (Gran Canaria, Spain), and arid (Negev,
Israel). In all simulations, a constant voltage of 500 V was as-
sumed. The simulation results, shown in Fig. 4, were consistent
with the ones of Annigoni, saying that a more severe degradation
is predicted for arid climates.

2) Exponential Model: The model was applied by Hacke
et al. [43] to predict PID occurrence in thin-film modules in
the field using accelerated tests. Considering shunting, which is
the PID mode that occurs first, an exponential model based on
module temperature T and relative humidity RH was found to
fit well the PID rate for multiple stress levels of a CdTe module
in chamber tests. The power model is of the form

d

dt

(
Pmax

Pmax(0)

)

= 1 − Af(U) exp
(

− Ea

kB T

)

RHn × t (29)

where f(U) expresses the voltage dependency.
3) Model of Hattendorf: The model of Hattendorf et al. [50]

is based on a matrix of indoor experiments where modules are
exposed to varying voltage, module temperature, and ambient
humidity. The conditions are varied to determine the model

Fig. 4. Simulated normalized maximum power degradation because of PID
in three climatic zones; Freiburg (green), Gran Canaria (blue) and Negev (red).

parameters for the module power. The model is written as

Pmax(U, T,RH, t) = Pmax(0)(1 − P (t)) (30)

P (t) = P∞
1 − exp

(
t
τ1

)

1 − exp
(

t−t0
τ2

) ;

P (U) =
(

1 + exp
(

U − U0

Φ

))−2

(31)

t0 = a × b × t̂0; τ1(T ) = b2 × τ̂1; τ2 = τ̂2

(32)

a(H) =
H0

H
; b(T ) = exp

(
T − T0

φ

)

. (33)

The model includes six adaptation parameters: t̂0, U0, τ̂1,
τ̂2, Φ, and φ. H0 and T0 are scaling parameters. The function
P (t) describes the power loss caused by degradation. P∞(U)
is its limit for t → ∞, and a(H) and b(T ) are the acceleration
functions of relative humidity and temperature. For T = 0 and
H = 0, they are equal to 1, therefore τ̂1, τ̂2 are the time constants
under these conditions. τ2 remains constant for a given module.
To determine the model’s parameters, the power degradation
is measured as a function of time with the system voltage U
as parameters and a fixed humidity H as well as temperature
T . The saturating power P∞ is extracted by fitting P (t) to the
measured data.

4) Taubitz Model: Taubitz et al. [51] proposed a regener-
ation model for shunt resistance evolution over time because
of PID degradation. The shunt resistance was modeled in three
phases: shunting phase, regeneration phase, and transition phase
as follows:

Shunting phase:

Rsh(t) = aS exp
( −t

bS (t)

)

. (34)
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Regeneration phase:

Rsh(t) = CR + aR exp
(

t

bR (t)

)

. (35)

Transition phase:

Rsh(t) = aT (T )(t + bT (T ))2 + CT (36)

where aS , bS , CT , bT , aT (T ), bS (T ), bT (T ), CR , and aR are
constants and have to be determined for a specific module type.
Some of them are dependent on the module temperature T . The
constants are determined by measuring the times tS , tT , and tR
for reaching certain target values.

5) PID Model According to Braisaz et al. [36]: The model
is based on shunt resistance Rsh degradation as an indicator, as
it is the most important parameter for PID. The evolution of Rsh

as a function of voltage, temperature, and relative humidity was
modeled as

Rsh(t) =
Rsh(0)

1 + aRD t
(37)

RD = A × U
B

1 + exp(−C(RH) + D)
exp

(

− Ea

kB T

)

(38)

where Rsh is the shunt resistance at time (t), Rsh(0) is the initial
shunt resistance, A,B,C, and D are model coefficients, U is
the applied voltage, and RD is the degradation rate.

Recommendation: The model contains many coefficients
whose usage is not clearly described, such coefficients might
affect the physical interpretation of the results when used in-
appropriately. Therefore, we recommend that one should have
a prior knowledge of the impact of the parameters on which
the coefficients are being applied to the degradation process in
question.

C. Models for UV Degradation

UV light exposure has been reported to cause PV module
degradation in a number of ways. Exemplary, it could result in
discoloration of the encapsulant material [52] or delamination
at the glass encapsulant or cell encapsulant interface [53]. The
parameter most impacted by UV exposure is the short circuit
current (Isc). Braisaz et al. [36] proposed a model for short cir-
cuit degradation because of UV exposure over time. They found
that the degradation curve is not linear but an exponentially de-
creasing curve. The short circuit is modeled as a function of
UV as

Isc(t) = Isc(0) − aDUV(t) − b(1 − exp(−CDUV)(t)) (39)

DUV(t) =
∫ t

0
E(u) × 5.5%du. (40)

Here, DUV is the UV dose in MJ/m2 or kWh/m2, Isc is the
short circuit current at time (t), Isc(0) is the initial short circuit
current, and a, b, and C are model coefficients. The multipli-
cation by 5.5% is because the UV radiation (280–400 nm) is
approximately 5.5% of the total light spectrum E(u) [54].

1) Schwarzschild Law: The Schwarzschild Law has been
applied by Gu et al. [55] to study the effect of intensity and
wavelength of spectral UV light on discoloration of laminated
glass/EVA/PPE PV modules. The law is a function of intensity as

k = A(I)p . (41)

Here, k is a constant, I the intensity, and p is the Schwarzschild
coefficient.

Recommendation: When applying this expression in perfor-
mance (power) prediction models where other loads are also
applied, the parameter p must be calibrated according to the
knowledge of severity ranking [56].

D. Degradation Models for Delamination, Fatigue Solder
Failure, and Cell Cracks

1) Coffin–Manson’s Equation: The model is used to predict
degradation modes caused by temperature cycling such as en-
capsulant delamination, fatigue solder failure, and cell cracks.
According to Escobar and Meeker [38], the model describes the
number of cycles to failure as

N =
σ

(ΔT )β1
(42)

where ΔT is the temperature range and σ and β1 are properties
of the material and test setup. The cycles-to-failure distribution
for temperature cycling can also depend on the cycling rate
(e.g., because of heat buildup). An empirical extension of the
Coffin–Manson relationship that describes such dependencies
is [38]

N =
σ

(ΔT )β1

1
(freq)β2

exp
(

Ea × 11605
Tmax(K)

)

(43)

where freq is the cycling frequency and Ea is a quasi-activation
energy.

2) Crack Propagation Model: The model was suggested by
Braisaz et al. [36] and it was applied to simulate the degradation
of the short-circuit current Isc due to the expansion of cell cracks
caused by temperature. The model takes the form

Ca(t) = Ca(t − 1) +
1

x
(

125
Ta

)m . (44)

Ca(t) is the crack activation at time (t), Ca(t − 1) the crack
activation at time (t − 1), Ta is the daily temperature amplitude,
m a model parameter, and x is the number of thermal cycles.
The crack activation/propagation model is dependent on the
daily temperature amplitude Ta .

3) Damage Accumulation Model: The model was used by
Bosco et al. [57] in order to calculate the solder fatigue damage
in seven cities investigated in their study and compared with
FEM simulated results. They found out that the model fits well
to the simulated calculations. The model is written as

D = C(ΔT )n (r(T ))m exp
(

− Q

kB Tmax

)

. (45)

In this equation, ΔT is the mean daily maximum cell temper-
ature change, Tmax the mean maximum daily temperature, C a
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scaling constant, Q the activation energy, kB Boltzmann’s con-
stant, r(T ) the number of times the temperature history increases
or decreases across the reversal temperature, T the period of a
year, and n and m are model constants similar to those in the
Coffin–Manson equation.

4) Backsheet Degradation Model: The model is used to es-
timate a potential form of the degradation kinetics of the back-
sheet. This kinetic model was applied by Kempe [58] to model
the uncertainty in a 25-year equivalent test for module backside
exposure to irradiance and temperatures in different climatic
zones. The degradation rate model is written as

RD ≈ IX (b + m × TOW) × (Tf )
T −T 0

10 . (46)

Here, I is the light intensity, X , b, and m are fit parameters,
TOW is the time of wetness, T the temperature, T0 a reference
temperature, and Tf is a multiplier for the increase in degrada-
tion for a rise in temperature in 10 K steps.

Recommendation: As also mentioned by Kempe, the param-
eter that describes the effect of time of wetness has very high
uncertainties, we recommend careful comparison of the relative
change in degradation rate with changes in TOW. In case one
wants to extract thermal parameters such as activation energy,
the multiplier term (Tf ) can be replaced by the Arrhenius term.

E. Model Based on Multiple Stresses

Since degradation of PV modules in outdoor operation is in-
fluenced by multiple environmental stresses, models based on
multiple stresses are viable for outdoor service lifetime predic-
tion.

1) Model of Gaines: Gaines et al. [37] proposed a model for
power output degradation based on multiple accelerated envi-
ronmental stresses. The model suggested is

Pmax

Pmax(0)
= [1 − RD t]

1
β (47)

RD = AfT fRH fM fGfω (48)

where RD is the degradation rate and the factors fT , fRH , fM ,
fG , and fω are associated with a decrease in power output due
to effects of temperature T , relative humidity RH , mechanical
stresses M (due to temperature differences), gaseous concen-
tration G, and the frequency of the temperature excursion. The
mathematical form of each factor is formulated to represent the
underlying physical phenomena. An Arrhenius form is used for

fT = exp
(

−B

T

)

. (49)

B denotes a constant parameter and T denotes temperature. The
effect of relative humidity fRH is represented by

fRH = 1 + (RH)0 exp
(

C0

(
1

TC
− 1

T0

))C−D
T

. (50)

The second term in the bracket corrects the relative humid-
ity as a function of temperature, given a specified relative hu-
midity at T0. C and D are constant parameters. The mechani-

cal/temperature excursion factor fM is represented by

fM =

⎡

⎣

exp
(

G1

(
1
T − 1

Tb

))

+ exp
(

−G2

(
1
T − 1

Tb

))

D0

⎤

⎦

× exp (JΔT ). (51)

The first term in the bracket reflects the stresses arising from dif-
ferences in expansion coefficients of bonded materials. The con-
stants G1, G2, D0, and Tb are chosen to represent the estimated
magnitudes of these fatigue effects. The factor exp(JΔT ) esti-
mates the effect of the magnitude of the temperature excursion
ΔT , where J is a constant

fG =
[

1 +
G

Go

]E− F
T

. (52)

Here, E and F denote constant parameters and T is the temper-
ature. The frequency of the temperature excursion fω is repre-
sented by

fω =
[

1 +
ω

ωo

]P − Q
T

. (53)

ω is the frequency and P as well as Q are constant parameters.
In a constant temperature test, T is a constant and ω is taken to
be zero. In the cyclic temperature tests, reciprocal temperature
is considered to be a sinusoidal function of time

1
T

(t) = τ + Δτ sin(ωt) (54)

τ =
1
2

[ 1
Tmin

− 1
Tmax

]

. (55)

Tmin and Tmax are the minimum and maximum temperatures
associated with the temperature cycles.

Recommendation: The model of Gaines presents the previous
approach on multiple stress modeling, however, the user should
take caution that this model was developed and applied on PV
modules that had a different construction from today’s modules.
Therefore, its application might need some modification to fit
the current PV module construction types.

2) Model of Subramaniyan: Another model to calculate the
degradation rate because of combined environmental stresses
has been proposed recently by Subramaniyan et al. [59]. The
model takes into account the effect of both static and cyclic
temperature, UV radiation and relative humidity as

Rate(T,ΔT, UV, RH) = β0 exp
(

− β1

kB Tmax

)

× (ΔTdaily)β2 × (UVdaily)β3 × (RHdaily)β4 (56)

where Rate(T,ΔT,UV,RH) is the reaction rate, Tmax the daily
maximum temperature of the module [K], ΔTdaily the daily
cyclic temperature of the module [K], UVdaily the daily daytime
average irradiance [W/m2], RHdaily the daily average relative
humidity [%], and k is the Boltzmann constant. The model
parameters β0, which is the frequency factor [s−1], β1, the acti-
vation energy [eV], β2, the effect of cyclic temperature, β3, the
effect of UV radiation and β4, the effect of RH, can be estimated
from measured data through data fitting techniques. In the scope
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of this paper, the model is presented but has not been applied or
tested in any way due to a lack of combined stress data. A more
detailed description and application of the model can be found
in [59].

VI. DISCUSSION AND CONCLUSION

In this paper, several PV system performance loss method-
ologies are reviewed. Hereby, statistical and analytical models
are taken into account.

First, a discussion about statistical models to determine the
PLR of PV systems from available outdoor data is presented.
The performance loss trend is retrieved by applying filters,
performance metrics, and statistical models on data sets. By
performing detailed in-depth performance studies, it might be
possible to gain a greater understanding about the root causes
of the decrease in the power output of PV systems over time.
Especially when considering current and voltage behavior, spe-
cific degradation modes could be identified and at a later stage
verified by visual inspection techniques.

As a first measure, appropriate filtering techniques have to
be applied on the data set in question. The choice of the filter
will strongly depend on the performance metric and/or statis-
tical model and, in case of an inappropriate filter window, will
falsify the final outcome. On the other hand, pretreatment of
the data set is necessary to eliminate outliers, noise, and mini-
mize seasonal oscillation. Before deciding which performance
metric or statistical model to use, the PV system technology, the
length of the observed period, climatic conditions, and mounting
system (rack, tracker) should be taken into consideration. Pre-
vailing seasonality, temperature/irradiance dependency of the
I–V curve parameters and noncorrelated outliers (data errors,
shading effects, etc.) will increase the uncertainty of the re-
sults and influence the final PLR. The final aim is to receive
a clear performance trend. In Section IV-C, the discussed sta-
tistical models have been applied on monitored field data of
one monocrystalline silicon and one amorphous silicon system
to retrieve long-term performance trends. Thereby, the applica-
tion of SLR resulted in performance ratings with the greatest
uncertainties in comparison. The usage of CSD produced per-
formance rates with low uncertainties but due to the elimination
of the first and last months of monitored data through the cen-
tered moving average, this technique is not recommended for
data sets, which just consider short time periods. It was seen
that CSD overestimated the performance loss of both systems.
The remaining techniques, namely HW exponential smoothing,
ARIMA, and STL, are performed on a similar high level of ac-
curacy and the results are almost identical. HW experiences a
slightly higher uncertainty when applied to the amorphous sili-
con PV system. It seems that ARIMA and STL are better suited
for noncrystalline PV systems due to their favorable treatment
of the temperature behavior of the system in question. These
three techniques exclude the seasonal part in time-series of PV
performance metrics, which is an important modeling step in or-
der to receive a clear performance trend. Nevertheless, it has to
be stressed that the application of statistical models, especially
ARIMA, has to be performed with great care and that it is not a
rudimentary exercise to retrieve accurate model parameters for

more advanced models. In case of ARIMA, the time-series has
to be stationary. The model parameters need to be chosen based
on the time-series behavior. That means that PV-related param-
eters, like the varying temperature dependency of different PV
technologies, or the prevailing weather conditions have to be
taken into account.

Unfortunately, it is not possible to determine if a (or which)
degradation mode occurs on the basis of calculated PLRs. Apart
from degradation modes, other factors such as shading or soiling
might be a reason for a reduced performance. Because of that,
it is important to not only study the data of a PV system, but
also to undertake regularly visual and electrical inspections and
connect the findings with the calculated PLR. An idea of how
to isolate the occurrence of degradation modes within a module
under surveillance might be the application of the presented
models on the short-circuit current, the open-circuit voltage and
the fill factor. Hence, it might be possible, together with the
inclusion of results from the studies of accelerated tests, to find
patterns in the trends of these values.

In the second part of this work, several analytical models
for specific degradation modes, which trigger the aforemen-
tioned performance losses to a large extent, are further studied.
The models proposed for corrosion and PID were implemented
to simulate the maximum power degradation in three climatic
zones. A strong influence of the climate is evident in all the sim-
ulation results where, as expected, a more severe degradation is
predicted for arid climates. The key observations in this study
are as follows.

1) Although these models give a preliminary approximation
of the time-evolution of power performance, they do not
provide any information on the physical processes taking
place within the module.

2) The models are developed based on numerous assump-
tions and simplifications, moreover the hypotheses of a
particular degradation mode are modeled depending on
environmental stress factors and do not take into consid-
eration the influence of material parameters.

3) None of the models is universal, that is, they can well
describe the degradation of a specific type of a PV tech-
nology and fail on the other. Therefore, it is necessary to
be certain that a chosen degradation model is valid for a
specific application.

4) The analytical models are developed and validated based
on indoor data from accelerated tests. Although some au-
thors went on to simulate outdoor conditions based on
indoor observations, a big challenge remains of how to
interpret the results for multiple environmental stresses
using indoor data.

According to these observations, we recommend further
developments for models that take into account both material
and multiple environmental stress factors. The development of
such models need to be related to indoor as well as outdoor
observations.
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