
A safe generic adaptation mechanism for smart cars

Alejandra Ruiz, Garazi Juez

ICT- European Software Institute Division

Tecnalia

Derio, Spain

{firstname.lastname}@tecnalia.com

Philipp Schleiss, Gereon Weiss

Fraunhofer ESK

Hansastr. 32, 80686 Munich

Munich, Germany

{firstname.lastname}@esk.fraunhofer.de

Abstract—Today’s vehicles are evolving towards smart cars,

which will be able to drive autonomously and adapt to changing

contexts. Incorporating self-adaptation in these cyber-physical

systems (CPS) promises great benefits, like cheaper software-

based redundancy or optimised resource utilisation. As promis-

ing as these advantages are, a respective proportion of a vehicle’s

functionality poses as safety hazards when confronted with fault

and failure situations. Consequently, a system’s safety has to be

ensured with respect to the availability of multiple software ap-

plications, thus often resulting in redundant hardware resources,

such as dedicated backup control units. To benefit from self-

adaptation by means of creating efficient and safe systems, this

work introduces a safety concept in form of a generic adaptation

mechanism (GAM). In detail, this generic adaptation mechanism

is introduced and analysed with respect to generally known and

newly created safety hazards, in order to determine a minimal set

of system properties and architectural limitations required to

safely perform adaptation. Moreover, the approach is applied to

the ICT architecture of a smart e-car, thereby highlighting the

soundness, general applicability, and advantages of this safety

concept and forming the foundation for the currently ongoing

implementation of the GAM within a real prototype vehicle.

Keywords—self-adaptive systems; ISO 26262; fail-operational

I. INTRODUCTION

Cyber-physical systems are evolving towards smart appli-
ances with self-X capabilities, like self-healing or self-
optimisation. Such self-adaptation in CPSs must however still
meet safety requirements. On the path towards fully self-
adaptive systems, there are several intermediate steps to be
taken. A major evolutionary step could presently be imminent
in the automotive domain. Modern cars are more and more
becoming smart cars which are foreseen to drive autonomously
and fully electric. Both trends have great impact on the system
architecture of the vehicle. With an electric car many mechani-
cal parts, like the control gear, vanish from the car and are
replaced by electronic parts. As also the backup properties of
mechanical parts are removed, additional measures must be
taken to ensure the same safety, e.g., for a steer-by-wire sys-
tem, which allows steering a car electronically without a me-
chanical connection to the steering wheel. With the emerging
progression towards automated driving functions, vehicle sys-
tems have to ensure a higher degree of availability. The driver
is not expected to monitor the car, as long as there is no unfore-
seen event. In case of the latter, the car requests the driver to
take over the control within a certain time frame. Thus, when a
subsystem fails, critical functionality has to remain operational.

This is particularly challenging as present automotive sys-
tems are able to reach their safe state by shutting down in case
of a malfunction. For example, a failure of an ECU (Electronic
Control Unit) in a traditional car can be handled by turning of
this unit without losing control of the driving behaviour. In
contrast, an ECU hosting a brake-by-wire application cannot be
shut down without losing the ability to brake, as long as there is
no costly mechanical backup installed. This shift from fail-
silent to fail-operational systems poses a great challenge for
future automotive systems, since fail-operational behaviour is
up to now only implemented in other embedded systems do-
mains with different constraints, such as the cost per unit in
avionic systems [1].

Current automotive approaches rarely support fail-
operational applications [2]. Despite this, current research is
heading into the direction of creating functional safety concepts
that provide fail-operational behaviour at system level for indi-
vidual functions. Self-adaptation poses as a vital option to
overcome critical failures and allow for the further operation of
a smart car. For instance, in case of the breakdown of an ECU,
another ECU can be adapted to take over the execution of the
critical functionality. Such redundancy mechanisms are pres-
ently only planned for complete system parts in many embed-
ded systems domains, like in a car with three identical redun-
dant ECUs for a steer-by-wire application. Another example is
adapting the system to changing contexts, such as different
driving situations [3]. Self-adaptation provides efficient solu-
tions to these problems but lacks the same inherent safety.

In order to provide additional concepts for safe self-
adaptation, this paper presents a novel generic adaptation
mechanism for smart cars. The implementation of self-
adaptation in a per application fashion is not cost-efficient
since it only permits a limited reuse of developed safety arte-
facts. Therefore, a generic adaptation approach is introduced,
which provides system-wide adaptation in an uncoupled and
safe way. Moreover, special focus must be laid on hazards that
are newly introduced through the use of adaptivity.

In the next section, related work is discussed. Thereafter,
safety requirements are described in Section III, which then
lead to the definition of a generic adaptation mechanism in
Section IV. Based on this, the main hazards of such an adapta-
tion are derived in Section V, thus leading to a unified safety
concept in Section VI. In order to evaluate this concept, its
applicability is demonstrated in an automotive case study of a
smart car in Section VII, followed by a review of used evalua-
tion methods. Finally the findings are discusses and concluded.

This work was partially funded by the European Commission within the
Seventh Framework Programme as part of the SafeAdapt project under grant

number 608945.

II. RELATED WORK

Self-adaptation has been identified as a promising solution
to many upcoming challenges of distributed software systems
[4]. For distributed embedded systems much research has been
carried out for considerations of incorporating self-adaptation.

Exploiting the concepts of an Integrated Modular Architec-
ture (IMA), reconfiguration of avionic systems has been pur-
sued [5]. It focuses to enhance present avionic application
software standard ARINC 653 for reconfiguration. However,
the approach is strongly based on its application in the avionics
domain, e.g., standardised IMA infrastructure or higher costs
for single products than within the automotive mass market.

With [6] an approach has been presented which utilises an
agent-oriented paradigm to self-adapt industrial automation
systems enabling self-healing. A safety concept is not explicitly
considered and the approach targets a different domain which
allows application of agent-technology. In the area of tele-
communications, a context-aware self-adaptive system for
mobile devices has been presented [7], which exploits semantic
web services for composing only non-safety-critical functions.
The above approaches outline selected examples for self-
adaptation in different embedded systems domains, but they do
rely on domain-specific characteristics that prohibit the appli-
cation to smart cars, e.g., no considerations of safety in mobile
devices.

For automotive systems, an early attempt towards enabling
self-adaptation has been the EvoArch project [8], in which a
car’s functionality is managed via a market-oriented paradigm.
Therewith, required and provided services are adaptively or-
chestrated. As it has been an initial concept, no details on safe-
ty aspects have been researched. In [9] a service-oriented ap-
proach exploiting a Java-based middleware is introduced, ena-
bling self-configuration of a vehicle’s functionality. Safety is
not explicitly considered and single points-of-failure, like a
centralised configuration manager, are accepted for simpler
system designs. The DySCAS project [10] aimed at flexible
self-configuration of an automotive system by introducing a
novel middleware. Self-adaptation is handled with policies,
which can be updated in distributed variation points in the sys-
tem architecture. However, no safety concept for the self-
configurable vehicle system is provided. All these projects
implement self-adaptation of a car’s system through diverse
mechanisms but do not consider safety aspects. With [11] an
approach for data-flow oriented design of self-healing automo-
tive systems is presented, which allows considering redundant
components as a safety mechanism. Nevertheless, safety as-
pects beyond designing this redundancy are not considered.

Safety aspects of a new car ICT architecture are presented
in [12] focusing on providing the control platform as a compo-
sitional safety element according to ISO 26262. The thereby
introduced analysis is specific to the proposed novel system
architecture. Heckemann et al. [13] propose the concept of a
“safety cage” which is an independent safety mechanism. They
define a software safety cage as: “a piece of software that mon-
itors the behaviour (outputs) of the original function and takes
appropriate actions if a malfunction is detected”. This approach
proposes a reaction at the application level to contain the fail-
ures and mitigate its effects on the whole system. The objective

is to detect the failure and trigger a graceful degradation of the
application.

Another view for safety applied on adaptive systems is the
one presented in [14] that utilises modular conditional certifi-
cates. ConSerts are post-certification artefacts (i.e., certification
has been conducted in the traditional way) equipped with varia-
tions points bound to formalised external dependencies that are
meant to be resolved at runtime. They focus on verification of
the guarantees and needs from the application point of view,
whether an application needs inputs that are offered by other
applications. [15] identifies challenges in developing self-
adaptive systems and managing uncertainty. Whittle [15] men-
tioned that “While a few techniques have been developed to
support the monitoring and analysis of requirements for adap-
tive systems, limited attention has been paid to the actual crea-
tion and specification of requirements of self-adaptive systems.
As a result, self-adaptivity is often constructed in an ad-hoc
manner”. This has ended up producing architectures, in which
safety is not the main concern. The systems manage to handle
the adaptation, but how the system is developed in order not to
introduce new hazards is not taken into account. Rushby [16]
on the other hand discusses in particular the certification issues
of self-adaptive systems. It is stated that “safety-critical func-
tions that operate adaptively all the time seem especially chal-
lenging to certify, so there is likely to be a discrete switch to
adaptive mode and this will be employed only when conven-
tional controls are unable to cope. The trustworthiness of the
mode switch from normal to adaptive behavior is therefore
particularly critical. One attractive idea is for the mode switch
to be triggered by monitoring the runtime behavior of the sys-
tem against its safety case”. He moreover highlights, as the
adaptation mechanism itself is implemented in software, that
the software also becomes the part which inherits the issues
with regards to assuring safety. One of the main concerns for
certifying self-adaptive systems is that the operation behaviours
are not completely determined at design time. Therefore, [17]
proposes using model checking for verification self-adaptive
systems as an adequate technique. As they mentioned “these
techniques are applicable under the assumption that vital sys-
tem characteristics, as for example system configurations, are
known at design time and, more importantly, continue to hold
at runtime”.

Diverse research activities in the area of self-adaptation
have been carried out. However, either they deal with novel
architectures or mechanisms, not taking safety-criticality suffi-
ciently into account, or approaches solely focusing on assuring
safety of self-adaptive systems in general. On this account, this
work introduces a novel approach covering a generic adapta-
tion mechanism for enhanced architectures of smart cars, as
representative example for a self-adaptive CPS, and the corre-
sponding safety concept.

III. SAFETY REQUIREMENTS

In distributed control systems, safety hazards may occur
through both hardware faults and systematic software errors. In
order to reliably identify software errors during runtime, it is
inevitable to rule out any hardware deficiency as the root cause
of incorrect system behaviour. As such, this work focuses on
detecting and managing hardware faults in an unambiguous

and reliable manner through the use of strong diagnostic capa-
bility. This consequently allows to infer software error through
the absence of hardware faults at runtime.

From a hardware fault perspective, the envisioned system
must provide means to handle faults in a hierarchical manner
and assign a certain fault observation to a specific hardware
element. For this, the following list summarises the types of
failures that must be handled by the presented adaptation
mechanism:

 Platform failure: A random hardware failure that af-
fects an entire computing platform. The whole plat-
form is considered as a fault containment region.

 Memory failure: Permanent memory cell, bank, and ar-
ea failures are classified as memory failures.

 Clock failure: A failure of an internal clock leading to
an incorrect notion of passed time.

 Power supply failure: A permanent fault or a transient
power supply faults, like a crank pulse or other short
power drops.

 Sensor failure: A value of a sensor is no longer availa-
ble or the provided data is incorrect or inconsistent.

 Network failure: Problems on the availability of the
network elements, i.e., the path to reach those elements
is blocked or the communication is corrupted or not
carried out in the expected time slots.

IV. GENERIC ADAPTATION MECHANISM

A. Redundancy Management

To enable systems to reconfigure in a situation-dependent
manner, knowledge of a new system configuration is required.
Based on such knowledge, a runtime system can then transi-
tion into this new configuration through the assistance of a
redundancy management scheme. In fully self-adaptive sys-
tems, both the planning and transitioning phase are envisioned
to correctly function at runtime. To attain such high aims, this
work exclusively focuses on the subtopic of dynamic recon-
figuration, which forms a cornerstone on the path to compre-
hensive self-adaptation. As such, all reactions are predeter-
mined during design-time following an extensive hazard anal-
ysis. Consequently, each anticipated failure is mapped to a
specific system configuration that is capable of mitigating the
respective hazard.

More precisely, the concept of a general adaptation mech-
anism (GAM) is introduced to manage system-wide and prede-
termined reconfiguration plans at runtime within a dedicated
module. For this, each processing unit within a managed sys-
tem is equipped with an instance of the GAM to detect adapta-
tion events, such as the failure of another device, and depend-
ing on the event, instruct the underlying operating system to
transition into a new configuration. As such, the GAM is a
reusable, generic, and platform-independent software artefact
that operates in a distributed manner in order to provide a
globally consistent system state. Here, special attention must
be paid in order to ensure its consistency, which is enforced

through a temporally well-defined exchange of status messag-
es between GAM instances operating on different computing
units.

In comparison to traditional safety functions, which are
characterised by their simplicity, the GAM concept combines
redundancy and other needs for adaptation within a single
logical software artefact. Considering this and the distributed
nature of this generic adaptation management concept, it is
inevitable to also derive safety goals for the GAM in order to
ensure the correct functioning of this safety function. Here, the
hardware architecture is of special interest, as it lays the foun-
dation for creating a line of argumentation to prove certain
guarantees and behavioural characteristics of the generic adap-
tation mechanism.

In detail, reconfiguration relies heavily on the cyclic ex-
change of heartbeats between processing units. As such, the
system must consist of at least two processing units that are
connected through two physically independent channels and
powered by two independent power sources, thus excluding
communication link and power failures from a fault cause
analysis. Moreover, each computing platform must meet min-
imal diagnostic capabilities in form of lockstepped processing
units to detect deviations in the calculations and thereby infer
a local hardware fault.

B. General Software Architecture

Based on these properties, a globally consistent state is
provided, which is enforced through an adaptation mechanism
on every device. More specifically, the software architecture
of this adaptation mechanism is composed from multiple
software artefacts, each providing a distinct functionality. At
the architecture’s core, an adaptation logic module is respon-
sible for reacting to local hardware faults and changes within
the system’s global state. For this, a communication module is
responsible for cyclically receiving heartbeats from all other
control units. As such, the adaptation logic can infer the fail-
ure of another control unit through the absence of a heartbeat.
Moreover, a simple lookup table is utilised to determine the
required configuration for a new system state, such as com-
pensating for the failure of another processing unit. This in-
formation is stored within a local database based on analysis
performed during design time, to determine a safe behaviour
of the system for any single failure within this control archi-
tecture.

In case of unsalvageable local faults, the adaptation logic
is further capable of discontinuing operations through a fail-
silent mechanism, thus preventing incorrect system behaviour
from occurring. Subsequently, another predetermined control
unit will detect this failure of a control unit, and therefore
adapt accordingly through the assistance of the adaptation
logic module. As this module is independent from a specific
platform implementation, an additional level of abstraction in
form of a diagnostics and fault filter module is required to
determine if a specific local hardware fault leads to an entire
control unit being considered unreliable, or if the fault may be
masked or mitigated by platform-internal mechanisms. Simi-
larly, a new system configuration must be translated into a
sequence of platform-specific commands, in form of modifica-

Fig. 1: Adaptation Interfaces

Figure 1: Fig. 1. Adaptation interfaces
a

tions to the operating system’s schedule. To accomplish this
task, a complex device driver module is utilised, thus allowing
the adaptation logic module to trigger reconfiguration without
having to consider the specific scheduling strategy of the un-
derlying platform. This relationship is depicted in Figure 1.

V. ADAPTATION HAZARDS

In the context of ISO 26262 [18], every item without inter-
nal safety mechanisms shall be evaluated as part of a hazard
analysis and risk assessment process. As such, each vehicle
function should be analysed in order to determine if the risk of
a specific hazardous situation can be mitigated. Despite this,
relying on a single concept for managing the availability of
multiple independent functionalities can lead to the occurrence
of new types of hazards due to its systematic nature. Conse-
quently, hazards that were not considered during an initial
functionality-based hazard analysis must also be accounted for
when utilising the GAM concept. For this, a closer look at the
different forms of adaptation is required, to derive a set of haz-
ards that must additionally be addressed.

In general, the adaptation mechanism utilises different
methods to adapt to a new situation. Foremost, after detecting
an unmaskable local fault, a platform is passivated by self-
isolating itself through the disabling of all communication links
in order to prevent further error propagation. Similarly, indi-
vidual non-critical applications can be passivated in order to
free enough resources for scheduling critical tasks after failure
situation, as part of a graceful degradation strategy. Moreover,
to complete a reconfiguration process, required tasks must once
be activated on another platform by transitioning from a non-
operation into a fully operational state, thus providing at least a
minimal set of functionality to operate a vehicle safely.

During this reconfiguration process, it is inevitable to pre-
vent certain system states from occurring. More specifically, a
design fault within the interpretation of local hardware diag-
nostics may falsely trigger a local passivation as part of the
item’s safety function. As a systematic occurrence of such false
trips would however endanger the availability and safety of the
entire system, additional design measures must be taken to
prevent such situations from occurring. On the contrary, an
incorrect detection of a remote platform’s failure can cause a
functionality to be provided by two software instances, thus
potentially leading to an unspecified control behaviour. There-
fore, a method is required to ensure that a platform is either
entirely isolated or alternatively accessible from all other rele-

vant platforms. In addition, the time required to perform such a
reconfiguration must be bounded during the system’s design
phase to ensure that any situation triggering an adaptation is
handled in an acceptable time frame, thus not endangering the
real-time properties of affected applications. For this, a fault
tolerant time interval (FTTI) is introduced for each application
to describe the maximal acceptable interval in which the func-
tionality may remain in an uncontrolled state. Moreover, any
platform participating as part of the proposed system must be
developed to the highest safety level amongst all applications
hosted within that system. This typically leads to the general
requirement that all platforms should be developed in accord-
ance to the requirements of the ASIL D. As such, the preven-
tion of design and hardware faults through appropriate isolation
measures is an essential prerequisite for utilising the general
adaptation mechanism.

VI. FUNCTIONAL SAFETY CONCEPT

To ensure that the previously introduced requirements, with
respect to mitigating the risks of newly introduced adaptation
hazards, are appropriately addressed, this section introduces an
innovative and refined functional safety concept. In detail, this
functional safety concept and its mechanisms for attaining fault
containment and mitigation of potential hazards are described
from a software, a hardware architecture, and a communica-
tions perspective to provide legibly evidence of why a single
fault will not lead to a violation of any of the system’s safety
goals.

Form of
Adaptation

Description

Platform
Failover

An application is instantiated on a different
computing platform, after the primary platform
was categorises as defective.

Degrade
Application

An application operates with fewer resources
requirements, such as discarding optional input
values or permitting longer execution periods.
This form of adaptation is based on different
execution paths of the application, thus the
GAM must be aware of these options.

Passivate
Application

An application is disabled either as part of a
degradation strategy or as part of the passivation
of an entire platform.

N-Version
Failover

A different version of an application is activated
to accommodate potential software errors. This
may include diversely implemented software or
the use of simpler control laws.

Table 1: Forms of Adaptation

The previously mentioned fail-silent behaviour is imple-

mented at platform level whereas the selection of different

fault tolerant and adaptation strategies occurs at system level

to provide fail-operational behaviour. Here, the executed au-

tomotive function plays an important role in the selected adap-

tation strategy. This includes different redundancy strategies

Gateway 1 Gateway n-1

Switch 1 Switch n-1

GAM deployed cores

Core node 1 Core node 2

Smart sensors & actuators

Heterogeneous duplex
pattern

HW/SW built-in
mechanism

Redundant
communication

paths

Core node n…

…

Fig. 2: Safety Concept on an Architectural Level

Figure 2: Safety Concept on an Architectural Level

__

i.e., hot-, warm-, and cold-standby or graceful degradation.

Moreover, in order to react to software design errors, adapta-

tion may also include a mechanism for activating a diversely

developed application, thus allowing to react to unspecific

behaviour of an application in absence of any hardware faults.

In essence, Table 1 summarises the possible adaptations cov-

ered by GAM.

A. Hardware Architecture

The hardware architecture of a system based on the GAM
concept requires at least two fail-silent computing platforms
with diverse hardware, platform software, and embedded safety
mechanisms in place. Based on this, the required level of fault
tolerance is ensured through different strategies, which are
highlighted in green in Fig. 2 and further discussed in the ensu-
ing paragraphs.

1) Network Topology

Failures within a communication medium are generally de-
tectable and mitigatable through redundant and independent
communication channels. In case of a switched communication
medium, a double-star configuration may be used to attain
redundant communication paths. Further, to achieve the re-
quired level of fault tolerance, sensors and actuators need to be
replicated. More specifically, critical sensor data is validated
with a 2-out-of-3 (2oo3) voting strategy to ensure the correct
perception of the environment. This widely known hardware
architectural spatial redundancy pattern [19] allows high pro-
tection against random hardware faults. The voter module
compares the outputs from all sources of information and uses
techniques such as majority voting to get a reliable value.

2) Diverse Redundancy Patterns

For several years great effort has been devoted to the study
of fault-tolerance design patterns [20]. One of the preceding
redundancy patterns is formally defined as Heterogeneous
Duplex Pattern. It targets the management of random and sys-
tematic faults to increase both the reliability and the safety of a
system. This pattern incorporates two independent and diverse
hardware channels (pair of core node) designed and imple-
mented by different teams and with different technologies.
Especially, the combination of different hardware technologies,

such as the use of different microcontroller or FPGAs provides
an effective building block for preventing systematic and
common cause failures. In sum, this solution has a high random
and systematic failure rate, thus being a very effective solution
for applications requiring high safety integrity levels.

Based on this, a backup core node will work in standby
mode and only take over the critical functions of the primary
core node after that core node fails. As a matter of fact, each
core node must hold a set of hardware and software safety
mechanisms to support ASIL D applications and to guarantee
fail-silent behaviour at component level. One of the main un-
derlying benefits is that the implemented hardware based safety
mechanisms extensively reduce software based error detection
time. This allows different error detection and correction pro-
cedures inside the electronic control unit depending on the
nature of the failure. Concerning covered fault types, transient
faults are directly covered at ECU level whereas not recovera-
ble ECU level permanent faults, such as permanent clock fail-
ures, are reported to the Fault Filter so that a global adaptation
process can be started.

3) HW & SW Fault Management Mechanisms

In the same way as redundancy architectural patterns are
deployed at system level, lockstep architectures [18] [21] are a
guarantee at core node level to be able to execute the highest
ASIL applications. In lockstep mode, operations run almost in
parallel and the results are compared by an independent com-
parator. If a mismatch is detected in the output of the two pro-
cessors, a flag is activated. The generated trap usually leads to
either reinitialising or switching to safe mode in case of a not
recoverable fault. This decision depends on the hardware and
the safety concept of the ECU. Nevertheless, a reoccurring
fault detected by a lockstep mechanism typically leads to the
conclusion that the platform is not trustable anymore. This
means that the whole core node would fail silently. Conse-
quently, no critical applications will be hosted on that core
anymore.

Since the two channel concept of the system can be built
through the use of diverse hardware elements, the utilised fault
tolerance pattern can deal with systematic, random, and com-
mon cause hardware failures. Hence, it is very effective for
transient errors, Arithmetic Logic Unit (ALU) type failures,
and direct current faults, e.g., stuck-at and bridging faults. As
claimed, hardware diversity (design, layout) and isolation pro-
vide effective coverage for common cause failures as well as
systematic failures. The drawback of this approach is that it
could be extensively complex to prove the diagnostic coverage.
CPU failure modes are also covered by software implemented
build-in self-test (BIST) tests and the inclusion of watchdogs.
The latter are capable of detecting scheduling and timing er-
rors. Regarding memory protection, all memory is protected by
hardware Error Correction Codes (ECC) and a Memory Protec-
tion Units (MPU) that stretch over the whole address space
(including peripheral registers) and enable a simple separation
of software, thus guaranteeing the freedom of interference.
Freedom of interference is assured between different ASIL and
QM software in terms of timing and execution, and exchange
of information. Further, software-based integrity checks may
also be implemented.

Adaptation logic

Complex Device Driver

Local
DB

Fault Filter

Communication
Extended

Heartbeat 1..n

Control monitor
Synchronous
communication

Data Consistency
Protection

Formal verification

Data Consistency
Protection

Plausibility

Watchdog

Formal verification

Fig. 3: Safety Concept of Adaptation Mechanism

To finish with some of the most relevant safety mecha-
nisms at platform level, external and internal monitoring mech-
anisms are also a guarantee to cover different failure modes.
They offer a solution for the detection of clock (clock moni-
tors) and voltage errors (under-voltage and overvoltage detec-
tion). In sum, all hardware faults, detection mechanisms, and
respective counter measures that are enforced by the GAM
concept are listed in Table 2.

Fault
Region

Detection
mechanism

Fault
Containment

System
reaction

Core Node
failure

HW lockstep System Failover

Memory
failure

Recoverable
by MPU

ECU
No need for

failover

Not recovera-
ble by MPU

System Failover

Clock
failure

SoC internal
WD

System Failover

ECU WD System Failover

Power
supply
failure

Fail-silent System Failover

Sensor
failure

Input loss ECU
Redundant

paths

Input
comparison

System
Degrade

application

Network
failure

Input
comparison

ECU/System
Redundant

paths

Recoverable
by CRC

ECU

Depending
on frequency

of occur-
rence

Not
Recoverable

CRC
System

Redundant
paths &
Failover

Table 2: Hardware Failure Management

B. Communication Perspective

1) Globally Consistent State

Another key element of the architecture is the Extended
Heartbeat (EH). This periodically transmitted signal poses as
an innovative error handling solution to monitor the status of
the core nodes by means of a time-triggered transmission be-
tween them. It contains a platform specific status, including
information on the currently running applications. It is periodi-
cally sent from one core node to all other nodes in a predefined
time slot through a communication medium that can guarantee
the transmission within this time slot. It is absolutely essential
that the system does not differ from the temporal behaviour
defined at design time. To simplify the temporal determinism
and partitioning of the system, all computing platforms must
communicate over a synchronous communication medium,
such as a time-triggered network.

In case of a not recoverable core node level failure, such as
a power failure, the extended heartbeat is not transmitted and
the other core nodes must take over the lost functionality.
Moreover, an extended heartbeat also holds information about
its origin in form of a core node identifier and the state of each
application instance. Such states may include if an application
is operational, passivated, or in a standby mode.

2) Data Integrity

An extended heartbeat must further include two different
mechanisms to ensure information correctness and integrity:

 Cyclic redundant check

 Rolling counter

The Data Validation (Integrity Check) is responsible to
provide checks on the input data and the system itself during
the execution of the derived algorithm. A cyclic redundancy
check (CRC) is included for that purpose. Range checks or
correctness checks are carried on basis of functioning parity or
CRC checks. Likewise, a rolling counter is added to guarantee
that the current message has been updated since the last com-
putation cycle. This is used to detect stale and omitted transi-
tions.

C. Software Perspective

After the functional safety concept has been described at

architectural level, the focus is in the following laid on the

software mechanisms implemented by the GAM. These mech-

anisms help to complete a safe adaptation process by ensuring

the correct functioning of the GAM. The different safety

mechanisms used to shield the system from the violation of a

safety goal are depicted in Fig. 3 and where required further

explained in the following.

Fig. 4: Exemplary System Architecture of a Smart Car

1) Plausibility Checks

Among the different software based fault tolerance patterns,
the ISO 26262 highly recommends plausibility checks as error
detection mechanisms at software architectural level to reach
the highest safety level for applications. They check the integri-
ty of any signal by means of a specified reference model of the
desired behaviour, assertion checks, or comparing signals from
different sources. In other words, some predicates are defined
in a set of variables to determine their validity at runtime. This
is used to filter the set of failures, which the GAM can handle,
and performance ranges of the core.

2) Data Consistency Protection

The previously mentioned CRC strategies are not only used
within the extended heartbeat. In the same way, data consisten-
cy protection should be ensured between the different plat-
forms’ local databases. The content of both of them must be
equal and neither incoherencies nor inconsistencies will be
found between them. Even if this feature is guaranteed during
the design time, the local databases include information redun-
dancy mechanisms such as parity bits or CRCs.

3) Formal Verification

Likewise, fault tolerance is achieved through different
mechanisms to detect or correct random hardware faults, sys-
tematic ones must be either avoided or removed during design
time. Jean-Claude Laprie [22] argued that techniques such as
formal verification can be applied to ensure fault-free designs.
This is carried out by performing model checking to find pos-
sible design errors of the Adaptation Logic and Complex De-
vice Driver modules. For the GAM concept, model checking is
performed to verify whether the component model meets a
given specification.

VII. AUTOMOTIVE CASE STUDY

In this section, the applicability of the safety concept of the
generalised adaptation mechanism is demonstrated by means of
an automotive case study. For this, a smart car is currently
under development to incorporate the safety architecture de-
scribed in Section VI. Based on this vehicle, three representa-
tive adaptation scenarios are selected to demonstrate the capa-
bilities of the safety concept, which is further evaluated and
discussed.

A. Smart Car Setup

For final testing of the GAM concept a real electric car will
be used within the presently ongoing SafeAdapt research pro-
ject [23]. This smart car includes novel electronic system archi-
tecture with centralised hardware platforms implementing the
GAM. As in modern cars many functions are controlled purely
electronically, redundancy mechanisms are required to ensure
their availability, even in the case of a failure. For now, the
approach is limited to single failure in the system so that a safe
state can be reached. After this, the mission has to be aborted
safely, i.e., through halting the vehicle.

For the evaluation, the focus is laid on three different appli-
cations with varying types of criticality with respect to their
assigned safety level. A Steer-By-Wire (SBW) function ena-

bles the electric steering of the vehicle, by sensing the driving
and steering wheel angles, calculating the intended wheel an-
gles, and actuating the change of direction via motors to the
front axis. An Adaptive Cruise Control (ACC) function enables
the vehicle to automatically keep its distance to an in front
driving or stopping car. For this, it perceives the surrounding
environment through radars and cameras, calculates the appro-
priate throttle value, and actuates the engine control. Both are
critical vehicle functions. As the SBW functionally must re-
establish an operation state within milliseconds after a failure,
is it implemented as a hot-standby application on a backup
node. As the failover times of the ACC functionality is less
critical, it in contrast can be implemented as a more resource-
efficient cold-standby application in cases where the availabil-
ity of the ACC is desirable after a failure. As a third exemplary
application, the control of the air condition (A/C) was selected,
which has no requirements with respect to availability.

The currently developed smart car will include two differ-
ent and powerful computing platforms, which execute the
SWB, ACC, and A/C functions. In this example case study,
Platform 1 (P1) hosts the SBW and ACC, whereas platform 2
(P2) executes a hot-standby version of SBW (see Fig. 4) and
can potentially activate a new ACC instance. In order to
demonstrate use cases with more than two platforms, the fol-
lowing scenarios will consider the existence of additional plat-
forms (Platform n).

B. Platform Failover

In this scenario, the smart car is expected to be in driving
operation on a road, when a defect, such as short circuit, leads
to an immediate failure of one of a platform (here, without the
loss of generality, P1). P1 has been executing the SBW and
ACC applications (see Fig. 5). This situation generates the
need for an adaptation in the form of a failover to the remain-
ing platform P2.

Here, the failure of P1 and the accompanying transitions in-
to a fail-silent state was so abrupt that no extended heartbeat
(EH) could be sent. Consequently, the adaptation logic block
(AL) of platform two detects the lack of a new EH from P1 and
thus starts a predefined adaptation process to mitigate the pre-
sent hazard. For this, the AL block will fetch a new system
configuration from the local database, which is implemented as
a look-up table. To enable an almost seamless transition into a
degraded state, this look-up table is maintained in form of in-
stant adaptation plans. As such, a switch to a hot- or cold-
standby instance is simply performed by activating the respec-

Platform2

SBW
H-Stb

Platform1

ACC

SBW

Platform n

A/C…

Platform2Platform1

ACC

SBW

Platform n

A/C…

ACC

Basic
SBW

Fig. 7: Adaptation Scenario 3 – Energy-Efficient Configuration

a

Platform2

SBW
H-Stb

Platform1

ACC

SBW

Platform n

A/C…

Platform2Platform1

ACC

SBW

Platform n

A/C…
ACC

SBW

Fig. 6: Adaptation Scenario 2 – Degrade Application

a

Platform2

SBW
H-Stb

Platform1

ACC

SBW

Platform n

A/C…

Platform2Platform1

ACC

SBW

Platform n

A/C…
ACC

SBW

Fig. 5: Adaptation Scenario 1- Platform Failover

tive applications through adjusting the schedule of the entire
system. After eliminating an eminent threat in the first failover
phase, the AL block is now capable of searching for new con-
figurations in a second phase that is not bounded by such a
strict temporal interval. This optional planning capability is in
general useful for scenarios in which a driving mission should
not be aborted after the first failure of a platform.

In this scenario, the first action is to activate the hot-
standby instance of the SBW application on the unaffected
platform. This is the quickest and most resource-consuming
form of adaptation. Next to this, an instance of the ACC appli-
cation will also be activated on an unaffected platform. As this
form of adaptation was specified as cold-standby during the
design phase, the newly activated instance has to first attain a
valid perception of the system, before transition into an opera-
tional state. Consequently, this initialisation of the ACC cannot
be performed as rapid as the SBW reactivation, which is how-
ever acceptable for its defined temporal criticality of the appli-
cation. In essence, both applications will be running again,
before the driver notices that the vehicle has been in a not fully
functioning state. To define a maximal acceptable failover
time, design time simulations have been carried out with re-
spect to the performance of the vehicle’s dynamics in the most
time-critical driving scenarios, as part of a preliminary hazard
and risk assessment. Regardless of this, the system will notify
the driver by means of a warning message after a failure oc-
curred. At this point, the driver has to stop the vehicle to pre-
vent a hazardous situation.

C. Degradation of Application

In a second scenario, adaptation is not triggered by a plat-
form failure, but through false sensors data. More specifically,
input data of one of the sensors is identified to be no longer
trustworthy.

Just as on the previous example, there are two critical ap-
plications running, the SBW and the ACC. In this example, the
SBW application executing as a hot standby instance on the
second platform is a more basic application (e.g., with respect
to maximal driving speed) than the primary instance. In this
case, the standby application does not require data from the
faulty sensors.

When the failure of a sensor is detected on the primary plat-
form, the fault filter block from this platform will inform the
AL. As the degraded version of the affected SBW application
is hosted on another device, the platform will passivate the
primary SBW application. Simultaneously, the second platform
will activate the degraded SBW instance, which does not re-
quire data from the optional and untrustworthy sensors. Argua-
bly, this type of adaptation would also be performed within the
application of the primary platform. As the backup instance is
however required for other failure scenarios, it may also be
reused for these types of failures (see Fig. 6).

D. Energy-Efficiency

In the third scenario, the adaptation is not triggered by a
failure, but by the need to reduce the energy consumption in
order to increase the expected range. The battery management
system will detect that the battery charge of the vehicle has
decreased below a predefined threshold, indicating a low bat-
tery status. This value is passed as warning to the system
through the Fault Filter. The latter informs the AL about the
low energy state and triggers the switch to a low energy con-
figuration through passivation. This form of adaptation does
not have the same time requirement for carrying out reconfigu-
ration as compared to the other introduced scenarios. The ob-
jective here is not to isolate a fault and reactivate an operational
instance, but to reduce the energy consumption. Thus, the time
window for choosing the most adequate configuration is not as
tight.

Nevertheless, the new configuration plan has to take into
account the energy consumption of the applications and their
criticality. For example, in this scenario the less critical appli-
cation with the highest energy consumption is the A/C, which
is therefore going to be passivated. In this example, the adapta-
tion is able to switch off the A/C, which is one of the most
battery consuming applications (see Fig. 7). Further, the control
unit hosting this application may transition is a passive sleep
state, as no essential applications are hosted on that device.

VIII. VERIFICATION, VALIDATION & TEST PROCESS

The presented scenarios of the smart car highlight how the
system with the GAM is capable of handling expected failures.
Moreover, the system’s safety concept has to be validated and
it must be ensured, that all identified hazards have been avoid-
ed or mitigated to a tolerable level of risk. For this, a safety
case development method was used in order to support the
claims about the fulfilment of all safety goals. This has also
provided useful means of identifying the type of evidences

requirement to support the claims. The results of different veri-
fications at different development phases are the ones used in
the safety case to support the adaptation safety goal fulfilment.
Fig. 8 shows an excerpt of this safety case regarding the fulfil-
ment of the goal that the adaptation has to be triggered correct-
ly. In the following, the different validation strategies are dis-
cussed in detail.

Foremost, the GAM itself is developed using model based
design. This provides the opportunity to apply formal verifica-
tion, so that fault avoidance can be assured. At design time, a
state machine was defined to ensure that the algorithm is exe-
cuting only the necessary logic for the adaptation phases, in
which it currently resides. To apply the concept of a state ma-
chine onto a distributed control system, it was necessary to
ensure a synchronised execution of applications on all plat-
forms. This form of synchronisation allows to define state tran-
sitions of an individual platform within the context of the entire
system. In detail, the execution of each application is assigned
to a fixed execution window during design time, further allow-
ing a simple verification of the systems temporal correctness.
Based on this, the system’s reaction to a failure in form of a
transition into a new configuration is easily described through
explicit transitions at each execution point of the GAM.

In addition, the behaviour for each type of adaptation cov-
ered by the design must be tested. The examples presented in
this paper have been used to define test cases. For defining the
vehicle applications that will require adaptation, care must be
taken to identify all highly critical applications with respect to
safety and availability.

Within the project, two validation and test platforms have
been used to ensure the safety of the GAM concept. Primarily,
a vehicle dynamics simulation software [24] is used to deter-
mine the maximal acceptable failover times for individual
software components. This simulation environment will focus
on testing the perceived vehicle dynamics that define the max-
imum time for the GAM to execute a specific adaptation plan,
before control of the vehicle is lost. Thus it helps to evaluate
and validate the expected fault tolerant time interval at vehicle
level. This is especially important for defining the controllabil-
ity of the vehicle during the adaptation. Additionally, Hardware
in the Loop (HiL) tests will be executed on a test bench to veri-
fy the GAM behaviour in the diverse use cases.

Moreover, a real car [25] is utilised to test the final system.
Here, the objective is to demonstrate the software behaviour
and system architecture in a real working car, while at the same
time testing the proposed functional safety concept. The test
setup of the vehicle’s hardware architecture consists of two
platforms that were developed diversely. For this, a platform
developed by Delphi [26] and another developed by Siemens
[25] are used as core nodes within the vehicle. As such, the
GAM software component is deployed on both platforms.
These two platforms have already been developed to fulfil the
minimal diagnostic coverage for unambiguously detecting
hardware faults in accordance to the requirements of the GAM
concept. Moreover, the platforms are enhanced with software
to map hardware-specific faults onto the generic GAM fault
model.

To further evaluate the failure management behaviour in
early development stages, models have been designed on basis
of the EAST-ADL [27] architecture description language for
automotive embedded systems. Moreover, the Ernest tool [28]
is being utilised to test the system configuration for unantici-
pated failure cases on basis of a simulation.

IX. DISCUSSION

With respect to the introduced safety concept, it should be
noted that the increase of complexity in automotive application
functions requires more sophisticated functional safety con-
cepts. For instance, autonomous driving will introduce com-
plex control algorithms, which in turn will exhibit a higher risk
of containing implementation or design errors. Consequently,
strategies, such as switching to a simpler control law, will have
to be applied to the automotive domain in order to ensure the
safe and autonomous operation of a vehicle. Moreover, strong
hardware diagnostics are required to unambiguously assign an
observed fault pattern to a specific software error. Therefore, it
is inevitable to provide strong diagnostic in order to rule out
any other hardware-related cause, as this may eminently lead to
wrong or even hazardous forms of adaptation.

Moreover, self-adaptive systems are focused on adaptation
functionality. Despite this, no harmonised verification process
exists for these types of systems, as for instance, the functional
safety standard ISO 26262 does not provide any guidelines on
how the safety of adaptive systems should be assured. Regard-
less, this work has tried to apply the objectives of ISO 26262
on a self-adaptive system.

Even though systematic software errors are considered for
control applications, the GAM must be free of systematic er-
rors, as it represents a central critical element to ensure the
correct functioning of a control system, and thus further cannot
provide a safe state. As such, this work focuses on applying
both formal techniques to verify the design and implementation
correctness, as well as conducting additional tests through the
use of simulation frameworks. In sum, this conservative ap-
proach provides an even higher level of confidence with re-
spect to the correct configuration and functioning of a general
adaptation mechanism.

X. CONCLUSION

Smart cars which are capable of self-adaptation hold great
potential with respect to enhanced features like extensibility or
provisioning of fail-operational behaviour. This, however,
raises challenges for the safety concept of such vehicles. The
presented approach introduces a generic adaptation mecha-
nism, which enables a safe adaptation of a car’s functionality.
Based on the hazards introduced with adaptation a functional
safety concept was derived. Its soundness and advantages are
shown by the application to automotive use cases. Thereby, it
is highlighted that this generic adaptation mechanism is able to
handle common types of adaptation scenarios in a safe way.

Future work is ongoing with implementing the concepts in
a real electric vehicle, thus for instance ensuring the safe opera-
tion and highly available of a steer-by-wire functionality within
the course of the SafeAdapt project.

Fig. 8: Excerpt of Safety Case

REFERENCES

[1] P. Bieber, E. Noulard, C. Pagetti, T. Planche, and F. Vialard,
“Preliminary design of future reconfigurable IMA platforms”, ACM
SIGBED Rev. 6, 3, Article 7, October 2009.

[2] P. Cuenot, “Deliverable D3.3.2 – Requirement specification for a multi-
class ECU concept”, SAFE project, 2014, http://www.safe-
project.eu/SAFE-Publications/SAFE_D3.3.2.pdf.

[3] G. Weiss, F. Grigoleit, and P. Struss, "Context modeling for dynamic
configuration of automotive functions," 16th International IEEE
Conference on Intelligent Transportation Systems - (ITSC), pp. 839-844,
2013.

[4] R. De Lemos, H. Giese, H. A. Muller, M. Shaw, J. Andersson et al.,
“Software Engineering for Self-Adaptive Systems: A Second Research
Roadmap,” Software Engineering for Self-Adaptive Systems, 7475,
Springer, pp.1-26, 2013.

[5] V. Lopez-Jaquero, F. Montero, E. Navarro, A. Esparcia, and J.A.
Catal'n, "Supporting ARINC 653-based Dynamic Reconfiguration,"
Joint Working IEEE/IFIP Conference on Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA),
2012, vol., no., pp.11,20, 20-24 Aug. 2012.

[6] H.Mubarak, and P. Gohner, "An agent-oriented approach for self-
management of industrial automation systems," Industrial Informatics
(INDIN), 8th IEEE International Conference, pp. 721-726, 2010.

[7] J. Floch, C. Fra, R. Fricke, K. Geihs, M. Wagner et al., “Playing
MUSIC - building context-aware and self-adaptive mobile applications”.
Software: Practice and Experience 43(3), pp. 359-388, March 2013.

[8] P. Hofmann, and S. Leboch, “Evolutionäre Elektronikarchitektur für
Kraftfahrzeuge (Evolutionary Electronic Systems for Automobiles)“, it-
Information Technology, pp. 212–219, 2005.

[9] M. Dinkel and U. Baumgarten. "Self-Configuration of Vehicle Systems -
Algorithms and Simulation”, in WIT '07: Proceedings of the 4th
International Workshop on Intelligent Transportation 2007, pp. 85-91.

[10] R. Anthony, A. Rettberg, D.-J. Chen, I. Jahnich, G. de Boer et al.,
“Towards a Dynamically Reconfigurable Automotive Control System
Architecture”, IESS, volume 231 of IFIP. Springer, pp.71-84, 2007.

[11] H. Seebach, F. Nafz, J. Holtmann, J Meyer, M. Tichy et al., “Designing
Self-Healing in Automotive Systems”, Proceedings of the 7th
International Conference on Autonomic and Trusted Computing (ATC),
2010.

[12] K. Höfig, M. Armbruster, and R. Schmid, “A vehicle control platform as
safety element out of context”, HiPEAC Computing Systems Week,
May 2014.

[13] K. Heckemann, M. Gesell, T. Pfister, K. Berns, K. Schneider et al.,
“Safe automotive software”, in Knowledge-Based and Intelligent
Information and Engineering Systems, Springer, pp. 167–176, 2011.

[14] D. Schneider and M. Trapp, "Conditional Safety Certification of Open
Adaptive Systems" ACM Trans. Auton. Adapt. Syst. 8, p. 8, 2013.

[15] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel,
“Relax: Incorporating uncertainty into the specification of self-adaptive
systems”, 17th IEEE International Requirements Engineering
Conference. RE, pp. 79–88, 2009.

[16] J. Rushby, “A safety-case approach for certifying adaptive systems”,
AIAA Infotech@ Aerospace Conference, pp. 1992, 2009.

[17] S. Getir, S. Gerasimou, B. Eberhardinger, and T. Vogel, “Assurances for
Self-Adaptive Software Systems”, Report from the GI Dagstuhl Seminar
14433: Software Engineering for Self-Adaptive Systems, 2015.

[18] International Organization for Standardization (ISO), “ISO/DIS 26262:
Road vehicles - functional safety”, 2011.

[19] R.S. Hanmer, “Patterns for Fault Tolerant Software”. Wiley series in
software design patterns, ISBN-13: 978-0470319796, 2007.

[20] A. Armoush, “Design Patterns for Safety-Critical Embedded Systems”,
PhD thesis, Aachen University, 2010.

[21] R. Mariani, P. Fuhrmann, and B. Vittorelli, “Cost-effective Approach to
Error Detection for an Embedded Automotive Platform”, SAE World
Congress & Exhibition, April 2006.

[22] J.C. Laprie, “Dependability: Basic Concepts and Terminology Springer-
Verlag”, ISBN 0-387-82296-8, 1992.

[23] SafeAdapt project, http://www.safeadapt.eu.

[24] A. Pena, I. Iglesias, J. Valera, and A. Martin, “Development and
validation of Dynacar RT software, a new integrated solution for design
of electric and hybrid vehicles”, Technical article on integrated solutions
for new vehicles designing, Presented at EVS 26, Los Angeles (USA),
2012.

[25] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Zirkler et al., “RACE: A
Centralized Platform Computer Based Architecture for Automotive
Applications” IEEE International Electric Vehicle Conference (IEVC),
2013.

[26] C. Stellwag, T. Rosenthal, and S. Gandhi, “Isolation of Cores - Reduce
costs of mixed-critical systems by using a divide-and-conquer startegy
on core level”, WICERT workshop, 2013.

[27] EAST-ADL Association, http://east-adl.info/.

[28] B. Kamphausen, A. Stante, M. Zeller, and G. Weiss, “ERNEST -
framework for the early verification and validation of networked
embedded systems”, Embedded World 2013. Exhibition & Conference,
2013.

