Explanation Framework for Intrusion Detection

Nadia Burkart!, Maximilian Franz', and Marco F. Huber??

! Fraunhofer IOSB, Karlsruhe, Germany
2 Institute of Industrial Manufacturing and Management IFF, University of
Stuttgart, Germany
3 Center for Cyber Cognitive Intelligence (CCI), Fraunhofer IPA, Stuttgart, Germany

Abstract. Machine learning and deep learning are widely used in vari-
ous applications to assist or even replace human reasoning. For instance,
a machine learning based intrusion detection system (IDS) monitors a
network for malicious activity or specific policy violations. We propose
that IDSs should attach a sufficiently understandable report to each alert
to allow the operator to review them more efficiently. This work aims at
complementing an IDS by means of a framework to create explanations.
The explanations support the human operator in understanding alerts
and reveal potential false positives. The focus lies on counterfactual in-
stances and explanations based on locally faithful decision-boundaries.

Keywords: Intrusion Detection Explainable Machine Learning Coun-
terfactual Explanations

1 Introduction

Advances in machine learning models are associated with an increased complex-
ity of the models. These models appear to end users and even to their developers
as black boxes. The reasoning behind the model is often opaque. The research
field of explainable machine learning focuses on making models more accessi-
ble, transparent and comprehensible for users. Over the past years, there was
a surge in approaches for better explainability of the models. Explainable ap-
proaches are especially sought after in critical use cases like network-security,
medicine or finance. By enabling a lay system user to understand and reproduce
the fundamental workings of a machine learning model, trust can be built and
improved. In an IDS, explanations of the underlying model can help a system
operator to easily understand the model’s judgment and reveal potential false
positives. In a binary classification task (e.g., classifying suspicious vs. normal
behaviour), the concept of a counterfactual explanation is particularly helpful
for the human operator as it formalizes a common thought process: ”Why did
X happen and not Y?”. Counterfactual questions are a tool to expose flaws in
the underlying decision process. By revealing counterfactuals to the system op-
erator, this could clarify his mental model of a black box classifier and uncover
flaws in the model’s judgment. We focus on three aspects:

— Understandability: Explaining the classification of an instance, based on
some form of feature importance.

© The Author(s) 2021

J. Beyerer et al. (Hrsg.), Machine Learning for Cyber Physical
Systems, Technologien fiir die intelligente Automation 13,
https://doi.org/10.1007/978-3-662-62746-4_9

®

Check for
updates

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-62746-4_9&domain=pdf

84 Burkart et al.

— Actionability: Giving practical advice how to change the classification to-
wards the desired result.

— Simulatability: Outlining the decision process to allow a user to simulate the
behaviour of the model.

In the following, we first give some background of existing work and introduce
notations. In Section 3, we then generalize existing counterfactual approaches
into the five phases we consider essential for every counterfactual explanation. We
slightly adapt modules of existing work, which we evaluate on the IDS scenario.

2 Explanations for Intrusion Detection

We denote by f : X — [0,1] a binary black-box classifier that we want to
explain. We assume that f is pre-trained as part of an IDS. Hence, f maps so-
called attack-vectors Z from a multidimensional feature-space X C R"™ onto the
probability that they are malicious instances.

2.1 Surrogate Models

Surrogate models approximate black-box models either locally or globally in an
interpretable fashion. One of the best known methods to locally explain black
box models by training a surrogate is local model-agnostic explanations (LIME)
[1]. Since their work has been thoroughly explained, tested and used [2], we
will not elaborate on the specifics of the method. It suffices to note that the
idea of LIME is to train a surrogate model g that approximates the original
black box classifier f, g ~ f, based on training data sampled in a neighborhood
around the instance of interest, #y. LIME provides a set of feature attributions
(see Section 4) derived from the weights of the linear classifier g trained on the
sampled data set. These attributions tell the user, which features contributed
most significantly to the result.

2.2 Counterfactual Explanation

Laugel et al. [3] note, there is another approach to the local explanation prob-
lem, which yields a slightly different interpretation. Namely, what we propose
to call decision boundary centered explanations. While LIME illustrates which
features contribute to an instance, Local Adversarial Detection (LAD) [4] and
Local Surrogate [3] yield a feature attribution that is relevant at a local decision
boundary. To do so, it is required to find the decision boundary first and then
to train a surrogate on instances located around the decision boundary. Laugel
et al. find the decision boundary through random spherical sampling around the
instance #p. Wachter et al. [5] introduced another solution based on counter-
factuals. A counterfactual of ¥ is an instance &, that yields the opposite clas-
sification. Thus, given ¥ and f we are searching for &’ such that f(f) #+ f(f’),
where f : X — {0,1}, f(&) — [f(Z)], is the binary classifier that yields the

Explanation Framework for Intrusion Detection 85
predicted class. Ideally, &' is close to ¥ in the feature space X, with respect to
some distance metric d(-, -). This formalizes the intuition that the counterfactual
should be similar to the original instance. The major contribution from Wachter
et al. is to consider the search for a counterfactual as an optimization problem.
Formally, Watcher et al. propose to minimize a function

L(Z, &,y A) = X~ (f(@) —y)* + [(1 = \) - d(@ &) x I(Z) , (1)

£r= !

where I(7') = 0. ji(:i/) 7 y/

L f@) =y
with respect to &'. With A € [0, 1], we control the effect of locality, ¥y’ = 1 —y
denotes the opposite class of the classifier and I is an optional indicator function.
Since the classifier f is a black box, one has to optimize for 2’ using derivative
free methods (e.g., Nelder-Mead). We elaborate on the methods in Section 3.1.
In the following, we are concerned especially with the decision boundary cen-
tered explanations as they tend to yield more decisive results. We will see that
counterfactuals are in fact a by-product of the search for the decision boundary.

3 The Modular Phases of Explanations

We dissect the method of finding decision boundary centered explanations into
five distinct phases, containing the search for counterfactuals. Also, we present
existing approaches for the single phases to give a better intuition (see Figure 1
and Table 1). We start with a given instance Zy of class A, an attack instance,
of which we want to explain the classification f (Zp). The goal is to explain why
f decided Zj to be class A rather than B, a benign instance. This is the specific
setting of an IDS described above. The semantic goal of the explanation is to
allow the user to judge whether the decision was correct. A consideration that
we wanted to keep in mind during all phases is that inference of the model f, or
f for that matter, might be very expensive. Thus, we aim to keep the number
of queries to the black-box small.

(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Phase 4 (e) Phase 5

Fig. 1: The five phases of explanations.

86 Burkart et al.

Table 1: Overview of the various approaches for the phases 1 to 5, see Section
3.1-3.5

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Derivate-Free |Magnetic Sam-|Linear Search,|Train on sam-|Explanation
[5], Grow-|pling, Random|Binary Search |ple set, Train|with inter-
ing Spheres|Sampling on boundary|pretable model
[4], Random touchpoints (e.g., small
Sampling [3] decision tree)

3.1 Phase 1: Finding the First Counterfactual

The first support point 7}, i.e., the first counterfactual, is an instance such
that f(Zo) # f(Z,). As mentioned in Section 2.2, this can be formulated as an
optimization problem. Alternatively, we can use random approaches similar to [1]
or [4]. Randomly sampling instances in a neighbourhood of the instance &y can
be very expensive as the counterfactual might be far away in the feature space
of possible instances. Therefore, we use the optimization approach introduced in
[5] with minor adaptions. Particularly, we use the distance metric

n

I
(@) = 2 NAD,

that is robust to outliers. Here, n is the dimension of X, x; denotes the i-th
feature value of instance £ and MAD; is the median absolute deviation of feature
7 in the training dataset P according to

MAD; = mediangep (z; — Z;) ,
with Z; = mediange p(z;). We normalize over the number of dimensions as our
framework aims to be agnostic. Next, (1) retrieves the counterfactuals through

BF,y'\) = argmin A+ (F(7) — y)* + dn(7,) @)

In our implementation, we minimize (2) with the Nelder-Mead simplex algo-
rithm [6], which is a derivative free method. The result of (2) is the first coun-
terfactual.

3.2 Phase 2: Finding Support Points

Given the first counterfactual Z; € X , we want to find a set S of instances, such
that all Z; € S are counterfactuals. Literally speaking, they are located on the
“opposite side” of the decision boundary. The desired goal is to expand S in order
to get a good representation of the actual area where f classifies instances as
class B. The idea behind our approach named MagneticSampling is to expand
the area stepwise into all directions across the dimensions starting from the

Explanation Framework for Intrusion Detection 87

initial sample #} until the newly sampled instances are no longer classified as B.
For this purpose, we first determine the direction vector d=] — To between
the original instance and the first counterfactual. We deterministically sample
support points Z%, ¢ > 1, by rotating d around Zo, i.e., taking points with distance
||d_]| from #, that are in the vicinity of #], with a fixed discretization step size.
This corresponds to taking the support points from the set

B(Z, &1, a) = {Z € X+ |Z—To| = |7 — Zo| and |7~ Z\|| < a and f(2) =y'},

with ||.|| being the Euclidean norm.

Considering only instances around Z ensures that we find one connected
decision boundary and not multiple patches. While possibly neglecting other
possible boundaries, this simplifies the explanation [7].

3.3 Phase 3: Finding Decision Boundary

Given the set S of support points or counterfactual points, we approximately
locate the decision boundary, which is somewhere on the line segment between
%o and any 7, € S. We denote the segment by L;(v) := @y + v - (&; — o)
with v € [0,1]. The result of this phase is some abstract representation of the
possibly sophisticated decision boundary in local proximity to Zp. To give an
intuition, this could mean a set of points B such that each 7, € B is on the
decision boundary (a border touchpoint) [3], or it could be a polygon enclosing
the decision boundary in a given segment. Considering the way we sampled
our support points, we can assume that the value of f develops monotonously
on the segment L;. Note that this does not have to be true for the prediction
probability f. Given this assumption we can use binary search on the segments
to approximately locate &, = L;(v) for some v and thereby reduce the number
of queries to our black-box f from O(n) to O(log(n)).

3.4 Phase 4: Train Explainer on Sample Set

Using the representation of the local decision boundary from Phase 3 we sample
a set T of instances around the decision boundary. Given T we train a simple
model g, called surrogate, to approximate the decision boundary locally. Similar
to [1], we constrain the complexity 2(g) of the model by imposing constraints
like maximum depth for decision trees or number of non-zero weights for linear
classifiers. Formally, we obtain g out of a class of models G (e.g. decision trees,
linear models, ...) through

Q(T, f, L) = argmin > L (f(&),9(%))

reT

where L' is some loss function (e.g. Mean-Squared-Error loss).

The framework allows manually or automatically limiting the number of
features considered by the surrogate g. If no previous knowledge is available to
select features, Least-Angular Regression (LARS, [8]) can be used to determine
a restricted feature set.

88 Burkart et al.

3.5 Phase 5: Present Explanation & Give Adwvice

Given the results of the previous phases we can now present various explanations.
The three major examples are

— Feature Importance: As Ribeiro et al. [1] verified, feature importance or
attribution, can be a useful way to understand a decision post-hoc.

— Relative Differences: We use counterfactual instances revealed in phase one
to provide actionable explanations for a user in form of relative differences.
See Sec. 4 for an example.

— Surrogate Visualization: For the aspect of simulability, it is desirable to show
a representation of the model to the user. Due to their computational sim-
plicity, decision trees are favorable for this task.

4 Experiment

In this chapter the fidelity of the surrogates and their configuration is evaluated
on different data sets . Furthermore, we exemplary present possible explanations
for the use case of an IDS. For the IDS2017 [9] and the KDD[10] we trained the
MLP classifier on the subset of Web and DOS attacks. The fidelity quantifies
how well the surrogate model mimics the behavior of the MLP. Fidelity is the
percentage of test examples on which the prediction made by the surrogate
matches with the prediction of the trained black box (MLP) [11].

The results for the different configuration by using 10-fold cross-validation
are displayed in Table 2 and Table 3. Looking at the results from Table 2 for
the IDS data set, we observe that the tree surrogate proposed by the framework
consistently outperforms linear approximations trained in LIME fashion and
according to our linear approach explained in Section 3. As shown in [12], decision
trees also far better in terms of human interpretability. In short, the decision tree
trained on the decision boundary (DB-tree) is both more accurate and more
interpretable. For the random configuration illustrated in Table 3 mostly LIME
outperforms DB-Linear and DB-tree. The results of Table 2 and 3 illustrate that
the systematic approach (Nelder Mead/Magnetic Sampling) is more effective
than LIME and the random approaches.

We continue with a visualization of the possible explanations of our frame-
work, but limit ourselves to the rather novel approaches of relative difference

Table 2: Fidelity for Nelder

Mead/Magnetic Sampling Table 3: Fidelity for Random

Data set ||LIME|DB-Linear|DB-Tree Data set ||LIME|DB-Linear|DB-Tree
IDS [9] 0.85 | 0.87 0.97 IDS [9] 0.84 | 0.91 0.85
KDD [10] || 0.93 | 0.96 0.99 KDD [10] || 0.92| 0.84 0.83
Heloc [13] || 0.86 | 0.96 0.97 Heloc [13] || 0.92 | 0.78 0.82

Credit [14]|| 0.95 0.99 0.99 Credit [14]|| 0.96 0.87 0.92

Explanation Framework for Intrusion Detection 89

Relative feature difference

Destination Flow IAT Bwd IAT Packet Finflag Pshflag Urgflag Inftwin Initwin Idie
port mean total lenght count count count bytes bytes mean
mean forward packward

= instance
= Counterfactual

E L &

Normalized feature values
g

Fig. 2: Relative feature difference between instance and counterfactual (Data set:
IDS)

same_srv_rate <= -0.352
value = [7547, 11387]

src_bytes <= -0.002
value =[165, 25]

value = [176, 62]

Fig. 3: Decision Tree trained on the decision boundary (Accuracy 0.99) (Data
set: KDD)

and surrogate visualization for brevity. The feature attribution we can retrieve,
matches in its nature that of LIME and can help a user to understand a decision.
The Relative Difference method on the other hand, makes use of the counter-
factual to give actionable advice. Figure 2 shows the differences between the
instance and its counterfactual for the ten most significant features. It quickly
reveals that the high value of Init win bytes backward caused the erroneous
classification as an attack.

Surrogate visualization on the other hand helps the user to simulate the
decision process. For this task, the decision tree depiected in Fig. 3 is suited
best, as the effort for manually inferring a prediction is low [12].

5 Summary

In this paper, a theoretical framework for modular decision boundary focused
explanations was proposed. By distributing the training of an explainable sur-
rogate in different modules, flexibility and variety is introduced. The aspect
of generating decision boundary centered explanations allows easily generating
counterfactuals. Due to the increasing demand for explainable machine learning

90

Burkart et al.

systems, various approaches should be pursued in parallel. With this work we
contribute to the field of model-agnostic analysis, for which many methods have
been proposed before [15]. Depending on the requirements of the application,
other approaches like those proposed by Pearl et al. [16] ought to be pursued in
parallel. By reviewing the literature on explainable machine learning, we have
encountered a confusing ambiguity when it comes to terminology. Clear research
directions and notation ought to be introduced. More user studies like [12] are
needed to gain more insights of how understanding and actionability really can
be obtained.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

M. Tulio Ribeiro, S. Singh, and C. Guestrin, ““Why Should I Trust You?”: Ex-
plaining the Predictions of Any Classifier,” ArXiv e-prints, Feb. 2016.

S. Mishra, B. L. Sturm, and S. Dixon, “Local interpretable model-agnostic expla-
nations for music content analysis.,” in ISMIR, pp. 537-543, 2017.

T. Laugel, X. Renard, M.-J. Lesot, C. Marsala, and M. Detyniecki, “Defining
Locality for Surrogates in Post-hoc Interpretablity,” ArXiv e-prints, June 2018.

. X. Renard, T. Laugel, M.-J. Lesot, C. Marsala, and M. Detyniecki, “Detecting

Potential Local Adversarial Examples for Human-Interpretable Defense,” ArXiv
e-prints, Sept. 2018.

. S. Wachter, B. D. Mittelstadt, and C. Russell, “Counterfactual explanations

without opening the black box: Automated decisions and the GDPR,” CoRR,
vol. abs/1711.00399, 2017.

. J. A. Nelder and R. Mead, “A simplex method for function minimization,” The

computer journal, vol. 7, no. 4, pp. 308-313, 1965.

. C. Molnar, “Interpretable machine learning,” A Guide for Making Black Box Mod-

els Explainable, 2018.

. B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al., “Least angle regression,”

The Annals of statistics, vol. 32, no. 2, pp. 407-499, 2004.

. 1. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new

intrusion detection dataset and intrusion traffic characterization.,” in ICISSP,
pp. 108-116, 2018.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
kdd cup 99 data set,” in 2009 IEEE Symposium on Computational Intelligence for
Security and Defense Applications, pp. 1-6, IEEE, 2009.

M. Craven and J. W. Shavlik, “Extracting tree-structured representations of
trained networks,” in Advances in neural information processing systems, pp. 24—
30, 1996.

S. A. Friedler, C. D. Roy, C. Scheidegger, and D. Slack, “Assessing the local inter-
pretability of machine learning models,” arXiv preprint arXiv:1902.03501, 2019.
“Heloc explainable ml challenge.” https://community.fico.com/s/explainable-
machine-learning-challenge. Accessed: 2019-03-01.

H. Hofmann, “Statlog data set.” https://archive.ics.uci.edu/ml/datasets/statlog.
Accessed: 2019-06-13.

A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” arXiv:1704.02685, 2017.

J. Pearl et al., “Causal inference in statistics: An overview,” Statistics surveys,
vol. 3, pp. 96-146, 2009.

Explanation Framework for Intrusion Detection 91

Open Access This chapter is licensed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution and reproduction in any medium or for-
mat, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

	9 Explanation Framework for Intrusion Detection
	1 Introduction
	2 Explanations for Intrusion Detection
	3 The Modular Phases of Explanations
	4 Experiment
	5 Summary
	References

