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Abstract—The enormous growth of data in a variety of
applications has increased the need for high performance data
mining based on distributed environments. However, standard
data mining toolkits per se do not allow the usage of computing
clusters. The success of MapReduce for analyzing large data
has raised a general interest in applying this model to other,
data intensive applications. Unfortunately current research has
not lead to an integration of GUI based data mining toolkits
with distributed file system based MapReduce systems. This
paper defines novel principles for modeling and design of the
user interface, the storage model and the computational model
necessary for the integration of such systems. Additionally,
it introduces a novel system architecture for interactive GUI
based data mining of large data on clusters based on MapRe-
duce that overcomes the limitations of data mining toolkits. As
an empirical demonstration we show an implementation based
on Weka and Hadoop.
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I. INTRODUCTION

The ever-increasing amount of electronically available

data offers tremendous new opportunities for automated

analysis. Data mining tasks will have to deal with increas-

ingly large datasets, which exceed the capacity of familiar

data mining toolkits with respect to memory consumption

and performance. There is a clear need for high performance

and distributed data mining for speeding up data mining

processes as well as enabling scenarios with large data

at all. On one hand, the Google File System [1] and the

MapReduce [2] approach have proved to be very successful

for handling the analysis of large data in parallel on huge

clusters of computers. On the other hand, data mining

toolkits such as Weka [3] or RapidMiner [4] facilitate and

accelerate the interactive data mining process. They provide

a convenient user interface with ready to use access to a

library of implemented data mining algorithms which can

be freely combined, and the possibility for extension with

new algorithms.

Unfortunately, common toolkits are designed to run on

single-computer systems as sequential applications on small

to medium size datasets, and struggle with large datasets

due to large memory consumption and long execution times.

Although extensions to some of these toolkits allow them to

work on clusters [5], [6], [7], [8], there is currently no GUI

supported toolkit that allows for the analysis of very large

data in an interactive way.

Previous research has left the question unanswered on

how to integrate data mining toolkits such as Weka with

MapReduce frameworks based on distributed file systems

such as Hadoop [9]. In face of a multitude of contrasting

design principles of these two systems, the integration of

the user interface, the storage model and the computational

model are challenging. Thus, new principles need to be

defined on how to model the control and data flow regarding

the contrasting user interfaces, how to design the data

representation and management that allows access from the

data mining toolkit side as well as from the MapReduce

framework side, and how to modify the algorithms of data

mining toolkits to allow the usage of MapReduce for data

access and processing.

The contribution of this paper is a novel system architec-

ture for interactive GUI based data mining of large data

on MapReduce clusters that is defined according to new

principles for addressing the above mentioned problems. Our

architecture maintains the features of the toolkit character,

namely a ready to use environment, including commonly

known algorithms with a GUI users are used to, and the

support of extensibility. The latter allows for the easy inte-

gration of further parallelized algorithms, supporting the re-

use of the code of the data mining toolkit as far as possible.

To empirically demonstrate our architecture, we show how

the Weka data mining toolkit and the Hadoop system can

be integrated and present first performance results.

The paper is organized as follows: Section II gives an

overview over related work. In Section III, our approach

to the integration, the design decisions and the overall

architecture are presented. Section IV shows how data min-

ing algorithms can be integrated and parallelized with our

approach and gives examples. We present the experimental

evaluation in Section V and our conclusions in Section VI.

II. RELATED WORK

In recent years, there have been a lot of attempts to

parallelize individual data mining algorithms. In contrast,

our work focuses on a general toolkit framework for parallel

data mining processes that simplifies using and adding new

parallel algorithms based on MapReduce. Several attempts

have tried to integrate Weka in a distributed environment

and to parallelize some of Weka’s operations like model

evaluation and cross validation. Weka Parallel [5] extends
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Weka by parallel cross validation on multiple machines. In

contrast, our approach provides parallelization in term of

asynchronous job submission, for different types of model

evaluation including cross validation, and algorithm internal

parallelism. GridWeka [6] extends Weka by the capabil-

ity of distributing tasks on multiple computing resources.

Similarly, WekaG [8] aims also at adapting Weka to a

grid environment. In our case, w.r.t. the algorithm inter-

nal parallelization, load balancing, resource planning, fault-

tolerance etc. are managed by the Hadoop system, which

is superior in many of these topics and outperforms many

custom approaches. Weka4WS [7] aims at integrating Weka

in a grid environment. Parallelization is only reached by

asynchronous job submission, while we aim at paralleliza-

tion in terms of job submission, model evaluation and algo-

rithm internal parallelization. In addition, individual Weka

processes in Weka4WS are running on a single machine

which becomes problematic for large data.

However, among these adaptations of Weka, we have not

found any successful attempt to support background job

submission, model evaluation and parallel algorithms for

very large data. All these attempts seem to work with the

full-in-memory dataset and thus have not solved the memory

consumption problem of Weka with large datasets. Apart

from that, these approaches do not support MapReduce and

Hadoop, and thus cannot profit from the advantages the

MapReduce programming model and Hadoop provide.

On the other hand, parallelizing data mining algorithms

using the MapReduce model has received significant atten-

tion from the research community since the introduction

of the model by Google. In [10], the MapReduce model

based on Hadoop is examined for applicability in the field

of data mining. It is shown that several classes of data mining

algorithms fit very well with the MapReduce programming

model. The work in [11] shows, based on a shared-memory

implementation for multi-core machines, how data mining

algorithms can be applied to the MapReduce model if they

are written as a summation form, a sum over expressions

of the data instances. The Apache Mahout Project [12],

based on [11], is aiming at providing a collection of machine

learning algorithms for Hadoop.

However, all these attempts do not aim at toolkit inte-

gration and thus lack in advantages provided by a toolkit

such as a ready to use environment supported by a GUI and

extensibility mechanisms well known to data miners.

III. ARCHITECTURE

In this section, we describe the design challenges and

introduce how our system design addresses the integration

of such data mining toolkits and MapReduce frameworks

regarding their different models of user interaction and

data storage. The computational model will be addressed

in Section IV.

Integrating data mining toolkits such as Weka with

MapReduce frameworks based on distributed file systems

such as Hadoop is a challenge that requires well-balanced

modeling and design decisions regarding different user in-

terface, storage and computational models. The basic ap-

proach of our system design is to let a Data Mining Client

process start Data Mining Server processes asynchronously

on the cluster or cloud and to let these Data Mining

Server processes have access to a MapReduce framework.

For integrating the divergent computational models of data

mining toolkits and the MapReduce programming model,

we design our system to support parallelization in terms

of background job submission, parallel model evaluation

and parallelism inside of data-mining algorithms. In the

data mining algorithm executed by the Data Mining Server,

parallelizable subtasks are identified for different classes of

data-mining algorithms that are executed in parallel with

MapReduce. As the Data Mining Server also contains a

complete instance of the data mining toolkit library, a re-use

of the toolkit code for non-parallelizable parts is possible.

The overall architecture of our approach to integrate data

mining toolkits with MapReduce frameworks is depicted in

Fig. 1. The key element of our approach is to run several

(extended) instances of the data mining toolkit library. One

instance runs on the client side (in the following denoted as

”Data Mining Client”), offering the familiar GUI. For each

job submission, another instance is started on the cluster

side (denoted as ”Data Mining Server”), that communicates

with the Data Mining Client and serves as entry point to the

cluster. In our implementation, the data mining toolkit client

interface (Weka Explorer) is extended to handle background

job submission, i.e., the interface does not block when

a job is submitted and results and messages of ongoing

background job executions are captured and visualized asyn-

chronously in the interface. Each submitted job creates a

Data Mining Server process in the cluster, which executes

the data mining toolkit library extended with access to a

MapReduce framework (Hadoop). When the user submits

a job from the Data Mining Client’s graphical interfaces,

the job is sent as a command to the cluster, e.g. using an

SSH connection. The created Data Mining Server process

will run the sequential part of algorithm code and submit

jobs to the MapReduce framework for the parallel part. It

can make use of the built-in data mining library whenever

appropriate, allowing for potential reuse of the toolkit code

for the sequential part. After the job is finished, its results

are stored as a file in the master’s (local) file system and

transferred back to the client’s file system, e.g. using a SCP

connection, where it can be read and displayed.

For a smooth integration of the user interface model, we

face the problem that data mining toolkit has a synchronous

GUI while the MapReduce framework provides command-

line and web-based interfaces only. In our solution, we

extend the known Weka Explorer in the Data Mining Client
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Figure 1. System architecture for integrating data mining toolkits with MapReduce frameworks on clusters and clouds.

with facilities for job submission to the Data Mining Server,

hence bridging the gap between the sequential GUI on the

client side and the computing cluster running Hadoop on

the other side. In addition, the GUI in the Data Mining

Client is extended to allow the user to select data from

the distributed file system and to run a MapReduce based

analysis on Hadoop on server side. As in the original version

of Weka, the same interfaces of Weka’s Explorer are used

to allow the user to select datasets and submit learning jobs

for building and evaluating models.

Regarding the storage model of our system, we have to

define a principle on how to integrate RAM-based, random

access to data on the toolkit side with sequential, file

based access on the MapReduce framework side, while

allowing a re-use of toolkit code for the sequential part

of the algorithms. Our approach is to replace the instances

representing data in the Data Mining Server with toolkit-

conformant references to data instances in the MapReduce

framework, such that data stored in the distributed file

system on the cluster can be accessed from the Data mining

Server. Furthermore, additional data management functions

for transferring data to/from the cluster are integrated in the

GUI in the Data Mining Client.

In our implementation, the user can select data from

the same data sources of the original Weka Explorer: the

local’s file system, a database query, or a remote URL

location. However, the data is not physically loaded into

main memory, but transferred to the cluster’s HDFS and

then opened in the Explorer without loading all the instances

in memory. In addition, data stored directly on the HDFS

can be selected. In the original Weka Explorer, when the

user opens a dataset, all of its attributes and instances are

loaded into a single object of the class Instances. The object

contains two lists, one for information on the attributes and

one for the instances of the dataset. Each instance (of the

type Instance) carries the values of the attributes. The list

of Instance objects will be very large for large datasets and

will be the cause for the memory consumption problem. In

our solution, we store the dataset on the cluster’s HDFS

and we accomplish this by instantiating an object of the

type HadoopInstances which extends the class Instances,

stores the path of the dataset on the HDFS, and overrides the

access to the list of instances by accessing the HDFS dataset

instead. As HadoopInstances is a subclass of Instances, the

generic Weka functions for dealing with instances such as

for example Instances.numClasses can also be applied to

HadoopInstances, as long as they do not access the values

of the data items. Hence, the original Weka code can remain

unchanged in the sequential part of the algorithm.

IV. PARALLELIZATION OF THE DATA MINING PROCESS

As motivated before, we designed our system to sup-

port parallelization in terms of background job submission,

model evaluation and inside data mining algorithms. In this

section, we focus on the principles for the integration of the

computational model of data mining toolkits and MapRe-

duce frameworks and show how the data mining process and

the algorithms can be parallelized in our approach.

A. General Approach

One issue in the integration of the computational models

are the different concepts of data processing. The data

structures in Weka can contain arbitrary dependencies, while

Hadoop only supports independent instance passing. In our

approach, we split the algorithms into non-parallel parts that

still can work with dependencies in memory and parallel

parts that process data independently. Another issue is the

way algorithms are represented. Algorithms in Weka do not

have any constraints in terms of the type of the algorithm,

but all of them are sequential. In Hadoop, algorithms have

to follow the MapReduce principle and thus are parallel by

design. In the data mining processes, parallelizable subtasks

are identified that can run in parallel on Hadoop. These

processes include several algorithms for different classes of

data mining problems as well as evaluation tasks. On the

cluster side, the Data Mining Server version of Weka is

used such that a re-use of Weka code for non-parallelizable

parts is possible. Technical details like resource discovery,

resource selection, scheduling, load balancing etc. for the

parallel parts are all handled by the Hadoop system.
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Our architecture allows to execute Data Mining Server

processes asynchronously on the cluster and to let these

processes access the MapReduce framework on the cluster.

Regarding asynchronous job submission, the GUI of the

Data Mining Client, which is the Explorer of Weka in

our implementation, allows running multiple jobs simulta-

neously on the same cluster. Any parallelized data mining

algorithm and any corresponding model evaluation can be

submitted as background job.

In addition, the model evaluation itself can be easily

parallelized using MapReduce, as each instance can be tested

independently. Hence, it is sufficient to let each parallel map

function evaluate the model on the given instance while

summing up the evaluation statistics in the reduce phase.

This parallel model evaluation is provided in our system

in form of testing based on the training set, a test set,

percentage-split or parallel cross-validation, which can be

applied to any type of parallelized data mining algorithm.

Since in our implementation the specification for each model

is encapsulated inside the map function by calling classifyIn-
stance / clusterInstance, the only requirement on the model

is that it can be serialized in order to be given as a parameter

to the MapReduce job.

In the following, we go into the details of the par-
allelization and integration of data mining algorithms
based on Weka and Hadoop. First, parallelizable and non-

parallelizable tasks inside the algorithms have to be identi-

fied. In order to parallelize an algorithm using the MapRe-

duce model, the parts of the algorithm that accesses the

input data must be written as MapReduce jobs. While to

do so, each input instance must be accessed independently

of the others. The general characteristics and limitation of

the algorithms parallelizable in our approach is that only the

parallelizable subtasks are able to access all data instances,

whereas the sequential part works on aggregated values only.

Many data mining algorithms can be parallelized using the

MapReduce model [10], [11], [12]. In the following we

present a case study on how to integrate the Naı̈ve Bayes

algorithm into our system. In particular, we split the algo-

rithm into sequential and parallel parts (being executed by

Hadoop) and show how our approach supports the re-use of

Weka code for the sequential part. Further algorithms, such

as K-Means, Linear Regression and Subgroup Discovery,

have been parallelized and integrated with our approach [13].

B. Case study - Naı̈ve Bayes

We refer to the implementation of the Naı̈ve Bayes

algorithm as found in the Weka implementation [3] and to

its parallelization with MapReduce as for example presented

in [11]. We assume the reader to be familiar with the

Naı̈ve Bayes algorithm, which uses the Bayes formula to

calculate the probability of the class value given a set of

attribute values under the assumption that the attributes are

independent from each other given the class label.

The Weka implementation NaiveBayesSimple of the Naı̈ve

Bayes algorithm operates by counting the occurrences of the

class values and storing them in an integer array Priors
of length k. It also counts the occurrences of attribute values

and stores them in a three-dimensional (k × p × vj)-matrix

Counts (the third dimension is implemented with the

dynamic array facility of Java). Both counts are generated

within a single linear scan over the data set, in which each

iteration step inspects a single data item and increments the

appropriate counts in Priors and Counts according to

the actual values of the data item. After this counting loop,

a normalization step and the computation of the probabilities

of each class attribute are executed based on the values

stored in Priors and Counts.

In the algorithm, the counting loop incrementing the

values for the variables Counts and Priors can be easily

parallelized, since it operates independently on individual

data items, while the normalization step that follows the

counting must be executed sequentially after that because

it requires the computed values of these variables. Since in

our approach the Data Mining Server contains the complete

Weka-library and has access to Hadoop, it is sufficient

to replace the counting loop by a call to the appropriate

Hadoop map and reduce tasks. Instead of counting the

occurrences in a sequential loop on Instances objects in

memory as in the original code, in the parallel version a

MapReduce job is started that works on data stored in the

HDFS which is referenced by HadoopInstances. This job

counts the occurrences and stores the results in a file. After

the Hadoop job is finished, the result is read and its values

are stored in the variables Counts and Priors, such that

the original Weka code can go on in the Data Mining Server

process. Fig. 2 depicts the original and the modified code.

It remains to be explained how the values for the variables

Counts and Priors can be computed in parallel with

Hadoop. All map functions get an individual instance as

input. Based on the class and attribute values of the instance,

they identify the indexes of the elements of Counts and

Priors that have to be incremented. These indexes are then

used as keys for the input to the reduce step, together with

the increment value of 1. For each input instance the Mapper

outputs for every attribute <(attribute,value,class value), 1>
and for the class attribute <class val, 1>. The Reducer gets

these pairs and the list of values and outputs the sum for each

different key.

V. EVALUATION

In this section, we evaluate the performance of our

approach based on the implemented example. Apart from

proof of concept, we want to answer by the experiments

where exactly we will end at a position between the stand

alone Weka version on a single machine and a solution based

on Hadoop in terms of performance. In [11] the performance

of machine learning algorithms based on Hadoop in a shared
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Figure 2. Original and modified Weka code of Naı̈ve Bayes.

main memory environment is analyzed. In this solution, the

learning algorithms can be parallelized to the maximum.

Of course, we can not expect to compete with a shared

memory parallelization because our solution includes net-

work overhead and disk access. In addition, we also consider

code sections for independent processing which cannot be

parallelized. But, our solution should perform better than

just a single computer. Additionally, the shared memory

solution of course has no ”toolkit aspects” (e.g., like user

friendliness, extensibility) and it also does not scale with

clusters. Thus, for very large amounts of data this solution

might not perform well.

In the following, we consider the nearly fully paralleliz-

able implementation of Naı̈ve Bayes with varying sizes of

input data. Besides considering speedup, we also we want

to identify the basic overhead introduced by our architecture

and the effects of the memory limitation encountered in the

original Weka toolkit. The distributed experiments have been

performed on a cluster of 10 Linux machines connected via

1 GBit LAN. Each machine had the following specifications:

AMD-Opteron 2.2 GHz Dual CPU, 8 GB RAM, 2 x 110 GB

local disks (one reserved for Linux and the other used by

Hadoop). Related sequential experiments using the original

Weka have been performed on one of these machines.

The datasets used during the experiments were randomly

generated using the generation feature in the Weka Explorer

(developer version 3.5.8). The generated datasets were of

different number of instances and had 24 Boolean attributes

and a nominal class attribute with values 0, 1,..., 9.

The experiments of the distributed Naı̈ve Bayes imple-

mentation have been performed on datasets of different sizes

from a few kilobytes to the size of 100 GB. Each run of

the learning task included model building and evaluation on

the same dataset. We compare the performance against the

referencing sequential implementation of Weka. We detected

that this implementation could not run the Naı̈ve Bayes

algorithm on the dataset larger than a size of 1 GB on our

machines with 8 GB main memory. Due to this memory

limitation, we extrapolated the sequential runtimes for larger

data sets simply by assuming linear scaleup of the runtime.

In addition, we compare against a hypothetical fully parallel

solution assuming we had optimal speedup of 10 for the

original Weka experiment.

Our experiments showed that, on small datasets of a few

kilobytes, the sequential Weka implementation significantly

outperforms the Hadoop implementation. As the dataset gets

larger, the sequential implementation starts being slow and

the distributed execution on Hadoop starts performing better.

The break even for the parallelization can be recognized at

a data size of about 100 MB.

On large datasets the parallel implementation scaled very

well and confirmed that runtimes were increasing linearly

with the data size. This was expected as model building and

testing each require just one pass on the data and because

the performance of Naı̈ve Bayes algorithm is clearly I/O

bound. Fig. 3 compares the measured performance against

a hypothetical fully parallelized Weka version that simply

assumes that it performs ten times faster than the extrap-

olated sequential Weka version (hence assuming unlimited

main memory and 100% parallelizability). We note that our

results approach this hypothetical speedup with increasing

data size. Further testing on very large data showed a runtime

of 25861 seconds on 100 GB input data which is pretty close

to the hypothetical best case of 25000 seconds.

The runtime of the Naı̈ve Bayes experiment on the small-

est datasets is about 32 seconds for training and testing,

which includes two rounds of Hadoop job submissions on

the cluster side. For a further breakdown of the overhead,

we analyzed the execution times for these experiments

on the cluster side only. We found that the cluster side

Hadoop overhead for a single Hadoop invocation is around

13 seconds at minimum. Of course, this overhead depends

on the number of Mappers (which depends on the data

size). However, since our experiments from Fig. 3 show

that the total execution times increase linearly as excepted,

the cluster side overhead does not significantly increase for

large data. The measurements also allowed to derive the

overhead incurred by the client server communication in our

architecture, which consists of job submission and retrieval

of results. We measured a constant overhead of 3 seconds.

Hence, the basic overhead incurred by our architecture is

about 16 seconds for model building and about 32 seconds

for a job that builds and evaluates a model.

For results of further experiments with other algorithms,

e.g. K-Means, Linear Regression and Subgroup Discovery,

we refer to [13].
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Figure 3. Naı̈ve Bayes experiments on large data.

VI. CONCLUSION AND OUTLOOK

In this paper we have presented a novel system architec-

ture for interactive data mining of large data on MapReduce

clusters based on new principles for modeling and design of

the user interface, the storage model and the computational

model of the integrated system. As empirical demonstration,

we have shown how the Weka data mining toolkit can be

integrated with a Hadoop cluster for distributed data storage

and parallel processing allowing the use on large datasets.

Our experiments on a 10-node cluster have shown good

speedup over sequential implementations for datasets of

sizes starting from a few hundred megabytes. The overhead

of our system was identified to be around 16 seconds. Hence,

our system is not useful for computations that Weka can

perform alone within this time. However, we have seen

that Weka struggles with serious memory limitations when

considering large input data sets. For example, the Naı̈ve

Bayes implementation of Weka was limited to handle data

sets of 1 GB on a machine with 8 GB of main memory.

Even with this input size that could be handled by Weka,

our parallel version was significantly faster, and it scaled up

to input sizes of 100 GB.
The architecture allows for distributed and high perfor-

mance data mining while keeping the way of interaction

of a known GUI. In our approach, dynamically created

Data Mining Server processes serve as entry point into the

cluster and execute the sequential part of the data mining

algorithm. However, we learned that if this sequential part

is computing intensive, the machine of the cluster running

the Data Mining Server processes can have quite big load.

A solution would be to instantiate the Data Mining Server

processes on different machines in the cluster managed by

a load-balancing system, as e.g. done in the GridR toolkit

for the seamless integration of R with cluster and grid

computing [14].
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