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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Motivation

Applications

 Additive Manufacturing of parts and features

 Coating

 Repair

 Application markets: mobility, energy, mechanical 
engineering, tools

Wire-based Laser Metal Deposition (LMD-w)

 Small heat input

 High material efficiency

 Easy handling of filler material

 Small risks for health

 Low contamination of machines and production 
environment

[BEYE95, SYED05, KAIE12, BAMB18, NGO18]

Fraunhofer IPT TRUMPF GmbH + Co. KGFraunhofer ILT
LMD-w LMD-p LMD-p
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
LMD-w with lateral wire feed – challenges

𝑃𝐿

𝑣𝑀, 𝑣𝑊

Insufficient surface 
quality

Process instability

Small process 
window

Insufficient 
reproducibility
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Dual beam process – principle and potential
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cw = continuous wave, pw = pulsed wave
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Dual beam process – principle and potential

5

Used laser sources:

 Modulated beam: Edgewave IS20I-ET

 Continuous beam: Laserline LDF 5000-40
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on absorption (I/II)

Stirrer

Pt-100 
thermometer

Water

Sample
Sample holder

Pulsed Laser
Continuous
Laser

Grid

Dependency of absorption on 
the modulated laser radiation

 Laser processing of the samples 
during 40 s (cw constant: 
400 W, pw variated)

 Dropping the sample into an 
isolated water vessel

 Measuring the water‘s 
temperature raise until 
stagnation

 Determination of the absorbed 
energy

 Calcuation of the effective 
absorption coefficient 
(cumulated pw+cw power)
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on absorption (II/II)

 The vapor created by the modulated laser has a significant influence on the global absorption

 Local minimum at intermediate powers and a decrease at high powers are observed

 Explanation possible by dissipation in the plasma (collision-based and collision-free effects) [Cui et al., 2013]
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on workpiece temperature (I/III)

 Study of the workpiece
temperature as a function of the 
pulsed laser parameters

 In-situ optical fiber-based 
temperature measurement via 
measurement of the fiber strain 
(Optical Backscattering 
Reflectometry, OBR)

 Strain measurement possible 
thanks to a periodic modulation 
of the refractive index in the fiber 
(Fiber Bragg Grating, FBG)

 Comparison of maximum 
strains/temperatures and of the 
heat propagation behavior

Feeded wire

Fibre-based temperature measurement 
at the bottom of the workpiece

Welding bead

Workpiece

Source: fbgs.com
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on workpiece temperature (II/III)

time 2Raw Data Optical Backscatter Reflectometer (OBR) 55 W97 W

 pw: 7500 Hz cw: 2800 W
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on workpiece temperature (III/III)

time 2Time 2Time 1 Raw Data Optical Backscatter Reflectometer (OBR)

 ∆t~10 s  pw: 7500 Hz / 55W cw: 2800 W
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on welding bead geometry (I/V)

 Deposition experiments (tool 
steel QuFe13 on S355)

 Constant parameters: 
PL,c = 2400 W
vM = 1100 mm/min
vW = 1600 mm/min

 pw parameters variated 
(frequency and power)

 Repetition to ensure 
reproducibility

 Surface characterization by 
depth-of-field measurement 
(Alicona G5)

 Evaluation of bead 
roughness and cross section

Example of welding bead profile
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on welding bead geometry (II/V)
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on welding bead geometry (III/V)

fP = 10000 Hz, PL,m = 49 W fP = 10000 Hz, PL,m = 110 W

PL,c = 2400 W, vM = 1100 mm/min, vW = 1600 mm/min

500 μm 500 μm
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on welding bead geometry (IV/V)

cw
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on welding bead geometry (V/V)

 The bead geometry is strongly 
influenced by the 
evaporation-induced forces

 The stronger the forces, the 
higher and the narrower the 
welding beads

 At lower forces, the surface is 
smoothed; at higher forces, Ra

increases as the liquid material 
is stirred up

Force measurements [Bergs et al., LiM 2019]
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Tailored melt pool shape by dual laser beam LMD-w process
Summary and conclusion

 Analysis of the modulated laser influence in a dual laser beam LMD-w process

 Identification of two main effects

 Modification of the energy input / workpiece temperature (absorption-related)

 Modification of the melt pool shape (force-related): welding bead cross section and roughness control

 The absorption coefficient can be increased by about 20 %

 The welding bead height and width can be tailored by a factor of maximum 2

 The welding bead surface roughness can be reduced
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Outlook
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Increase process stability and 
quality in 3D LMD-w
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[KLIN18]

Use advantageous bead cross 
sections to reduce surface waviness
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
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Backup

Wt.% C Si Mn Mg Cr Cu Mo Ti Ni Zn Fe Al

S355 J0 0.2 0.55 1.6 - - 0.55 - 0.01 - Bal. -

QuFe13 (Quada) 0.25 0.5 0.7 - 5.0 - 4.0 0.6 - - Bal. -

EN AW 7075 - 0.4 0.3 2.5 0.23 1.5 - 0.2 - 5.5 0.5 Bal.
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Backup
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