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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Motivation

Applications

 Additive Manufacturing of parts and features

 Coating

 Repair

 Application markets: mobility, energy, mechanical 
engineering, tools

Wire-based Laser Metal Deposition (LMD-w)

 Small heat input

 High material efficiency

 Easy handling of filler material

 Small risks for health

 Low contamination of machines and production 
environment

[BEYE95, SYED05, KAIE12, BAMB18, NGO18]

Fraunhofer IPT TRUMPF GmbH + Co. KGFraunhofer ILT
LMD-w LMD-p LMD-p
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
LMD-w with lateral wire feed – challenges

𝑃𝐿

𝑣𝑀, 𝑣𝑊

Insufficient surface 
quality

Process instability

Small process 
window

Insufficient 
reproducibility
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Dual beam process – principle and potential
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Influence on welding bead geometry

Enlargement of stable process window
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cw = continuous wave, pw = pulsed wave
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Dual beam process – principle and potential

5

Used laser sources:

 Modulated beam: Edgewave IS20I-ET

 Continuous beam: Laserline LDF 5000-40
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on absorption (I/II)

Stirrer

Pt-100 
thermometer

Water

Sample
Sample holder

Pulsed Laser
Continuous
Laser

Grid

Dependency of absorption on 
the modulated laser radiation

 Laser processing of the samples 
during 40 s (cw constant: 
400 W, pw variated)

 Dropping the sample into an 
isolated water vessel

 Measuring the water‘s 
temperature raise until 
stagnation

 Determination of the absorbed 
energy

 Calcuation of the effective 
absorption coefficient 
(cumulated pw+cw power)
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on absorption (II/II)

 The vapor created by the modulated laser has a significant influence on the global absorption

 Local minimum at intermediate powers and a decrease at high powers are observed

 Explanation possible by dissipation in the plasma (collision-based and collision-free effects) [Cui et al., 2013]
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Modulated laser influence on workpiece temperature (I/III)

 Study of the workpiece
temperature as a function of the 
pulsed laser parameters

 In-situ optical fiber-based 
temperature measurement via 
measurement of the fiber strain 
(Optical Backscattering 
Reflectometry, OBR)

 Strain measurement possible 
thanks to a periodic modulation 
of the refractive index in the fiber 
(Fiber Bragg Grating, FBG)

 Comparison of maximum 
strains/temperatures and of the 
heat propagation behavior

Feeded wire

Fibre-based temperature measurement 
at the bottom of the workpiece

Welding bead

Workpiece

Source: fbgs.com



© Fraunhofer IPT/WZL der RWTH Aachen

9

Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on workpiece temperature (II/III)

time 2Raw Data Optical Backscatter Reflectometer (OBR) 55 W97 W

 pw: 7500 Hz cw: 2800 W



© Fraunhofer IPT/WZL der RWTH Aachen

10

Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on workpiece temperature (III/III)

time 2Time 2Time 1 Raw Data Optical Backscatter Reflectometer (OBR)

 ∆t~10 s  pw: 7500 Hz / 55W cw: 2800 W



© Fraunhofer IPT/WZL der RWTH Aachen

11

Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on welding bead geometry (I/V)

 Deposition experiments (tool 
steel QuFe13 on S355)

 Constant parameters: 
PL,c = 2400 W
vM = 1100 mm/min
vW = 1600 mm/min

 pw parameters variated 
(frequency and power)

 Repetition to ensure 
reproducibility

 Surface characterization by 
depth-of-field measurement 
(Alicona G5)

 Evaluation of bead 
roughness and cross section

Example of welding bead profile
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Modulated laser influence on welding bead geometry (II/V)
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on welding bead geometry (III/V)

fP = 10000 Hz, PL,m = 49 W fP = 10000 Hz, PL,m = 110 W

PL,c = 2400 W, vM = 1100 mm/min, vW = 1600 mm/min

500 μm 500 μm
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on welding bead geometry (IV/V)

cw
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Tailored melt pool shape and temperature distribution by dual laser beam LMD-w
Modulated laser influence on welding bead geometry (V/V)

 The bead geometry is strongly 
influenced by the 
evaporation-induced forces

 The stronger the forces, the 
higher and the narrower the 
welding beads

 At lower forces, the surface is 
smoothed; at higher forces, Ra

increases as the liquid material 
is stirred up

Force measurements [Bergs et al., LiM 2019]
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Tailored melt pool shape by dual laser beam LMD-w process
Summary and conclusion

 Analysis of the modulated laser influence in a dual laser beam LMD-w process

 Identification of two main effects

 Modification of the energy input / workpiece temperature (absorption-related)

 Modification of the melt pool shape (force-related): welding bead cross section and roughness control

 The absorption coefficient can be increased by about 20 %

 The welding bead height and width can be tailored by a factor of maximum 2

 The welding bead surface roughness can be reduced
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Outlook
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Increase process stability and 
quality in 3D LMD-w

Fraunhofer IPT

[KLIN18]

Use advantageous bead cross 
sections to reduce surface waviness
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Reduce surface roughness by the 
modulated laser
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Backup

Wt.% C Si Mn Mg Cr Cu Mo Ti Ni Zn Fe Al

S355 J0 0.2 0.55 1.6 - - 0.55 - 0.01 - Bal. -

QuFe13 (Quada) 0.25 0.5 0.7 - 5.0 - 4.0 0.6 - - Bal. -

EN AW 7075 - 0.4 0.3 2.5 0.23 1.5 - 0.2 - 5.5 0.5 Bal.
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Backup
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