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Abstract

In this article, we derive the balance of linear and angular momentum equations for geo-
metrically exact Cosserat rods from a two dimensional Lagrangian field approach in space and
time. As we use a full quaternion description for the rotatory part of the balance equations,
they constitute a system of nonlinear hyperbolic partial differential algebraic equations. We
prove their equivalence to the classical Euclidean frame description.
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1 Introduction

The Cosserat rod model is well known for the geometrically exact simulation of deformable/flexible
slender one dimensional structures in space (statics) or space-time (quasi-statics or dynamics). A
Cosserat rod can be considered as the geometrically nonlinear generalisation of a Timoshenko rod.
In contrast to a Kirchhoff rod, which in turn can be considered as a geometrically nonlinear gen-
eralisation of a Euler-Bernoulli rod, a Cosserat rod allows to model not only bending (= flexure)
and torsion (= twist) – these are ‘soft’ degrees of freedom –, but as well extension (= stretching)
and shearing – these are ‘hard’ degrees of freedom. In this paper we consider the full dynamical
problem for Cosserat rods in space and time.
The aim of this article is to derive the dynamical equations of motion from a two dimensional
Lagrangian variational principle on a space-time domain. This is an interesting alternative, equiv-
alent to [22], but much more elegant approach to derive the Newtonian balance of linear and
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angular momentum equations, like it is for classical Lagrange Mechanics of point masses [8, 11].
Recently, a new discretisation approach has been developed by the authors that will be the topic
of subsequent papers. In [17, 18], we present such a numerical model of a Cosserat rod, based
on finite differences/quotients from discrete differential geometry, which is completely free even of
square roots and trigonometry and which needs only the four basic arithmetic operations – addi-
tions, subtractions, multiplications and divisions. This article can be understood as a preparation
in the sense that it provides the continuum equations in an appropriate ’quaternion language‘. We
always assume that the considered quantities are sufficiently smooth.

The structure of this paper

In section 2, we describe the Cosserat exact rod model in the continuum, where we specify its
reduced kinematics, its strain measures and its internal energy densities. We directly formulate
the rotational degrees of freedom in terms of unit quaternions, in a similar way as already proposed
by [9, 14] for the more special case of the inextensible Kirchhoff rod model. Quaternions in the
three-dimensional subgroup

S
3 = ∂BH

1 (0) = {p ∈ H : ‖p‖2 = p̄p = pp̄ = 1} ⊂ H (1)

are one of several ways – each with its pros and cons – to describe non commutative, spatial
rotations in

SO(3) = {Q ∈ R
3×3 : QQT = QT Q = I, detQ = 1}. (2)

Quaternions are so-to-say the analogue to complex numbers in the one-dimensional subgroup
S1 = ∂BC

1 (0) = {z ∈ C : ‖z‖2 = z̄z = zz̄ = 1} ⊂ C, which describe commutative plane rotations
in SO(2) = {Q ∈ R2×2 : QQT = QT Q = I, detQ = 1}. A pro for the choice of quaternions is
the absence of singularities such as the ‘gimbal locking’ effect [12, 16, 21], which is an important
practical aspect for the numerical modeling of arbitrary large rotations. A con is the need to keep
them at unit length during numerical computations.

We finally present the governing partial differential equations for the Cosserat rod both in the
classical ‘SO(3) language’ and in ‘quaternion language’. The equivalence of both descriptions is
proven.

In section 3, we derive the equilibrium equations for Cosserat rods directly in ‘quaternion lan-
guage’. In [22], they are derived from the full three-dimensional theory of elasticity [4, 6] by
substitution of the reduced kinematics of the Cosserat rod. Here, we give a variational formula-
tion directly in quaternion description. The calculus of variations yields the balance equations as
the Euler-Lagrange equations resulting from the assumed stationarity of an action functional. In
addition to [22], we include a simple internal viscoelastic friction damping model that is motivated
by the works [1, 2, 3]. Since both the classical SO(3) description and the quaternion descrip-
tion are equivalent, this approach yields another derivation of the classical balance equations for
Cosserat rods.

Appendix A provides the main tools and identities from the Hamilton quaternion algebra, which
are needed to follow the main sections of this article. For more detailed expositions concerning
their algebraic properties, we refer to [10]. The connection to rotations is explained thoroughly
in [12, 16]. See [5] for an overview of other possibilities to parametrise the manifold SO(3) such
as rotation vectors, Rodriguez parameters, Euler or Cardan angles. There, pros and cons of these
parametrisations are discussed as well.

Appendix B summarises the classical Lagrangian field theory/variational calculus for several un-
knowns in two dimensions. For further details, the reader is referred to [8].
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2 The Cosserat rod model

In this section we present the reduced kinematics of a Cosserat rod, its energy densities and its
internal forces resp. moments, which are corresponding one-to-one to the Cosserat strain resp.
curvature measures. We consider both a purely linear elastic and a simple linear viscoelastic
constitutive material model, with the tacit overall assumption that locally the stresses and strains
remain sufficiently small, whereas globally the deformations may become arbitrarily large.
We end up with the initial boundary value problems for the Cosserat rod in ‘quaternion language’
(41), which is the elastic case, and (42), which is the viscoelastic case. It is the aim of the
subsequent section 3 to derive these systems of partial equations from the alternative classical
Lagrangian field approach of appendix B.

2.1 The kinematics

We start with the kinematics of a Cosserat rod, which is completely determined by a vector
field x = x(s, t), the centerline, and a unit quaternion field p = p(s, t), which in turn uniquely
determines a frame field R ◦ p that is attached to the centerline. Always in this article, s ∈ [0, L]
denotes the arc length parameter of the rod in the undeformed state, t ∈ [0, T ] denotes the time.
L > 0 is the total arc length of the undeformed rod, T > 0 is a fixed point in time. The dash ′

and the dot ˙ always denote the partial derivatives with respect to space s and time t respectively,
this is

′ =
∂

∂s
, ˙ =

∂

∂t
.

The centerline
x : [0, L] × [0, T ] → ℑ(H) = R

3, (s, t) 7→ x(s, t) (3)

of the Cosserat rod gives the positions of the centroids of mass of the cross sections. The latter
are assumed as plane and rigid in the model during deformation.

The unit quaternion field

p : [0, L]× [0, T ] → S
3 = ∂B1(0) →֒ H, (s, t) 7→ p(s, t) (4)

uniquely determines its attached frame field

R ◦ p : [0, L] × [0, T ]
p−→ S

3 R−→ SO(3), (s, t) 7→ R
(

p(s, t)
)

.

Here H is the four dimensional Hamilton quaternion algebra, see appendix A, and S3 as in (1)
is the three dimensional unit sphere, embedded in H = R4. We identify R3 with the imaginary
part ℑ(H) of H. Further, SO(3) = SO(3, R3) as in (2) is the Lie group of special orthonormal
rotations in three dimensional Euclidean space.

For a quaternion p = p0 + p̂ = (p0; p1, p2, p3) ∈ H, the frame R(p) ∈ SO(3) is given by the Euler
map

R : H → RSO(3), p 7→ R(p) =
(

d1(p)
∣

∣d2(p)
∣

∣d3(p)
)

. (5)

The three columns of R are the so-called directors – or the moving base vectors. The first two of
them,

d1(p) =





p2
0 + p2

1 − p2
2 − p2

3

2(p1p2 + p0p3)
2(p1p3 − p0p2)



 , d2(p) =





2(p1p2 − p0p3)
p2
0 − p2

1 + p2
2 − p2

3

2(p2p3 + p0p1)



 , (6)

are spanning the rigid cross section of the rod. The third one,

d3(p) =





2(p1p3 + p0p2)
2(p2p3 − p0p1)

p2
0 − p2

1 − p2
2 + p2

3



 , (7)
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is kept close to the tangent ∂sx of the centerline by shearing forces. We have R(λp) = λ2R(p) for
each λ ∈ R and p ∈ H, so R maps the quaternion unit sphere S3 into SO(3),

R : S
3 → SO(3). (8)

We have R(−p) = R(p) for each p ∈ H, which implies that a quaternion p and its antipode −p
describe the same rotation. Furthermore, it is well known that for each rotation Q ∈ SO(3) there
exist exactly two quaternions p and q such that R(p) = R(q) = Q. They are necessarily antipodes
p = −q. Articles [15, 23, 25] provide an algorithm that computes these p and q = −p, given Q.
That way, S3 covers the manifold SO(3) exactly two times [10, 12], and the restriction (8) is ‘twice
onto’. Further, we have

R(p)v = pvp̄, R(p)T v = p̄vp for p ∈ H, v ∈ ℑ(H) = R
3, (9)

especially
dν(p) = peν p̄ = R(p)eν (10)

for each of the Euclidean base vectors e1 = i, e2 = j and e3 = k of R3 = ℑ(H), which are fixed in
space. Note that p̄ = p−1 and d3(p) = d1(p) × d2(p) for ‖p‖2 = 1.

Figure. The kinematics of a Cosserat rod

Any point of the deformed rod in space-time (s, t) can be addressed – this means its kinematic is
completely described – by the mapping

ϕ : [0, L]× [0, T ]×A → R
3, (s, t, ξ) 7→ x(s, t) + ξ1d

1
(

p(s, t)
)

+ ξ2d
2
(

p(s, t)
)

,

where ξ = (ξ1, ξ2) ∈ A with a plane domain A ⊂ R2 are the coordinates in the rigid and plane
cross section, spanned by d1 and d2. The third director d3 = d1 × d2 is the cross section normal.

We continue with a further remark on the Euler map R. For each p ∈ H, we can write R(p) in
the closed-form expression

R(p) =
(

2p2
0 − ‖p‖2

)

I + 2p̂ ⊗ p̂ + 2p0E(p̂) (11)

with the alternating skew tensor

E : R
3 = ℑ(H) → so(3), E(p̂) =





0 −p3 +p2

+p3 0 −p1

−p2 +p1 0



 , (12)
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which identifies skew tensors E(p̂) in so(3) with their corresponding axial vectors p̂ in R3 = ℑ(H)
in the usual way via

E(p̂)v = p̂ × v for v ∈ ℑ(H) = R
3.

Here
so(3) = {ω ∈ R

3×3 : ωT = −ω}
is the Lie algebra of SO(3) at the identity I = R(1) and consists of all skew tensors of three
dimensional Euclidean space.

For a quaternion p ∈ S3 \ {±1}, we can write

p = cos(φ/2) + sin(φ/2)q

with a unique purely imaginary unit quaternion q ∈ ℑ(H) ∩ S3 and a unique angle 0 < φ < 2π.
So in Euclidean space,

R(p)v = cos(φ)v + sin(φ)q × v + (1 − cosφ)〈q, v〉q for v ∈ ℑ(H) = R
3

is exactly the rotation of v about the axis Rq with the angle φ, see [12, 10]. In classical differential
geometry, the pair (x(·, t), (R◦p)(·, t)) for each fixed point t ∈ [0, T ] in time constitutes a so-called
‘framed curve’.

2.2 The internal energy densities

In order to express the energy densities for a Cosserat rod, it is necessary that an assumption on
the constitutive material behaviour is made. For the conservative elastic forces and moments, we
assume locally small strains Γ resp. curvatures K, so that the corresponding internal conservative
forces FΓ resp. internal moments MK can be derived as gradients of a potential energy density,
which is quadratic in the strains and curvatures. As a consequence, the elastic forces FΓ resp.
moments MK are linearly proportional to the strains Γ resp. curvatures K, see section 2.4 and
[22]. This is a special case of a hyperelastic material behaviour [3].
In a similar fashion – in order to model internal friction – we choose a dissipation ‘potential’ that is
quadratic in the strain rates Γ̇ resp. curvature rates K̇. Consequently, the corresponding internal

dissipative forces F Γ̇ resp. moments M K̇ are linearly proportional to Γ̇ resp. K̇. This corresponds
to the simplest form of viscoelastic material behaviour [1, 2, 3].
For the Lagrangian variational calculus of appendix B, we need energy densities U . By ‘density’,

we always mean density w. r. t. the arc length parameter s, so that the line integral
∫ L

0
U ds along

the rod yields physical energy. The integral
∫ T

0

∫ L

0
U ds dt then yields physical action.

Throughout this paper, we use the material description for the strain Γ (and its rate Γ̇), the
curvature K (and its rate K̇) and the angular velocity Ω. In remark 2.3, we explain how to
compute the real physical, spatial quantities.

2.2.1 Potential energy densities

The total potential energy density V is additively decomposed into extensional and shearing energy
density VSE and bending and torsion energy density VBT ,

V = VSE + VBT . (13)

Sometimes in literature the synonyms ‘flexure’ for bending, ‘stretching’ for extension and ‘twist’
for torsion are used.
By ‘potential’ energy density we exclusively mean the internal potential elastic energy density.
Additional conservative forces – such as gravitational force – or moments can be simply added as
external forces F̂ resp. moments M̂ to the balance equations on the right hand side.



6 lagrangian field theory in space-time for geometrically exact cosserat rods

The potential extensional and shearing energy density is

VSE =
1

2
ΓT CΓΓ, CΓ =





GA1 0 0
0 GA2 0
0 0 EA



 , (14)

where the triple of components of the material strain vector w. r. t. the coordinate system
(e1, e2, e3) is given by

Γ = R(p)T ∂sx − e3 = p̄(∂sx)p − e3. (15)

We briefly call Γ the strain (vector). Obviously, it is purely imaginary, i. e. an element of
R

3 = ℑ(H). Γ1 resp. Γ2 are the strains corresponding to shearing in local 1- resp. 2-direction. Γ3

is the strain corresponding to extension in local 3-direction. E > 0 is Young’s modulus and G > 0
is the shear modulus of the material, A =

∫∫

A
d(ξ1, ξ2) is the area of the rigid cross section. The

numbers A1 = κ1A and A2 = κ2A with some Timoshenko shear correction factors 0 < κ1, κ2 ≤ 1
denote some effective cross section areas for shearing in 1- resp. 2-direction. Locally, as small
strains are assumed, the Cosserat rod behaves as a linear Timoshenko rod. For further details of
the shear correction factors of different cross section shapes we refer to [7].

The potential bending and torsion energy density for the Cosserat rod is

VBT =
1

2
KT CKK, CK =





EI1 0 0
0 EI2 0
0 0 GJ



 , (16)

where the triple of components of the material curvature vector (or the material ‘Darboux vector’
in [24]) w. r. t. the coordinate system (e1, e2, e3) are given by

1

2
K = p̄ ∂sp. (17)

We briefly use the short hand nomenclature curvature (vector) for K. For the single components,
the reader should use formula (58) of the appendix. If p is a unit quaternion, or – more generally –
a quaternion of constant length, it holds that K = (0; K1, K2, K3)

T = ℑ(K) is purely imaginary,
since ℜ(K) = p0∂sp0 + 〈p̂, ∂sp̂〉 = 〈p, ∂sp〉 = ∂s‖p‖2/2 = 0. The first two components K1 resp. K2

are the curvatures corresponding to bending in the local 1- resp 2-direction. K3 is the curvature
corresponding to torsion in the local 3-direction. I1 =

∫

A
ξ2
2 d(ξ1, ξ2) resp. I2 =

∫

A
ξ2
1 d(ξ1, ξ2) are

the geometric moments of inertia of the cross section A in the 1- resp. 2-direction, J = I1 + I2

its polar moment. If the cross section is symmetric, then we have I = I1 = I2 and J = 2I. But
I1 6= I2 is allowed, the model is able to cover as well the case of non symmetric cross sections.
In lemma 2.4, we show that the quaternion evolution (17) for the curvature is equivalent to the
frame evolution E(K) = RT ∂sR, where R = R ◦ p.

Remark 2.1 (Pre-deformed rods) We give a short remark on pre-tension, pre-shearing, pre-
bending and pre-twist. If the rod is pre-stretched, pre-sheared, pre-bent and/or pre-twisted, the
potential energy densities (14) or (16) can be simply replaced by

VSE =
1

2
(Γ − Γ0)T CΓ(Γ − Γ0), VBT =

1

2
(K − K0)T CK(K − K0). (18)

Here the functions Γ0 = Γ0(s) resp. K0 = K0(s) are a-priori given pre-strains resp. pre-curvatures
over the interval [0, L], see [22]. For notational convenience, we assume in this article that Γ0 ≡
K0 ≡ 0. The inclusion of pre-strains or pre-curvatures does not harm the principal ideas of this
article. �

It is well known that the Cosserat strain measures, i. e. the strain Γ and the curvature K are
frame indifferent. [We emphasise that the vocabulary ‘strain measure’ corresponds to both Γ and
K.] We give a very short proof of that fact in quaternion notation.
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Lemma 2.2 (Frame indifference) The Cosserat material curvature 2K = p̄∂sp in (17) and the
Cosserat material strain Γ = p̄(∂sx)p − e3 in (15) are frame indifferent.

Proof: If we superimpose a finite rotation q ∈ S3, which is independent of s and t, the associated
material curvature K∗, which is obtained by replacing p(s, t) by qp(s, t), becomes

K∗ = 2(qp)∂s(qp) = 2p̄q̄q∂sp = 2p̄∂sp = K,

since q̄q = ‖q‖2 = 1. The components of the forward rotated tangents w.r.t. the global basis
(e1, e2, e3) are given by ∂s(qx(s, t)q̄). Therefore the associated material strain Γ∗, which is obtained
by forward rotation of the whole system by q, satisfies

Γ∗ = qp(q∂sxq̄)(qp) − e3 = p̄q̄q∂sxq̄qp − e3 = Γ,

again, since q is a unit quaternion. �

Likewise, as the situation for K and Ω is completely symmetric, it is seen that the material angular
velocity Ω is frame indifferent.

2.2.2 Dissipation energy densities

For the choice of our dissipation potential, we follow the works [1, 2, 3] and choose friction forces
resp. moments that are proportional to the strain rates resp. curvature rates. Concerning these
damping parameters, we note that they are macroscopic and phenomenological, they are supposed
to model not only pure material damping, but also miscellaneous damping mechanisms.

The total dissipation energy density D additively consists of dissipative extensional and shearing
energy density DSE and dissipative bending and torsion energy density DBT ,

D = DSE + DBT . (19)

The dissipative extensional and shearing energy density is defined as

DSE = Γ̇T CΓ̇Γ̇, CΓ̇ =







rΓ̇
1 0 0

0 rΓ̇
2 0

0 0 rΓ̇
3






, (20)

where the triple of components of the material strain rate vector w. r. t. the coordinate system
(e1, e2, e3) are the time derivatives of (15), i. e.

Γ̇ = Ṙ(p)T ∂sx + R(p)T ∂sẋ = ˙̄p(∂sx)p + p̄(∂sẋ)p + p̄(∂sx)ṗ.

Γ̇ is simply called the strain rate (vector). The nonnegative constants rΓ̇
1 , rΓ̇

2 and rΓ̇
3 denote some

effective viscoelastic material parameters for extension and shearing.

The dissipative bending and torsion energy density is defined as

DBT = K̇T CK̇K̇, CK̇ =







rK̇
1 0 0

0 rK̇
2 0

0 0 rK̇
3






, (21)

where the triple of components of the material curvature rate vector w. r. t. the coordinate system
(e1, e2, e3) are given by the time derivative of (17), i. e.

1

2
K̇ = ˙̄p∂sp + p̄∂sṗ.
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K̇ is simply referred to as the curvature rate (vector). For the single components, see again (58)
and note that the dot ˙ and the bar ¯ ‘commute’. If p is a unit quaternion, it holds that ℜ(K̇) = 0,

K̇ = ℑ(K̇), since ℜ(K) = 0, ℑ(K) = K. The nonnegative constants rK̇
1 , rK̇

2 and rK̇
3 denote some

effective viscoelastic material parameters for bending and torsion.
The reader may ask, why we do not include a factor of one half in front of the dissipative terms.
This is simply a matter of taste. The authors find it more convenient e. g. to write the balance
equations for a linear harmonic oscillator in the form mq̈ + 2rq̇ + kq = 0, resulting as the Euler-
Lagrange equations with the energies V = kq2/2, D = q̇2 and T = mq̇2/2. It simplifies the analytic
expressions for the eigenvalues, for example.

2.2.3 Kinetic energy densities

The total kinetic energy density T additively splits into translatory TT and rotatory TR kinetic
energy density,

T = TT + TR. (22)

The translatory and rotatory kinetic energy densities are given by

TT =
̺A

2
‖ẋ‖2, TR =

̺

2
ΩT IΩ, I =





I1 0 0
0 I2 0
0 0 J



 , (23)

where the triple of components of the material angular velocity vector (or the material ‘vorticity
vector’ in [22]) w. r. t. the coordinate system (e1, e2, e3) is

1

2
Ω = p̄ ∂tp. (24)

We will use the simple terminology angular velocity (vector) for Ω. For the single components, see
again (58). A is the cross section area, ̺ > 0 the density of the rod. Like for the curvature K,
if p is a unit quaternion, the angular velocity Ω satisfies Ω = ℑ(Ω) = (0; Ω1, Ω2, Ω3)

T , since the
real part Ω0 = ℜ(Ω) = p0∂tp0 + 〈p̂, ∂tp̂〉 = 〈p, ∂tp〉 = 0 vanishes. In lemma 2.4, we show that the
quaternion evolution (24) is equivalent to the frame evolution E(Ω) = RT ∂tR, where R = R ◦ p.
It equivalently holds that

̺

2
ΩT IΩ =

̺

2
ṗT µ(p)ṗ (25)

with the p dependent quaternion mass matrix

µ(p) = 4







I1p
2

1 + I2p
2

2 + I3p
2

3 I32p2p3 − I1p0p1 I13p1p3 − I2p0p2 I21p1p2 − I3p0p3

I32p2p3 − I1p0p1 I1p
2

0 + I2p
2

3 + I3p
2

2 I21p0p3 − I3p1p2 I13p0p2 − I2p1p3

I13p1p3 − I2p0p2 I21p0p3 − I3p1p2 I2p
2

0 + I1p
2

3 + I3p
2

1 I32p0p1 − I1p2p3

I21p1p2 − I3p0p3 I13p0p2 − I2p1p3 I32p0p1 − I1p2p3 I3p
2

0 + I1p
2

2 + I2p
2

1






,

where we have set Ikl = Il − Ik for k, l = 1, 2, 3, for abbreviation. The mass matrix satisfies the
symmetry property µ(−p) = µ(p), which is a consequence of the fact that both p and −p describe
the same rotation R(p) = R(−p), see (5). The kernel of µ(p) is given by kerµ(p) = Rp, its image
is im µ(p) = {p}⊥, consequently we have rkµ(p) = 3. µ(p) is positively semidefinite with one
singular dimension in direction p. The factor 4 in front of the mass matrix is simply the square
of the factor 2 in the angular velocity (24). To derive identity (25), it is convenient to use the
‘quaternion matrix’ Q(p) from (63). We replace

I =









0 0 0 0
0 I1 0 0
0 0 I2 0
0 0 0 J









, J = I3 = I1 + I2 (26)

for the quaternion inertia tensor in (23). Then we find with Ω = 2p̄ṗ that

1

2
ΩT IΩ = 2(p̄ṗ)T I(p̄ṗ) = 2(Q(p)T ṗ)T I(Q(p)T ṗ) =

1

2
ṗT

[

4Q(p)IQ(p)T
]

ṗ =
1

2
ṗT µ(p)ṗ,
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yielding the closed form expression

µ(p) = 4Q(p)IQ(p)T , µ(p)q = 4pIp̄q, where q ∈ H, (27)

for the quaternion mass. Clearly, all this can be computed component by component, but here
the quaternion matrix Q(p) is very practical. With (27) and 2Ω = p̄ṗ = Q(p)T ṗ we can conclude
that µ(p)ṗ = 4Q(p)IQ(p)T ṗ = 2p IΩ is 2p times the angular momentum IΩ. In a similar fashion,
one can show

1

2

∂

∂p

(

ṗT µ(p)ṗ
)

= − ∂

∂p

(

µ(p)ṗ
)

ṗ = 4Q(ṗ)IQ(ṗ)T p. (28)

Consequently,
1

2

∂

∂p

(

ṗT µ(p)ṗ
)

− ∂

∂p

(

µ(p)ṗ
)

ṗ = 8Q(ṗ)IQ(ṗ)T p = 8ṗI ˙̄pp, (29)

see as well [21]. The quaternion mass µ(p) is ‘almost’ regular in the following sense. If we formally
define the ‘tangential inverse’ quaternion mass by

µ(p)−1 =
1

4
Q(p)I−1Q(p)T , I−1 =









0 0 0 0

0 I−1
1 0 0

0 0 I−1
2 0

0 0 0 J−1









, (30)

we quickly find
µ(p)µ(p)−1 = I − p ⊗ p. (31)

This means that µ(p) and µ(p)−1 invert each other ‘up to’ a tensor product p⊗ p. The tangential
inverse mass is as well symmetric and positively semidefinite, and it as well annihilates p, this
means we have µ(p)−1p = 0, kerµ(p)−1 = Rp, im µ(p)−1 = {p}⊥ and rkµ(p)−1 = 3.
In order to see, why the nomenclature ‘tangential inverse’ is justified, we consider the action of (31)
on an arbitrary quaternion q ∈ H. We have (I −p⊗p)q = q−〈p, q〉p, this means that µ(p)µ(p)−1q
is exactly the projection of q onto the tangential space TpS3 = {π ∈ H : 〈p, π〉 = 0} = {p}⊥ of S3

at p.

Remark 2.3 (Material and spatial description) Before we continue, we give a short remark
on material and spatial quantities and components. Throughout this whole article, we use the
material description – i. e. we work with the material strains, material curvature and material
angular velocities, etc. – for the Cosserat rod. It should be noted that from a spatial quantity (the
real physical one), the corresponding material quantity is defined by a pull back via RT = R−1,
for details see [22]. Now, if we formally write

Γ =
∑

ν=1,2,3

Γνeν , K =
∑

ν=1,2,3

Kνeν , Ω =
∑

ν=1,2,3

Ωνeν ,

this means that the components γν of the spatial strain vector, kν of the spatial curvature vector
and ων of the spatial angular velocity vector w. r. t. (e1, e2, e3) are collected in the triples

γ = RΓ =
∑

ν=1,2,3

Γνdν , k = RK =
∑

ν=1,2,3

Kνdν , ω = RΩ =
∑

ν=1,2,3

Ωνdν .

respectively. [The components of the spatial strain rate γ̇ and the spatial curvature rate k̇ then
can be easily derived by differentiation w. r. t. time.] As a consequence, it follows that the com-
ponents of any material quantity w. r. t. the fixed coordinate system (e1, e2, e3) are equal to the
components of the corresponding spatial counterpart w. r. t. the cross section fixed (= moving
frame) coordinate system (d1, d2, d3). With the aid of (9) and (10), it is seen that

γ = pΓp̄ = ∂sx − d3, k = pKp̄ = 2(∂sp)p̄, ω = pΩp̄ = 2(∂tp)p̄.

If this all seems nebulous to the reader, see the detailed expositions in [22, 23]. For further
explanations of the pull back ‘RT ·’ and the push forward ‘R·’ operations, we refer to [4]. �
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2.3 The frame and quaternion evolution differential equations

Via the isomorphism E in (12), skew tensors in the Lie algebra so(3) can be identified in a one-to-
one fashion with their corresponding axial vectors in R3 = ℑ(H). With the aid of E , the differential
equations (17) resp. (24) can be equivalently written as

RT ∂sR =





0 −K3 +K2

+K3 0 −K1

−K2 +K1 0



 = E(K), RT ∂tR =





0 −Ω3 +Ω2

+Ω3 0 −Ω1

−Ω2 +Ω1 0



 = E(Ω).

In components, this is

K1 = 〈d2, ∂sd
3〉 = −〈d3, ∂sd

2〉, K2 = 〈d3, ∂sd
1〉 = −〈d1, ∂sd

3〉, K3 = 〈d1, ∂sd
2〉 = −〈d2, ∂sd

1〉

resp.

Ω1 = 〈d2, ∂td
3〉 = −〈d3, ∂td

2〉, Ω2 = 〈d3, ∂td
1〉 = −〈d1, ∂td

3〉, Ω3 = 〈d1, ∂td
2〉 = −〈d2, ∂td

1〉.

We write it down more precisely. Given the curvature vector K, we have the ordinary differential
evolution equation for R in space s,

R
(

p(s, t)
)T ∂

∂s
R

(

p(s, t)
)

= 2E
(

p̄(s, t) ∂sp(s, t)
)

= E
(

K(s, t)
)

. (32)

Given the angular velocity vector Ω, we have the ordinary differential evolution equation for R in
time t,

R
(

p(s, t)
)T ∂

∂t
R

(

p(s, t)
)

= 2E
(

p̄(s, t) ∂tp(s, t)
)

= E
(

Ω(s, t)
)

. (33)

Both equations correspond to the Cosserat unit quaternion field p = p(s, t) of the form (4) and
R = R ◦ p. One way, to prove these two evolution equations is component by component with the
fundamental Jacobians

1

2

∂d1(p)

∂p
=





p0 p1 −p2 −p3

p3 p2 p1 p0

−p2 p3 −p0 p1



 ,
1

2

∂d2(p)

∂p
=





−p3 p2 p1 −p0

p0 −p1 p2 −p3

p1 p0 p3 p2



 (34)

1

2

∂d3(p)

∂p
=





p2 p3 p0 p1

−p1 −p0 p3 p2

p0 −p1 −p2 p3



 (35)

of the director vectors dν = dν(p) in (6), (7) and the chain rule ∂td
ν = (∂pd

ν)(∂tp) resp. ∂sd
ν =

(∂pd
ν)(∂sp). This is carried out in [24] for example. An alternative would be to use expression

(11), which is rather lengthy and prone to errors. Thus, we give a much easier and more elegant
proof now here.

Lemma 2.4 (Equivalence of the frame and quaternion evolution equations) The differ-
ential equations (17) and (33) for the curvature K resp. (24) and (32) for the angular velocity Ω
are equivalent.

Proof: It is sufficient to prove the equivalence of (24) and (32). We compute with an arbitrary,
but fixed, vector v ∈ ℑ(H), R = R ◦ p, (57) and the fact that v̄ = −v,

E(2p̄ṗ)v = 2p̄ṗ × v = 2ℑ
(

p̄ṗ × v − 〈p̄ṗ, v〉
)

= 2ℑ(p̄ṗv) = p̄ṗv − p̄ṗv = p̄ṗv + p̄ṗv̄

= p̄ṗv + v ˙̄pp = p̄(ṗvp̄ + pv ˙̄p)p = p̄∂t(pvp̄)p = p̄∂t(Rv)p = p̄(Ṙv)p

= RT Ṙv.

Now, if RT Ṙ = E(Ω), then if follows that Ω = 2p̄ṗ, as v can be chosen arbitrarily. The converse
is clear as well. �
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It is not hard to see that for the spatial curvature k = RK, the equivalent evolutions k = 2(∂sp)p̄
resp. E(k) = (∂sR)RT hold. Likewise, the spatial angular velocity ω = RΩ satisfies the equivalent
evolutions ω = 2(∂tp)p̄ resp. E(ω) = (∂tR)RT . Here always R = R ◦ p. Similarly, an analogous
assertion to lemma 2.2 holds for k and γ.

Remark 2.5 (Symmetry) The quaternion differential equations (17) in s for K and (24) in t for
Ω are completely symmetric for the continuum model. From the two dimensional point of view,
it is consequently very natural to treat both K (resp. the bending and torsion energy density
VBT ) and Ω (resp. the rotatory kinetic energy density TR) in exactly the same way, i. e. in a
fully symmetric fashion. This means, we could write VBT = 1

2
(p′)T N(p)p′ with p dependent 4× 4

symmetric, positively semidefinite ‘curvature mass’ matrix N(p) = 4Q(p)CKQ(p)T with CK in
(16) replaced by diag(0;CK), similarly as we replaced I in (23) by diag(0; I) in section 2.2.3 in
the rotatory energy. Or vice versa.

However, in numerical Multibody Dynamics, the evolution (17) is discretised in space with finite
differences/quotients or finite elements, whereas the evolution (24) is solved ‘continuously’ in time
with the aid of appropriate time integrators. The dynamical problem is hyperbolic, and the static
problem is elliptic for fixed t ∈ [0, T ]. This is why we slightly prefer the asymmetric approach
here, see as well [17, 18]. Clearly for numerical simulations, simultaneous discretisations on a two
dimensional (s, t)-grid should as well be feasible. �

2.4 The internal forces and moments

First we have a look at the purely elastic case. As the potential energy densities V· are assumed
to be quadratic and positively definite in the strain measures, the conservative elastic internal
forces FΓ resp. moments MK are related in a linear and one-to-one constitutive manner to the
strains Γ resp. curvatures K. This is

FΓ = CΓΓ =
1

2

∂

∂Γ

(

ΓT CΓΓ
)

, MK = CKK =
1

2

∂

∂K

(

KT CKK
)

. (36)

Likewise for the viscoelastic case, since we assume the dissipation energy densities D· to be
quadratic and positively definite in the strain rates, the non-conservative dissipative internal forces

F Γ̇ resp. moments M K̇ are related linearly and one-to-one to the strain resp. curvature rates.
More precisely,

F Γ̇ = 2CΓ̇Γ̇ =
∂

∂Γ̇

(

Γ̇T CΓ̇Γ̇
)

, M K̇ = 2CK̇K̇ =
∂

∂K̇

(

K̇T CK̇K̇
)

. (37)

Then the the total internal forces F resp. moments M are given by

F = FΓ + F Γ̇ = CΓΓ + 2CΓ̇Γ̇ resp. M = MK + M K̇ = CKK + 2CK̇K̇.

Here the Hookean-like matrices CΓ, CK are from (14), (16) and the matrices CΓ̇, CK̇ are from
(20), (21). Clearly, other forms of constitutive assumptions could replace (36) and (37).

2.5 The balance equations

If we introduce the spatial strains γ = RΓ, the spatial curvatures k = RK, the spatial angular
velocities ω = RΩ, the spacial internal forces f = RF , the spatial internal moments m = RM ,
the spatial inertia tensor i = RIRT , each received by a push forward operation via R from the
corresponding material ones, it was shown in [22] that the Cosserat rod, for prescribed exterior

spatial force densities f̂ = f̂(s, t) and exterior spatial moment densities m̂ = m̂(s, t), satisfies
the following geometrically nonlinear partial differential equations on the rectangular domain
[0, L]× [0, T ] in the (s, t)-plane.
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• Balance equations (Spatial description)
{

̺A ẍ = ∂sf + f̂
̺
(

iω̇ + ω × iω
)

= ∂sm + ∂sx × f + m̂
(38)

By definition of the material and spatial quantities as presented in the preceding sections, it is
not hard to see that – with pulled back material exterior force densities F̂ = RT f̂ and material
exterior moment densities M̂ = RT m̂ – the system (38) can be equivalently written as follows.

• Balance equations (Material description)

{

̺A ẍ = ∂s(RF ) + RF̂

̺R
(

IΩ̇ + Ω × IΩ
)

= ∂s(RM) + ∂sx × (RF ) + RM̂
(39)

For the transformation from spatial to material description, the reader should note that the com-
ponents of a spatial quantity γ, k, ω, f , m, i in the moving coordinate system (d1, d2, d3) are
identical to the components of the corresponding material quantity Γ, K, Ω, F , M , I, measured
in the fixed coordinate system (e1, e2, e3). So, as an example, it holds Γ =

∑

ν Γνeν , if and only if
γ =

∑

ν Γνdν , since dν = Reν = peν p̄, see (10) and remark 2.3.

For our purposes, we prefer the following equivalent quaternion description of (38) or (39), which
consists a system of nonlinear hyperbolic partial differential algebraic equations.

• Balance equations (Quaternion language)






̺Aẍ = ∂s(pF p̄) + pF̂ p̄

̺(p̈ − 〈p, p̈〉p) = 2µ(p)−1
(

4̺ṗI ˙̄pp + (∂sp)M + ∂s(pM) + (∂sx)pF + pM̂
)

0 = ‖p‖2 − 1

(40)

Together with appropriate initial and boundary conditions, we receive the initial boundary value
problem, which has to be solved.

With the elastic constitutive assumptions (36), the quaternion description (40) can be completed
in the following form.























̺Aẍ = ∂s(pF p̄) + pF̂ p̄

̺
(

p̈ − 〈p, p̈〉p
)

= 2µ(p)−1
{

4̺ṗI ˙̄pp + (∂sp)M + ∂s(pM) + (∂sx)pF + pM̂
}

0 = ‖p‖2 − 1
F = CΓΓ
M = CKK

(41)

Likewise, with the viscoelastic constitutive assumptions in (37), the system (40) can be aug-
mented as follows.



























̺Aẍ = ∂s

(

pF p̄
)

+ pF̂ p̄

̺
(

p̈ − 〈p, p̈〉p
)

= 2µ(p)−1
{

4̺ṗI ˙̄pp + (∂sp)M + ∂s

(

pM
)

+ (∂sx)pF + pM̂
}

0 = ‖p‖2 − 1

F = CΓΓ + 2CΓ̇Γ̇

M = CKK + 2CK̇K̇

(42)

In (40), (41), (42) the balance of (material) linear momentum equation – the first each – is
completely identical to the corresponding one in the frame description (39). The second relations
each represent the balance of (material) angular momentum equation and correspond to the second
relation in the frame description (39). They describe the tangential acceleration of the quaternion
field p. The normal acceleration of the quaternion field 〈p, p̈〉 = −‖ṗ‖2 can be obtained by
differentiation of the unity constraint ‖p‖2 = 1 twice w. r. t. time.
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Proposition 2.6 (Equivalence of descriptions) Let R = R ◦ p with p from (4) and R from
(5). Then the Euclidean descriptions (38), (39) and the quaternion description (40) are equivalent.

Proof: Since RF = pF p̄ according to (9), there is nothing left to prove for the balance of linear
momentum. For the balance of angular momentum, we carry out the derivative w. r. t. s at the
right hand side of (39), multiply with RT from the left and use the identity RT (v×w) = RT v×RT w
for v, w ∈ ℑ(H) = R3. We then obtain

̺(IΩ̇ + Ω × IΩ) = RT
[

(∂sR)M + R∂sM + (∂sx) × (RF ) + RM̂
]

= RT (∂sR)M + ∂sM + (RT ∂sx) × F + M̂.
(43)

Using (9) and the frame differential equation (33), we find that the right hand side of (43) is equal
to

K × M + ∂sM + p̄(∂sx)p × F + M̂ = KM + 〈K, M〉 + ∂sM + p̄(∂sx)pF + 〈p̄(∂sx)p, F 〉 + M̂

= 2p̄(∂sp)M + ∂sM + p̄(∂sx)pF + M̂ + ηr,

where (57) for the quaternion product of two purely imaginary quaternions has been applied and
ηr = 〈K, M〉 + 〈p̄(∂sx)p, F 〉 collects purely real summands of the right hand side. From (24) it
follows that

1

2
Ω̇ = p̄p̈ + ‖ṗ‖2, (44)

so that we can conclude – according to to the closed form expression for the quaternion mass
matrix (27) – that

IΩ̇ = 2Ip̄p̈ =
1

2
p̄µ(p)p̈.

The real quantity ‖ṗ‖2 is annihilated by the quaternion inertia tensor I, which carries a zero at
its ‘real’ position, see (26). Similarly,

Ω × IΩ = Ω(IΩ) + 〈Ω, IΩ〉 = 4p̄ṗIp̄ṗ + ηl = −4p̄ṗI ˙̄pp + ηl,

since 〈p, ṗ〉 = ℜ(p̄ṗ) = 0, where as well ηl = 〈Ω, IΩ〉 collects purely real summands. Thus,
left-multiplication of (43) with 2p yields

̺(µ(p)p̈ − 8ṗI ˙̄pp + 2ηlp) = ̺(4pIp̄p̈ − 8ṗI ˙̄pp + 2ηlp)

= 4(∂sp)M + 2p∂sM + 2(∂sx)pF + 2pM̂ + 2ηrp

= 2(∂sp)M + 2∂s(pM) + 2(∂sx)pF + 2pM̂ + 2ηrp.

(45)

Now left-multiplication with the tangential inverse mass µ(p)−1 and p ∈ kerµ(p)−1, together with
property (31), yields

̺(I − p ⊗ p)p̈ = µ(p)−1
(

8̺ṗI ˙̄pp + 2(∂sp)M + 2∂s(pM) + 2(∂sx)pF + 2pM̂
)

.

With (p ⊗ p)p̈ = 〈p, p̈〉p, the assertion (40) finally follows. It remains to show that the converse is
also true. Left multiplication of (40) with µ(p)−1 yields

̺µ(p)p̈ = q − 〈p, q〉p, q = 8̺ṗI ˙̄pp + 4(∂sp)M + 2p∂sM + 2(∂sx)pF + 2pM̂

because of p ∈ kerµ(p) and (31). Left-multiplication with p̄/2 yields

̺
(

IΩ̇ + Ω × IΩ − 〈Ω, IΩ〉
)

=
̺

2
p̄µ(p)p̈ =

1

2
p̄q − 1

2
〈p, q〉

= 2p̄(∂sp)M + ∂sM + p̄(∂sx)pF + M̂ + η,

where η = −〈K, M〉 − 〈p̄(∂sx)p, F 〉 + 〈p, q〉/2 again collects purely real summands. Taking the
imaginary part ℑ(·) on both sides and computing backwards as in the first part of the proof gives
the final result (39). Thus the desired equivalence is proven. �
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3 Main theorems

In this section, we present the main theorems of this paper, where we derive the balance of linear
and angular momentum relations for the Cosserat rod from the stationarity of two dimensional
action functionals.
Like in standard classical Lagrangian rigid body mechanics [11], where the stationarity δ

∫

Ldt = 0
with a Lagrangian that only depends on q, q̇, λ and t, leads to ordinary differential algebraic
equations in t for the rigid bodies, here the stationarity δ

∫∫

Lds dt = 0 with a Lagrangian that
depends on q, q′, q̇, λ and t, leads to partial differential algebraic equations in space s and time t
for the translatory and rotatory unknowns x and p. These are equivalent to the balance of linear
and angular momentum equations (41) in the elastic case resp. (42) in the viscoelastic case.
For notational simplicity, we assume that no external force densities F̂ and no external moment
densities M̂ are present.

Theorem 3.1 (Derivation from Lagrange field theory, Elastic case)
With the Lagrangian L = T − V − gT λ, where the potential energy density V from (13), the
kinetic energy density T from (23) and the constraint density g = g(p) = (‖p‖2 − 1)/2, the two
dimensional (s, t)-variational principle

δ

∫ T

0

∫ L

0

L dsdt = 0

yields















̺Aẍ = ∂s

(

pF p̄
)

̺µ(p)p̈ + λp = 2x′pF + ∂s

(

2pM
)

+ 2p′M + ̺

[

1

2
∂p

(

ṗT µ(p)ṗ
)

− ∂p

(

µ(p)ṗ
)

ṗ

]

0 = ‖p‖2 − 1

, (46)

where the forces and moments are

F = FΓ = CΓΓ, M = MK = CKK. (47)

Proof: We apply the two dimensional variational calculus in the variables s and t from appendix
B with

q = (x, p), q′ = (x′, p′) = (∂sx, ∂sp), q̇ = (ẋ, ṗ) = (∂tx, ∂tp)

and (s, t) ∈ U . Here U denotes the rectangular space-time domain U = [0, L]×[0, T ] ⊂ R2. It holds
that VSE = VSE(p, x′) due to (14), VBT = VBT (p, p′) due to (16) and TT = TT (ẋ), TR = TR(p, ṗ)
due to (23). Thus

L = L(p, x′, p′, ẋ, ṗ, λ), V = V(p, x′, p′), T = T (p, ẋ, ṗ), g = g(p).

We have to compute the partial derivatives of the strain measures w. r. t. the generalised coordi-
nates,

∂Γ

∂x′
= R(p)T ,

∂Γ

∂p
= −2x′p,

∂K

∂p′
= 2Q(p)T ,

∂K

∂p
= 2Q̂(p′)C, (48)

where the quaternion identity (65) is helpful. Here C = diag(1;−1,−1,−1) denotes the ‘conjuga-
tor’. With the calculus rule ∂q(v

T Av)/2 = (∂v/∂q)T Av for constant symmetric matrices A and
vectors v = v(q), we derive

∂VSE

∂x′
= p(CΓΓ)p̄,

∂VSE

∂p
= −2x′pCΓΓ,

∂VBT

∂p′
= 2pCKK,

∂VBT

∂p
= −2p′CKK. (49)

Here the quaternion matrices Q, Q̂ and F of section A are helpful. The remaining partial deriva-
tives of the potential energy densities V· vanish. Further for the kinetic energies T·, we find

d

dt

(

∂T
∂ẋ

)

= ̺Aẍ,
d

dp

(

∂T
∂ṗ

)

= ̺µ(p)p̈ + ̺
∂

∂p

(

µ(p)ṗ
)

ṗ,
∂T
∂p

=
̺

2

∂

∂p

(

ṗT µ(p)ṗ
)

.
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So, plugging things together, the Euler-Lagrange equations (71) and (72) yield the assertion (46)
and (47). �

By left-multiplication of the quaternion differential equation in (46) with µ(p)−1 the constraint
force λp is eliminated, and together with (31) and (29) as in the proof of proposition 2.6, it is
shown that (46) with (47) is equivalent to (41). The Lagrange multiplier λ can be computed
by left-multiplication of (46) with pT , the fact that pT µ(p) = (µ(p)T p)T = (µ(p)p)T = 0 and
pT p = 〈p, p〉 = ‖p‖2 = 1. It turns out that λ = 2〈Ω, IΩ〉 = 4TR, cf. as well [21].

An alternative way to solve (46) for p̈ and λ is close to the index reduction method [19] in modern
Multibody Dynamics. The constraint for the quaternion field on position level is g(p) = (‖p‖2 −
1)/2. Taking the total partial derivative w. r. t. time yields the constraint on velocity level G(p)ṗ =
〈p, ṗ〉 = 0, which expresses the fact that the quaternion velocity must always be tangential to S3.
Here G(p) = ∂g(p)/∂p = p is the constraint gradient. Differentiating once more w. r. t. time
yields the constraint on acceleration level G(p)p̈ = 〈p, p̈〉 = −‖ṗ‖2, which exactly yields the
radial acceleration that is necessary to keep the quaternion on its spherical orbit. Thus, from
the analytical – not at all from the numerical! – point of view, the last couple in (46) can be
equivalently rewritten as

(

̺µ(p) p
pT 0

) (

p̈
λ

)

=

(

. . .
−‖ṗ‖2

)

, (50)

if the position constraint is replaced by the acceleration constraint. Now the 5×5 mass-constraint
matrix at the left-hand side in (50) is regular, has full rank and its inverse can be explicitly
calculated as

(

̺µ(p) p
pT 0

)−1

=





1

̺
µ(p)−1 p

pT 0



 . (51)

The equivalence of (46), (47) with (41) can thus be proved with (51) and the acceleration constraint
〈p, p̈〉 = −‖ṗ‖2 in an alternative fashion.

Theorem 3.2 (Derivation from Lagrange field theory, Viscoelastic case)
With the Lagrangian L = T − V − gT λ, where the potential energy density V from (13), the
kinetic energy density T from (23) and the constraint density g = g(p) = (‖p‖2 − 1)/2, the two
dimensional (s, t)-variational principle

δ

∫ T

0

∫ L

0

L dsdt −
∫ T

0

∫ L

0

∂D
∂q̇

δq dsdt −
∫ T

0

∫ L

0

∂D
∂q̇′

δq′ dsdt = 0

with the dissipation energy density D from (19), yields (46) where the forces and moments are
given by

F = CΓΓ + 2CΓ̇Γ̇, M = CKK + 2CK̇K̇. (52)

Proof: Again, we apply the results of appendix B. From Γ = Γ(p, x′) in (15) and K = K(p, p′)
in (17), we conclude with the chain rule that

Γ̇ =
∂Γ

∂p
ṗ +

∂Γ

∂x′
ẋ′, K̇ =

∂K

∂p
ṗ +

∂K

∂p′
ṗ′,

so that – note that the strain and curvature gradients do not depend on ẋ, ẋ′, ṗ, ṗ′ – we have the
following ‘truncation rule’ for the dot ,̇ namely

∂Γ̇

∂ṗ
=

∂Γ

∂p
,

∂Γ̇

∂ẋ′
=

∂Γ

∂x′
,

∂K̇

∂ṗ
=

∂K

∂p
,

∂K̇

∂ṗ′
=

∂K

∂p′
.

The right hand side gradients therein are already known from (48). By the way: This is a special
case of a very general feature of any strain measures, derived from some generalised coordinates,
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see remark 3.3 below. So we obtain – completely analogously to (49) –

1

2

∂DSE

∂ẋ′
= p(CΓ̇Γ̇)p̄,

1

2

∂DSE

∂ṗ
= −2x′pCΓ̇Γ̇,

1

2

∂DBT

∂ṗ′
= 2pCK̇K̇,

1

2

∂DBT

∂ṗ
= −2p′CK̇K̇.

Finally, plugging all the pieces together, the Euler-Lagrange equations (74) and (72) yield the
assertion (46) with (52). �

As above for the elastic case, it can be shown that system (46) with the viscoelastic forces and
moments (52) is equivalent to (42).

Remark 3.3 (A truncation rule) We end with a general remark on strain measures, potential
and dissipation energy densities. Let some strain measure components ξn be given by any smooth
enough — linear or nonlinear – mappings

ξn = φn(q, q′, t). (53)

For the Cosserat rod model, these ξn are the strain components Γν or the curvature components
Kν , n = ν, with the nonlinear transformations (15) resp. (17). Taking the time derivative, we
find with the chain rule

ξ̇n =
∑

k

∂φn

∂qk

(q, q′, t)q̇k +
∑

k

∂φn

∂q′k
(q, q′, t)q̇′k +

∂φn

∂t
(q, q′, t),

from which the ‘dot truncation’ rule

∂ξ̇n

∂q̇κ

=
∂φn

∂qκ

=
∂ξn

∂qκ

,
∂ξ̇n

∂q̇′κ
=

∂φn

∂q′κ
=

∂ξn

∂q′κ
(54)

follows. The reader should note that this rule holds without any restrictions on the mappings φn

in (53). It is a very convenient tool for a general framework in Multibody Dynamics to derive the
forces, Jacobians and Hessians corresponding to a convex potential (in the strain measures) and
a consistent convex dissipation potential (in the strain measure rates). See as well [17, 18] for the
quadratic case. �

A Hamilton quaternion algebra

Hamilton’s quaternion algebra, which we denote by H = ℜ(H) ⊕ ℑ(H), is a real division algebra,
a skew field and a vector space, the latter isomorphic to R4 = R ⊕ R3. For details, have a look
into the ‘book of numbers’ [10]. We write down a quaternion p ∈ H as

p = ℜ(p) + ℑ(p) = p0 + p̂ = (p0; p1, p2, p3)
T = p0 + p1i + p2j + p3k,

where the imaginary units, classically denoted by i ≃ e1, j ≃ e2, k ≃ e3, satisfying

i2 = −1, j2 = −1, k2 = −1, ij = k, jk = i, ki = j, (55)

build up the basis of the imaginary space ℑ(H) = R
3. Clearly, 1 ≃ e0 is the basis of the real

line ℜ(H) = R. The three components of the imaginary part of p are conveniently denoted by
p1 = ℑ1(p), p2 = ℑ2(p) and p3 = ℑ3(p) as well. For two quaternions p, q ∈ H, the product pq ∈ H

is defined by – or follows from the basic definitions (55) –

pq = p0q0 − 〈p̂, q̂〉 + p0q̂ + q0p̂ + p̂ × q̂ (p, q ∈ H). (56)

In single components, this is

ℜ(pq) = p0q0 − 〈p̂, q̂〉 = p0q0 − p1q1 − p2q2 − p3q3
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and

ℑ(pq) = p0q̂ + q0p̂ + p̂ × q̂ = p0





q1

q2

q3



 + q0





p1

p2

p3



 +





p2q3 − p3q2

p3q1 − p1q3

p1q2 − p2q1



 .

Here 〈·, ·〉 is the inner (scalar), × is the outer (cross) product in ℑ(H) = R3. It is convenient to
denote the imaginary (= vector) part of a quaternion q by the hat symbol q̂ = ℑ(q). We point
out the special case of (56), where for two purely imaginary quaternions (= vectors) p̂ and q̂

p̂q̂ = −〈p̂, q̂〉 + p̂ × q̂ (p̂, q̂ ∈ H). (57)

For a quaternion p = p0 + p̂ = (p0; p1, p2, p3) ∈ H, the conjugate p̄ is given by p̄ = p0 − p̂ =
(p0; −p1,−p2,−p3)

T , the Euclidean norm ‖p‖ by ‖p‖ =
√

pp̄ =
√

p̄p =
√

〈p, p〉, the multiplicative
inverse p−1 by p−1 = p̄/‖p‖2. Conjugation obviously satisfies pq = q̄p̄ for p, q ∈ H.
For the special purposes of this paper, the following identities are useful, especially for the Cosserat
material curvature K or the Cosserat material angular velocity Ω,

p̄q = p0q0 + 〈p̂, q̂〉 + p0q̂ − q0p̂ − p̂ × q̂ (p, q ∈ H). (58)

In components, these identities are written

ℜ(p̄q) = p0q0 + 〈p̂, q̂〉 = 〈p, q〉 = p0q0 + p1q1 + p2q2 + p3q3 (59)

and

ℑ(p̄q) = p0q̂ − q0p̂ − p̂ × q̂ = p0





q1

q2

q3



 − q0





p1

p2

p3



 −





p2q3 − p3q2

p3q1 − p1q3

p1q2 − p2q1



 . (60)

Similar relations hold for pq̄ and ℑ(pq̄). We have ℜ(p̄q) = ℜ(pq̄) = 〈p, q〉. For two quaternions
p, q ∈ H, it holds that

F(p) =
∂

∂q
ℑ(p̄q), F(q) = − ∂

∂p
ℑ(p̄q) (61)

with the fundamental matrix

F(p) =





−p1 p0 p3 −p2

−p2 −p3 p0 p1

−p3 p2 −p1 p0



 =



 −p̂ p0I − E(p̂)



 (62)

for p ∈ H. The ‘quaternion matrix’, see [13, 21] for example,

Q(p) =









p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0









=









p0 −p̂

p̂ p0I + E(p̂)









=
(

p F(p)T
)

, (63)

which satisfies Q(p)Q(p)T = QT (p)Q(p) = ‖p‖2I, allows to express left-multiplication with p in
H as left multiplication with Q(p). Left-multiplication with the conjugate q̄ is nothing else but
left-multiplication with the transpose Q(p)T . Likewise,

Q̂(p) =









p0 −p1 −p2 −p3

p1 p0 p3 −p2

p2 −p3 p0 p1

p3 p2 −p1 p0









=









p0 −p̂

p̂ p0I − E(p̂)









(64)

makes right-multiplication with p in matrix-vector notation easily possible. Summarising, this
means

pq = Q(p)q, p̄q = Q(p)T q, pq = Q̂(q)p, pq̄ = Q̂(q)T p
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for all p, q ∈ H. It clearly holds Q(p)Q̂(p)T = Q̂(p)TQ(p) = diag(1, R(p)) because of (9).
Likewise, left-multiplication pv for purely imaginary quaternions (= vectors) v can be expressed
as pv = F(p)T v. We further note the useful identity

1

2

(
(

∂d1

∂p

)T

v

(

∂d2

∂p

)T

v

(

∂d3

∂p

)T

v

)

f = −vpf
(

p ∈ H, v, f ∈ ℑ(H)
)

(65)

for purely imaginary quaternions (= vectors) v and f . The 3 × 4 matrices ∂pd
ν(p) are the funda-

mental Jacobians (34), (35) of the directors dν(p) in (6) and (7).

The reader should always note that we use the langles 〈·, ·〉 for both the scalar products in ℑ(H) =
R3 and H = R4, depending on the context. This means

〈v, w〉 =
∑

ν=1,2,3

vνwν , 〈p, q〉 =
∑

ν=0,1,2,3

pνqν , 〈p̂, q̂〉 =
∑

ν=1,2,3

pνqν

for quaternions p, q ∈ H and purely imaginary quaternions (= vectors) v, w, p̂, q̂ ∈ ℑ(H) = R3.
For p, q ∈ H, the dyadic product is defined by p ⊗ q = pqT , in components (p ⊗ q)µν = pµqν for
µ, ν = 0, . . . , 3.

B Lagrange field theory in two dimensions

In this section, we recapitulate the main results from classical Lagrange field theory and variational
calculus in two dimensions for arbitrary many unknown functions. The first dimension is the ‘space’
s, the second one is the ‘time’ t. To this end, we combine the ideas of sections 2 and 4 of [8],
chapter IV, §3.
Let N denote a natural number, U ⊂ R2 a domain with sufficiently smooth boundary ∂U , e. g.
piecewise continuously differentiable. Let further a Lagrange density

L : U × R × R
N × R

N × R
N → R,

(

(s, t), λ, q, q′, q̇
)

7→ L
(

(s, t), λ, q, q′, q̇
)

(66)

be given. For example, L may be of the form

L
(

(s, t), λ, q, q′, q̇
)

= T
(

(s, t), q, q̇
)

− V
(

(s, t), q, q′
)

− g
(

(s, t), q
)T

λ (67)

with a potential energy density V : U×R
N ×R

N → R, a kinetic energy density T : U×R
N ×R

N →
R and a constraint density g : U × RN → R. We consider the action functional

S[λ, q] =

∫∫

U

L
(

(s, t), λ(s, t), q(s, t), q′(s, t), q̇(s, t)
)

d(s, t)

for twice continuously differentiable functions q : U → RN and continuous functions λ : U → R.
As usual, ∂s is denoted by a dash ′ and ∂t is denoted by a dot .̇ We look for a critical point (λ, q)
of S, which makes the functional S stationary,

δS = δ

∫∫

U

L
(

(s, t), λ, q, q′, q̇
)

d(s, t) = 0 (68)

among all smooth enough variations (δλ, δq) that are vanishing on the boundary ∂U . Then
necessarily all the directional derivatives

∂

∂ǫn

Φ(ǫ0, . . . , ǫN )
∣

∣

∣

ǫ=0

where
Φ(ǫ0, . . . , ǫN) = S[λǫ, qǫ

1, . . . , qǫ
N ], λǫ = λ + ǫ0δλ, qǫ

n = q + ǫnδqn
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for each n = 0, . . . , N and each such admissible variation (δλ, δq) mush vanish. For n = 1, . . . , N ,
differentiation under the integral yields

∂

∂ǫn

Φ(ǫ) =

∫∫

U

∂

∂ǫn

{

L
(

(s, t), λǫ, qǫ
1, . . . , qǫ

N , ∂sq
ǫ
1, . . . , ∂sq

ǫ
N , ∂tq

ǫ
1, . . . , ∂tq

ǫ
N

)

}

d(s, t)

=

∫∫

U

{

∂L
∂qn

(

(s, t), λǫ, qǫ
ν , ∂sq

ǫ
ν , ∂tq

ǫ
ν

)

δqn +
∂L
∂q′n

(

(s, t), λǫ, qǫ
ν , ∂sq

ǫ
ν , ∂tq

ǫ
ν

)

δq′n

+
∂L
∂q̇n

(

(s, t), λǫ, qǫ
ν , ∂sq

ǫ
ν , ∂tq

ǫ
ν

)

δq̇n

}

d(s, t),

where the chain rule has been applied. Letting ǫ = 0, i. e. λ0 = λ, q0
ν = qν , and integration by

parts yields

∂

∂ǫn

Φ(ǫ)

∣

∣

∣

∣

ǫ=0

=

∫∫

U

{

∂L
∂qn

(

(s, t), λ, qν , q′ν , q̇ν

)

δqn +
∂L
∂q′n

(

(s, t), λ, qν , q′ν , q̇ν

)

δq′n

+
∂L
∂q̇n

(

(s, t), λ, qν , q′ν , q̇ν

)

δq̇n

}

d(s, t)

=

∫∫

U

∂L
∂qn

δqnd(s, t) +

∫

∂U

δqn

{

∂L
∂q̇n

dt − ∂L
∂q′n

ds

}

−
∫∫

U

δqn

{

∂

∂s

(

∂L
∂q′n

)

+
∂

∂t

(

∂L
∂q̇n

)}

d(s, t)

=

∫∫

U

δqn

{

∂L
∂qn

− ∂

∂s

(

∂L
∂q′n

)

− ∂

∂t

(

∂L
∂q̇n

)}

d(s, t).

The boundary line integral vanishes, as δqn = 0 on ∂U . So, as the variations δqn are arbitrary,
with the aid of the fundamental lemma of variational calculus, the Euler-Lagrange equations

∂

∂t

(

∂L
∂q̇

)

=
∂L
∂q

− ∂

∂s

(

∂L
∂q′

)

(69)

follow component by component. For the special choice L = T − V − gT λ from (67) of the
Lagrangian function, the corresponding equations (69) become

∂

∂t

(

∂T
∂q̇

)

=
∂T
∂q

− ∂V
∂q

+
∂

∂s

(

∂V
∂q′

)

− GT λ, (70)

where G = ∂g/∂q denotes the constraint gradient. If further the kinetic energy density function
T is of the form

T = T
(

(s, t), q, q̇
)

=
1

2
q̇TM(q)q̇ + f(s, t)

with state q dependent symmetric positively semidefinite mass density matrix q 7→ M(q) ∈ R
N×N ,

carrying out the partial derivative ∂/∂t, the Euler-Lagrange equations (70) become

Mq̈ +
∂

∂q

(

Mq̇
)

q̇ − 1

2

∂

∂q

(

q̇TMq̇
)

= −∂V
∂q

+
∂

∂s

(

∂V
∂q′

)

− GT λ. (71)

In a similar fashion for n = 0, since the Lagrangian does not depend on λ′ and λ̇, i. e. ∂L/∂λ′ =
∂L/∂λ̇ = 0, we find ∂L/∂λ = 0, which results in

g
(

(s, t), q
)

= 0, (72)

which is nothing but the constraint equation. This was the non-dissipative case. We now turn to
the dissipative one. If – in addition to the Lagrangian (66) – a dissipation density

D : U × R
N × R

N × R
N × R

N → R,
(

(s, t), q, q′, q̇, q̇′
)

7→ D
(

(s, t), q, q′, q̇, q̇′
)
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is given, then the variational principle

δ

∫∫

U

Ld(s, t) −
∫∫

U

∂D
∂q̇

δq d(s, t) −
∫∫

U

∂D
∂q̇′

δq′ d(s, t) = 0 (73)

yields the Euler-Lagrange equations

Mq̈ +
∂

∂q

(

Mq̇
)

q̇ − 1

2

∂

∂q

(

q̇TMq̇
)

= −∂V
∂q

− ∂D
∂q̇

+
∂

∂s

(

∂V
∂q′

)

+
∂

∂s

(

∂D
∂q̇′

)

− GT λ, (74)

together with the constraint equation (72). This is proven in exactly the same way as above, where
integration-by-parts is applied to the third integral in (73).
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