
Malware Detection on Mobile Devices using Distributed Machine Learning

Ashkan Sharifi Shamili, Christian Bauckhage
Bonn-Aachen International Center

for Information Technology

Tansu Alpcan
Deutsche Telekom Laboratories
Technical University of Berlin
alpcan@sec.t-labs.tu-berlin.de

Abstract

This paper presents a distributed Support Vector Ma-
chine (SVM) algorithm in order to detect malicious soft-
ware (malware) on a network of mobile devices. The
light-weight system monitors mobile user activity in a
distributed and privacy-preserving way using a statis-
tical classification model which is evolved by training
with examples of both normal usage patterns and un-
usual behavior. The system is evaluated using the MIT
reality mining data set. The results indicate that the
distributed learning system trains quickly and performs
reliably. Moreover, it is robust against failures of indi-
vidual components.

1. Introduction
The widespread use and general purpose computing

capabilities of smartphones make them the next big tar-
gets of malicious software (malware) and security at-
tacks. Given the battery, computing power, and band-
width limitations inherent to mobile devices, embedded
detection of malware is a nontrivial research challenge
that requires a different approach than the ones used for
desktop or laptop computing.

Mobile device usage patterns such as the number of
text messages sent or the duration of calls can serve
collaboratively to derive flexible, personalized, and be-
havioral signatures of malware. For example, a secu-
rity laboratory can provide the malware behavior data
while the participating users provide the system with
their normal usage data. Once a classifier has been col-
lectively trained, it is used to detect malware and other
attacks.

The problem of malware detection has recently
gained interest in the field of pattern recognition [9, 3].
Anomaly detection can be considered as a binary clas-
sification problem which is solvable using statistical
learning [7, 13]. Unsurprisingly, most of previously
proposed schemes in anomaly detection are based on

machine learning and data mining techniques [8, 10,
11, 12]. Decentralized malware detection approaches
have been investigated in [5]. Support Vector Machines
(SVMs) have been applied to malware detection on mo-
bile phones in [4]. Given the limitations of mobile com-
puting platforms, how to decrease the overhead of a
detection algorithm by distributing the computation to
multiple units and exchanging only a minimum number
of support vectors has been discussed in [1].

Distinguishing between actual malware and mere
unusual behavior is a challenge and heed has to be
paid to avoid high false alarm rates. The inherent non-
convex nature of malware detection complicates the
problem, as does the limited availability of attack infor-
mation data. Real time monitoring is another issue that
has to be considered and unnecessary overhead must be
avoided. These limitations and constraints motivate fur-
ther research in the area of mobile malware detection.

This paper studies the distributed support vector
machine scheme [1, 2] by experimenting on the well
known data set of the MIT reality mining project [6]
with different settings. The distributed learning ap-
proach adopted provides multiple advantages:

• It is a lightweight scheme in terms of bandwidth
usage, since it does not require the mobiles to send
all of their behavior data to a security center.

• It preserves the privacy of the participating users,
since the communicated data are highly abstract
and since a central repository for all of user data
is not required.

• It takes into account usage patterns of ordinary
users in order to automatically generate a general
behavioral signature of malware.

Given its favorable properties, this scheme provides a
promising and low-overhead defensive layer for mobile
devices, possibly alongside with existing approaches.

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.1057

4332

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.1057

4356

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.1057

4348

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.1057

4348

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.1057

4348

2. Background
The key idea of our distributed machine learning

framework, is to divide the quadratic SVM binary clas-
sification problem into multiple separate sub-problems
by relaxing it using a penalty function. Then, dis-
tributed continuous- and discrete-time gradient algo-
rithms are applied to solve the relaxed problem iter-
atively. It can be shown that the synchronous paral-
lel update scheme converges to the approximate solu-
tion geometrically. Furthermore, an asynchronous algo-
rithm, where only a random subset of processing units
are updated in each round, also converges geometrically
which increases practical applicability of the scheme.
The optimal margin nonlinear binary SVM classifica-
tion problem is formalized in the quadratic problem

max
αd

N∑
d=1

αd −
1
2

N∑
d=1

N∑
e=1

αdαeqde

such that αd ≥ 0, d = 1, . . . , N

and
N∑
d=1

αdyd = 0,

where the αd are the Lagrange multipliers of the corre-
sponding support vectors (SVs) and

qde = ydye k(xd, xe).

Here, k denotes the positive definite kernel function, x
the data vectors, and y the positive and negative labels.

After relaxation and Lagrangian decomposition,
each of the mobile devices solves the following unit
problem on a subset Si of the available usage data

max
α

(i)
d ∈[0,αmax]

Fi(α) =
∑
d∈Si

αd −
1
2

∑
d∈Si

N∑
e=1

αdαeqde

− β

2

(N∑
l=1

αlyl

)2

such that αd ≥ 0, d = 1, . . . , N

using the following discrete-time gradient algorithm for
each of their training samples

αd(n+ 1) = αd(n) + κdGd
(
α(n)

)
∀d

where

Gd
(
α(n)

)
= 1− 1

2

(
αd(n)qdd −

N∑
e=1

αe(n)qde
)

− βyd
N∑
l=1

αl(n)yl .

We refer to [1] for the details of the algorithm.

Table 1. Histogram Features.
Feature (in numbers per 6 hour intervals)
Short duration calls (less than 2 min)
Medium duration calls (between 2 and 6 min)
Long duration calls (more than 6 min)
Short intervals between calls (less than 1 hour)
Medium length intervals between calls
(between 1 and 3 hours)
Long length intervals between calls
(more than 3 hours)
Outgoing SMS
Short periods between outgoing SMS
Medium periods between outgoing SMS
Long periods between outgoing SMS
Incoming SMS
Short periods between incoming SMS
Medium periods between incoming SMS
Long periods between incoming SMS
Short duration packet sending activities
Medium duration sending activities
Long duration sending activities
short periods between sending activities
Medium periods between sending activities
Long periods between sending activities

3. Data Set and Analysis

In our quantitative experiments with the proposed
scheme we consider the multi-user data set of the MIT
Reality Mining project [6]. It consists of data of phone
calls, short messages (SMSs), and data communication
logs collected via a special application during normal
daily usage of volunteers. In total, the Reality Mining
data consists of 897922 communication logs collected
from 97 users. We experiment with the data of 75 users
whose recordings exceed 25 days of activity.

This usage data is pre-processed to generate his-
tograms over a set of 20 features (see Table 1) that cover
time intervals of 6 hours. Here, short periods refer to
less than 1 hour, medium ones to between 1 and 3 hours,
and long ones to more than 3 hours, respectively. A
short call duration is considered to be less than 2 min-
utes, a medium one to be between 2 and 6 minutes, and
a long one to be more than 6 minutes. Due to the statisti-
cal nature of the histogram features, the privacy of users
who participate in distributed training is preserved.

We experiment with malware that behaves similar to
well-known Viver 1 or Beselo 2 Trojans. It sends out an
SMS every other minute, up to 20 in less than an hour,
but at least once per day. In each experiment, we infect

43334357434943494349

half of data set with malware symptoms. For training
and test data, a random number R < 20 is added to the
counts of Outgoing SMSs and the count of Short periods
between outgoing SMSs are varied by R− 1.

4. Experiments
We implement the presented framework on smart

phones with Symbian S60 and emulate a network of
such mobile devices. A light weight Python (PyS60)
runtime environment allows implementation client code
on these phones. The clients can, for example, commu-
nicate via a router and a PC which acts as the server.
In this case, the clients are emulated on the PC. Each
client processes the data of a single user of the Reality
Mining data set where the data of two users are contam-
inated with the malware signature.

Each mobile sends its own set of SVs to the server
and the server replies by sending back the aggregated
set of SVs of all clients to each participating client. Af-
ter it has received the set of all the SVs that character-
ize the current learning progress of the whole the dis-
tributed system, each unit updates its own SVs and once
again sends them to the server.

We initially invoke 25 clients to collaboratively de-
rive the maleware detection model. After the training
phase, when the model has been learned, testing is done
with the data of the other 50 users in our data set. Since
every client has access to the aggregated SVs, the test-
ing can be done in either single unit. Since the number
of SMSs sent by the maleware influences the detection
rates (true- and false positives alike), we evaluate the
effect of different levels of activity, i.e. the effect of
various amounts of SMSs sent by the malware.

1−5 6−10 11−15 16−20 1−20
0

20

40

60

80

100

Number of malware SMSs

R
e

c
o

g
n

it
io

n
 r

a
te

s
 (

%
)

contaminated samples

normal samples

Figure 1. Recognition rates for different
levels of maleware activity.

5 10 15 20 25
0

5

10

15

20

Number of clients

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

Figure 2. Average computation time per
client during the training phase of the
distributed system plotted w.r.t. different
numbers of participating clients.

5 10 15 20 25
0

5

10

15

20

Number of clients

It
e
ra

ti
o
n
s
 p

e
r

c
lie

n
t

Figure 3. Average number of updates per
client during the training phase of the
distributed system plotted w.r.t. different
numbers of participating clients.

Figure 1 illustrates the average recognition rates ob-
tained from experimenting with different amounts of
SMSs sent by malware. For a higher activity on the
part of the malware, we achieved better accuracy rates.
Highly invariant behavior (i.e. randomly sending be-
tween 1 and 20 SMSs in an hour) proved harder to be
accurately detectable.

Requirements with respect to computational efforts
are an important issue in real time systems. Figure 2 il-
lustrates the average computation time per client that is
measurable when different numbers of clients are learn-
ing the model in the training phase. This plot underlines
another advantage of the distributed scheme: while the
number of clients, and correspondingly the amount of
data available to the system, are increasing the time
required for training the system does not significantly
increase, since, the participating clients perform their
computation in parallel and update their SVs simulta-
neously. Therefore, the average number of updates per

43344358435043504350

0 20 40 60
0

1

2

3

4

Number of parallel updates

T
ra

in
in

g
 e

rr
o

r

without client vanishing

3 clients vanish

(a)

0 20 40 60
0

1

2

3

4

Number of parallel updates

T
ra

in
in

g
 e

rr
o

r

without client vanishing

6 clients vanish

(b)

0 20 40 60
0

1

2

3

4

Number of parallel updates

T
ra

in
in

g
 e

rr
o

r

without client vanishing

12 clients vanish

(c)

Figure 4. Effect on the convergence rate of the training process when different numbers of
clients vanish from the system during the training phase.

client is a good indicator for the required computation
time and should behave similarly. Figure 3 indicates
that this is indeed the case,

Finally, we evaluate the robustness of the proposed
system and examine its behavior when a client drops
out of the system (say, because a user switches off the
phone). Figure 4 shows the effect on the convergence
behavior of the training process. We tested with up to
half of the clients dropping from the system and found it
to converge to useful solutions in all cases. The number
of iterations to reach a solution as good as that of an
undisturbed system did increase but never significantly.

5. Conclusion
This paper has investigated the practical behavior of

a novel, distributed system for anomaly detection in mo-
bile networks. Examples of normal and abnormal usage
patterns are used to train the statistical classifier. Exper-
iments were conducted with a network of cell phones
processing data from the MIT reality mining project.
Our results underline that the system performs reliably,
trains quickly, and is robust against component failures.

Acknowledgements

This work has been supported in part by Deutsche
Telekom Laboratories.

References

[1] T. Alpcan and C. Bauckhage. A discrete-time parallel
update algorithm for distributed learning. In Proc. Int.
Conf. on Pattern Recognition, 2008.

[2] T. Alpcan and C. Bauckhage. A distributed machine
learning framework. In Proc. IEEE Conf. on Decision
and Control, 2009.

[3] T. Alpcan, C. Bauckhage, and A.-D. Schmidt. A prob-
abilistic diffusion scheme for anomaly detection on
smartphones. In Proc. Workshop on Information Secu-
rity Theory and Practices, 2010.

[4] A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral de-
tection of malware on mobile handsets. In Proc. Int.
Conf. on Mobile Systems, Applications And Services,
2008.

[5] R. Bye, K. Luther, S. A. Camtepe, T. Alpcan, S. Al-
bayrak, and B. Yener. Decentralized detector genera-
tion in cooperative intrusion detection systems. In Proc.
Int. Symp. on Stabilization, Safety, and Security of Dis-
tributed Systems, 2007.

[6] N. Eagle and A. S. Pentland. Reality mining: Sensing
complex social systems. Personal and Ubiquitous Com-
puting, 10(4):255–268, 2006.

[7] I. D. Gesu, G. L. Bosed, and J. H. Friedman. Intrud-
ers pattern identification. In Proc. Int. Conf. on Pattern
Recognition, 2008.

[8] M. A. E. Maloof. Machine Learning and Data Mining
for Computer Security. Springer, 2006.

[9] M. Reif, M. Goldstein, A. Stahl, and T. M. Breuel.
Anomaly detection by combining decision trees and
parametric densities. In Proc. Int. Conf. on Pattern
Recognition, 2008.

[10] K. Rieck, T. Holz, C. Willems, P. Duessel, and
P. Laskov. Learning and classification of malware be-
havior. In Proc. Int. Conf. on Detection of Intrusions
and Malware, and Vulnerability Assessment, 2008.

[11] K. Wang and S. J. Stolfo. Anomalous payload-based
network intrusion detection. In Proc. Int. Symp. on Re-
cent Advances in Intrusion Detection, 2004.

[12] N. Wu and J. Zhang. Factor-analysis based anomaly
detection and clustering. Decision Support Systems,
42:375–389, 2006.

[13] D. Yang and H. Qi. A network intrusion detection
method using independent component analysis. In Proc.
Int. Conf. on Pattern Recognition, 2008.

43354359435143514351

