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In this work we extend the multiscale finite element method (MsFEM)
as formulated by Hou and Wu in [14] to the PDE system of linear elasticity.
The application, motivated from the multiscale analysis of highly hetero-
geneous composite materials, is twofold. Resolving the heterogeneities on
the finest scale, we utilize the linear MsFEM basis for the construction of
robust coarse spaces in the context of two-level overlapping Domain De-
composition preconditioners. We motivate and explain the construction
and present numerical results validating the approach. Under the assump-
tion that the material jumps are isolated, that is they occur only in the
interior of the coarse grid elements, our experiments show uniform conver-
gence rates independent of the contrast in the Young’s modulus within the
heterogeneous material. Elsewise, if no restrictions on the position of the
high coefficient inclusions are imposed, robustness can not be guaranteed
any more. These results justify expectations to obtain coefficient-explicit
condition number bounds for the PDE system of linear elasticity similar to
existing ones for scalar elliptic PDEs as given in the work of Graham, Lech-
ner and Scheichl [12]. Furthermore, we numerically observe the properties
of the MsFEM coarse space for linear elasticity in an upscaling framework.
Therefore, we present experimental results showing the approximation er-
rors of the multiscale coarse space w.r.t. the fine-scale solution.

Keywords: linear elasticity, domain decomposition, multiscale finite
elements, robust coarse spaces, rigid body modes, discontinuous coefficients
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1 Introduction

Steadily growing demands on the range of application of todays industrial products
require more and more frequently the development of innovative, highly-effective com-
posite materials, specifically adapted to their field of application. Virtual material
design provides an essential support in the development process of new materials as it
substantially reduces costs and time for the construction of prototypes and performing
measurements on their properties. Of special interest is the multiscale-analysis of par-
ticle reinforces composites. They combine positive features of their components such
as e.g. lightweight and high stiffness.

Resolving the material jumps on the finest scale when performing the simulations
is of high computational cost. The idea of the multiscale finite element method is to
capture small scale features of the solution on coarser grid-levels without accurately
resolving all the small scale components. It has been successfully applied to scalar
elliptic PDEs with highly oscillating coefficients on multiple scales. Different varia-
tions of the method can be found in [14, 15, 16, 9], including their analysis in the
homogenization framework. A variational multiscale method for Brinkman’s equation
in highly porous media is presented in [18], an approach which also incorporates the
framework of Domain Decomposition.

Furthermore, multiscale finite element methods are often used for the construction
of robust two-level overlapping Domain Decomposition preconditioners for scalar el-
liptic multiscale PDEs (see [12], [13]). Applications to the Brinkman equation can be
found in [8]. Although the capability of the adaption of multiscale finite elements to
material studies of highly heterogeneous composites is often referred, to the authors
knowledge, their application to the 3D system of linear elasticity has not yet taken
place. However, an application of an adaptive local-global multiscale finite element
method to a 2D linear elasticity problem is given in [25]. There, an extension of the
multiscale finite volume element method presented in [7] for two-phase flow problems
is proposed. This method iteratively adapts the current multiscale basis functions by
combining an oversampling approach locally and a coarse scale simulation globally. In
[25], applications to a structural optimization problem in 2D linear elasticity is given.

Two-level overlapping Domain Decomposition preconditioners for the equations of
linear elasticity are observed in several papers. The common feature of each of these
works is that the coarse space contains the rigid body modes. E.g., in [29], linear coarse
spaces are considered. In [19], coarse spaces are constructed by aggregation techniques.
In both works, condition number bounds independent of the mesh parameters are
shown for a homogeneous material, with possibly large constants in the estimates.
Aggregation methods were originally introduced in [32, 33] for scalar elliptic PDEs
and first applied to the linear elasticity system in [34]. Under certain conditions, the
smoothed aggregation method promises mesh and coefficient independent condition
number bounds for the elasticity system. Aggregation based methods are observed
in many other works. E.g. in combination with partition of unity coarse spaces in
[27], sharper condition number bounds are given depending on the parameters of the
underlying material. In a more recent approach in [6], generalized eigenvalue problems
are solved in the overlapping regions of the coarse basis functions.
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Further robust methods for solving linear elasticity problems are available in the
literature, including multilevel methods studied in [24], and further developed in [20]
and [21]. In their work, they construct a purely algebraic multigrid method for lin-
ear elasticity problems, based on computational molecules, a new variant of AMGe.
Such an approach has been studied earlier for the scalar elliptic case in [23]. A multi-
grid approach based on a finite difference discretization of the elasticity system has
been proposed in [37]. Important works concerning classical AMG methods for linear
elasticity are given in [4] and [1].

The outline of the report is as follows. We start with the continuous formulation
of the governing PDE system and the discretization on the fine grid in section 2. In
section 3 we shortly recapitulate the two-level Additive Schwarz algorithm, followed
by introducing the precise structure of the underlying fine and coarse grid in 3D. We
recapitulate the multiscale finite element method for scalar elliptic PDEs in section 4.
The main requirements on a coarse space for the PDE systems of linear elasticity are
stated in section 5, followed by a detailed introduction of the multiscale finite element
basis. Section 6 is devoted to numerical results, a short discussion finalizes the report
in section 7.

2 Governing Equations and their Discretization

2.1 The Equation of Linear Elasticity

For the sake of simplicity, let Ω ⊂ R3 be a cuboidal domain. We consider a solid body
in Ω, deformed under the influence of volume forces f and tension forces t. Assuming
a linear elastic material behavior, it is well known that the displacement field u of the
body is governed by the linear elasticity system [2]

−divσ(u) = f in Ω, (1)
σ(u) = C : ε(u) in Ω, (2)

where σ is the stress tensor, the strain tensor ε is given by the symmetric part of the
deformation gradient

ε = ε(u) =
1
2
(
∇u+∇uT

)
.

C = C(x), x ∈ Ω is the 4th order elasticity tensor, it describes the elastic stiffness of
the material under mechanical load. The coefficients cijkl, 1 ≤ i, j, k, l ≤ 3 may contain
large jumps within the domain Ω. They depend on the parameters of the particular
materials which are enclosed in the composite. The boundary conditions are imposed
separately for each component ui = u · ei, i = 1, 2, 3 of the vector-field u : Ω̄ →
R3. Here, ei denotes the i-th Cartesian basis vector. We shall assume that Γ = ∂Ω
admits the decomposition into two disjoint subsets ΓDi

and ΓNi
, Γ = ΓDi

∪ ΓNi
and

meas(ΓDi
) > 0 for i ∈ {1, 2, 3}. The system given in equation (1) follows the boundary

conditions
ui = gi on ΓDi

σijnj = ti on ΓNi

}
i = 1, 2, 3,
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where n is the unit outer normal vector on ∂Ω.

The Lamé equation Equation (1) is the general form of the PDE system of anisotropic
linear elasticity, which can be simplified when the solid body consists of one or more
isotropic materials. In this case, equation (2) can be expressed in terms of the Lamé
coefficients λ ∈ R and µ > 0, which are characteristic constants of the specific material.
The stress tensor for an isotropic material simplifies to σ(u) = λtr(ε(u))I+2µε(u). We
assume that Ω is divided into two disjoint subdomains Ω1,Ω2 such that Ω̄ = Ω̄1 ∪ Ω̄2.
Each of the domains Ωi contains an isotropic material with Lamé coefficients (λi, µi),
i = 1, 2, i.e. let

λ(x) =

{
λ1, x ∈ Ω1

λ2, x ∈ Ω2
µ(x) =

{
µ1, x ∈ Ω1

µ2, x ∈ Ω2.

Let Γface := Ω̄1 ∩ Ω̄2 \ ∂Ω denote the interface between the two materials. Under the
condition of ideal adhesion, equation (1) simplifies to

µ∆u+ (λ+ µ)∇(∇ · u) = f in Ω\Γface, (3)

[u] = 0, [t] = 0 on Γface. (4)

Here, tj(u) = σijnj is the normal component of the stress where n is the unit normal
to Γface pointing into Ω2. The square brackets denote the discontinuity across Γface.
More precisely, [u(x0)] = u2(x0) − u1(x0) where ui(x0) := limΩi3x→x0 u(x), i = 1, 2,
is the one sided limit of the vector-field u in x0 ∈ Γface. Using the symmetry of the
strain- and the stress tensor

ε =

ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 , σ =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 ,

the Voigt notation enables a simplified representation of the stiffness tensor C in terms
of a 6×6 matrix C̃. The entries of the strain tensor σ in equation (2) can be computed
from (σ11, σ22, σ33, σ23, σ13, σ12)T = C̃(ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)T . For an isotropic
material, the stiffness tensor C̃ in Voigt notation takes the form

C̃ =


2µ+ λ λ λ
λ 2µ+ λ λ 0
λ λ 2µ+ λ

µ
0 µ

µ

 .

The Lamé coefficients can also be expressed in terms of the Young’s modulus E > 0
and the Poisson ratio ν ∈ (−1, 1/2) by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (5)
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Each pair (E, ν) or (λ, µ) characterizes the properties of an isotropic material. For
completeness, we also give the relation

E =
µ(3λ+ 2µ)
λ+ µ

, ν =
λ

2(λ+ µ)
.

Remark: We should point out here that we only consider compressible linear elas-
tic materials (ν < 1/2), which allows a discretization with piecewise linear (H1-
conforming) finite elements. To circumvent the effect of locking or volume locking,
reasonable discretizations are available when dealing with nearly incompressible mate-
rials. Such methods include non-conforming finite elements (c.f. [11], [22]) or a mixed
variational formulation by introducing an additional penalty term (c.f. [2], [3]). In our
observations, we always assume that the Poisson ratio ν is bounded away from 1/2.

2.2 Weak Formulation

Let the domain Ω ⊂ R3 and ΓDi
,ΓNi

⊂ ∂Ω, i = 1, 2, 3 be defined as in section 2.1.
Consider the Sobolev space of square-integrable functions with weak first derivatives
in the Lebesgue space L2(Ω),

H1(Ω) =
{
f ∈ L2(Ω) : ∂sf ∈ L2(Ω) ∀ |s| ≤ 1

}
,

equipped with the norm

‖f‖H1(Ω) :=

∑
|s|≤1

∫
Ω

|∂sf |2dx

1/2

,

where s = (s1, s2, s3) ∈ N3 is a multi-index with |s| = s1 + s2 + s3. We introduce the
Sobolev space for vector-fields in R3 by

V := [H1(Ω)]3 =
{
v = (v1, v2, v3)T : vi ∈ H1(Ω), i = 1, 2, 3

}
, (6)

V0 : =
{
v ∈ [H1(Ω)]3 : vi = 0 on ΓDi

, i = 1, 2, 3
}
⊂ V. (7)

Additionally, we define the manifold

Vg :=
{
v ∈ [H1(Ω)]3 : vi = gi on ΓDi

, i = 1, 2, 3
}
. (8)

The Sobolev space V inherits its scalar product from H1(Ω), it is given by

(u, v)[H1(Ω)]3 :=
3∑
i=1

(ui, vi)H1(Ω).

We assume f ∈ V−1 to be in the dual space of V0, t ∈ [H−
1
2 (ΓN )]3 is in the trace space

and cijkl ∈ L∞(Ω) to be uniformly bounded. Additionally, we require the stiffness
tensor C to be positive definite, i.e. it holds (C : ε(u)) : ε(v) ≥ C0 ε(u) : ε(v) for a
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constant C0 > 0. Note that for an isotropic material with the parameters λ and µ,
this condition holds when C0/2 < µ < ∞ and C0 ≤ 2µ + 3λ < ∞. We define the
bilinear form a : V × V → R,

a(u, v) :=
∫

Ω

(C : ε(u)) : ε(v) dx. (9)

This form is symmetric, continuous, and coercive. The coercivity, i.e.

∃ c0 > 0 : a(v, v) ≥ c0 ‖v‖[H1(Ω)]3 ∀v ∈ V0,

can be shown by using Korn’s inequality (c.f. [2]). Furthermore, we define the contin-
uous linear form F : V → R,

F (v) :=
∫

Ω

f · v dx+
∫

ΓN

t · v ds.

The weak solution of (1) is then given in terms of a(·, ·) and F (·) by u ∈ Vg, such that

a(u, v) = F (v) ∀v ∈ V0. (10)

Under the assumptions above, a unique solution of the weak formulation in equation
(10) is guaranteed by the Lax Milgram Lemma [2].

2.3 The Finite Element Discretization

We want to approximate the solution of (10) in a finite dimensional subspace Vh ⊂ V.
Therefore, let Th be a quasi-uniform triangulation of Ω ⊂ R3 into tetrahedral finite
elements with mesh parameter h and let Σ̄h be the set of vertices of Th contained in
Ω̄. We denote the number of grid points in Σ̄h by np. In section 3, the regular grid
and its triangulation is introduced in more detail. Let Bhlin := {ϕi}

np

i=1 be the set of
piecewise linear basis functions on the triangulation Th of Ω̄, such that

ϕi(xj) = δij , x
j ∈ Σ̄h.

Here, δij is the Kronecker delta. We extend the given scalar nodal basis to the space
of vector-valued nodal functions on Σ̄h by

Vh :=
{
vh ∈ [C0(Ω̄)]3 : vhk =

np∑
j=1

vj(k)ϕj , vj(k) ∈ R, k ∈ {1, 2, 3}
}
. (11)

Let em denote the m-th Cartesian basis vector in R3. Then each basis function φj(m) :=
ϕje

m : Ω → R3 of Vh is a vector-field with a scalar nodal function in one of their
components, and zero in the others. For the sake of simplifying the notation, we
assume a fixed numbering of the basis functions to be given. To be more specific,
we assume the existence of a suitable surjective mapping {φj(m)} → {1, .., nd} ⊂ N,
φj(m) 7→ j(m). Note that this mapping automatically introduces a renumbering from
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{1, .., np}× {1, 2, 3} → {1, .., nd}. Here, nd = 3np denotes the total number of degrees
of freedom (DOFs) of Vh. We introduce the discrete analogies to the space in equation
(7) and the manifold in equation (8) by

Vh0 : =
{
vh ∈ Vh : vhi = 0 on ΓDi

, i = 1, 2, 3
}
, (12)

Vhg : =
{
vh ∈ Vh : vhi = gi on ΓDi

, i = 1, 2, 3
}
. (13)

We want to find uh ∈ Vhg , where uh = wh + gh, with wh ∈ Vh0 and gh ∈ Vhg . More
precisely, we seek uh = (uh1 , u

h
2 , u

h
3 )T with

uhk =
np∑
j=1

uj(k)ϕj , k = 1, 2, 3,

such that
a(wh, vh) = F (vh)− a(gh, vh) ∀vh ∈ Vh0 .

We define the index set of degrees of freedom of Vh by Dh = {1, .., nd} and introduce
the subset

Dh0 : =
{
i(m) ∈ N : xi ∈ Σ̄h, xi 6∈ ΓDm

}
.

Furthermore, we may introduce DhΓD
:= Dh\Dh0 6= ∅. The bilinear form in equation

(9) applied to the basis functions of Vh reads

a(φi(m) , φj(k)) =
∫

Ω

ε̃(ϕiem)T C̃ ε̃(ϕjek) dx

=
∫

Ω

3∑
r,l=1

cmrkl ∂lϕj ∂rϕi dx.

We define A ∈ Rnd×nd , f ∈ Rnd by

Ai(m)j(k) =


a(φi(m) , φj(k)) if i(m), j(k) ∈ Dh0 ,
a(φi(m) , φi(m)) if i(m) = j(k) ∈ DhΓD

,

0 otherwise

and

fj(k) =


F (φj(k))−

∑
i(m)∈Dh

ΓD

a(φi(m) , φj(k))gm(xi) if j(k) ∈ Dh0 ,

F (j(k)) = a(φj(k) , φj(k))gk(xj) if j(k) ∈ DhΓD
.

Observe that common supports of basis functions φi(m) and φj(k) with i(m) ∈ Dh0 ,
j(k) ∈ DhΓD

do not have a contribution to the entries in A. They only contribute to
the loadvector f . This leads to the sparse linear system

Au = f (14)
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with the symmetric positive definite (s.p.d.) stiffness matrix A. The symmetry of
A is inherited from the symmetry of a(·, ·) while the positive definiteness is a direct
consequence of the coercivity of the bilinear form. Note that in the construction
above, the essential degrees of freedom in DhΓD

are not eliminated from the linear
system. The degrees of freedom related to Dirichlet boundary values are contained in
the linear system by strictly imposing uhi = ghi on ΓDi

, i ∈ {1, 2, 3}. The symmetry of
the linear system is kept by an adaption of the right-hand side.

2.4 Assembling the Stiffness Matrix

For implementation purposes, we introduce the matrix Bi related to a node xi by

Bi =


∂1ϕi 0 0

0 ∂2ϕi 0
0 0 ∂3ϕi
0 ∂3ϕi ∂2ϕi

∂3ϕi 0 ∂1ϕi
∂2ϕi ∂1ϕi 0

 .

It holds ε̃(φi(m)) = Bie
m where φi(m) = ϕie

m. One can write, at least for i(m), j(k) ∈
Dh0 ,

Ai(m)j(k) = emT
∫

Ω

BTi C̃Bj dx ek. (15)

As usual for finite element methods, the stiffness matrix A and the loadvector f in
equation (14) may be assembled by sums of elemental contributions, rather than entry
by entry as in equation (15). For each τ ∈ Th, we define the element submatrix

Ãτ =
∫
τ

BTτ C̃Bτ dx, (16)

where the matrix Bτ contains the nodal matrices Bτi
, i = 1, .., 4 corresponding to the

4 vertices of τ ,
Bτ = [Bτ1 , Bτ2 , Bτ3 , Bτ4 ].

An adaption of Ãτ is required if the tetrahedral element touches the global boundary
where Dirichlet conditions are applied. We introduce

Aτi(m)j(k) =


Ãτ
i(m)j(k) if i(m), j(k) ∈ Dh0 ,

Ãτ
i(m)i(m) if i(m) = j(k) ∈ DhΓD

,

0 otherwise
(17)

In a similar way, we define the elemental contribution of the load vector by

fτj(k) :=


F τ (φj(k))−

∑
i(m)∈Dh

ΓD

Aτ
i(m)j(k)gm(xi) if j(k) ∈ Dh0 ,

F τ (j(k)) = Aτ
j(k)j(k)gk(xj) if j(k) ∈ DhΓD

.

(18)
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The global stiffness matrix as well as the right-hand side are assembled element-wise.
For each τ ∈ Th, the following applies:

1. Assemble Aτ , τ ∈ Th as described in equation (17) and compute fτ by equation
(18). The essential boundary conditions are taken into account.

2. Update the global stiffness matrix respectively force-vector by the computed
elementary contributions.

The later step here requires some additional information. The element-matrices Aτ

as well as the corresponding element right-hand side are computed based on a local
ordering. Their values have to be added to the appropriate locations in the global
counterparts. In practice, all the computations are performed on one reference element
τref . For more details, we refer the reader to [17].

3 Fine and Coarse Grid for the Two-Level Method

We are interested in solving the linear system in equation (14) and hence, the construc-
tion of preconditioners for A which remove the ill-conditioning due to mesh-parameters
and variations in the PDE coefficients. Such preconditioners involve corrections on
local subdomains as well as a global solve on a coarse grid. Specifically, we apply
the two-level Additive Schwarz preconditioner, which we shortly recapitulate in this
section. Furthermore, we precisely introduce the fine and coarse triangulation on a
structured grid. The structure is such that the coarse elements can be formed by an
agglomeration of fine elements.

3.1 Two-level Additive Schwarz

Let {Ωi, i = 1, .., N} be an overlapping covering of Ω̄, such that Ωi \ ∂Ω is open for
i ∈ {1, .., N}. Ωi \ ∂Ω is assumed to consist of the interior of a union of fine elements
τ ∈ Th. We introduce the notation

Vh(Ωi) :=
{
vh ∈ Vh : supp(vh) ⊂ Ω̄i

}
, (19)

for the space of piecewise linear vector-valued functions which are supported in Ω̄i. For
i = 1, .., N , let Ri be the restriction operator of a function in Vh(Ω̄) to Vh(Ωi) (more
details can be found in [30]). We define the local submatrices of A corresponding to
Ωi by Ai = RiAR

T
i .

Additionally to the local subdomains, we need a coarse triangulation TH of Ω̄ into
coarse elements. Here, we assume again that each coarse element T consists of a union
of fine elements τ ∈ Th of the fine triangulation. We will construct a coarse basis
whose values are determined on the coarse grid points in Ω̄ (excluding coarse DOFs
on the Dirichlet boundaries), given by the vertices of the coarse elements in TH . The
coarse space VH0 ⊂ Vh0 is constructed such that it is a subspace of the vector-field
of piecewise linear basis functions on the fine grid. That is, each function φH ∈ VH0
omits a representation w.r.t. the fine scale basis. The restriction matrix RH describes
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a mapping from the coarse to the fine space and contains the corresponding coefficients
vectors of the coarse basis functions by row. The coarse grid stiffness matrix is then
defined as the Galerkin product AH := RHAR

T
H . With these tools in hand, the action

of the two-level additive Schwarz preconditioner is defined implicitly by

M−1
AS = RTHA

−1
H RH +

N∑
i=1

RTi A
−1
i Ri.

In the following, we may write A0 and R0 instead of AH and RH . The following two
theorems are basic results in Domain Decomposition theory. Proofs can be found in
[30]. Theorem 3.1 also states a reasonable assumption on the choice of the overlapping
subdomains.

Theorem 3.1. (Finite Covering) The set of overlapping subspaces Ωi, i = 1, .., N can
be colored by NC ≤ N different colours such that if two subspaces Ωi and Ωj have the
same color, it holds Ωi ∩ Ωj = ∅. For the smallest possible number NC , the largest
eigenvalue of the two-level preconditioned Schwarz linear system is bounded by

λmax(M−1
ASA) ≤ NC + 1

Theorem 3.2. (Stable Decomposition) Suppose there exists a constant C0 ≥ 1 , such
that for every v ∈ Vh, there exists a decomposition u =

∑N
i=0 u

i such that

N∑
i=0

a(ui, ui) ≤ C2
0a(u, u).

Then, it holds
λmin(M−1

ASA) ≥ C−2
0 .

As we can see, the choice of the coarse space has no influence on the largest eigenvalue
of the preconditioned system. However, it is crucial for obtaining a small constant C0

in the estimate of the smallest eigenvalue in Theorem 3.2. We continue with the
construction of the structured fine and coarse grid and motivate and define the coarse
multiscale basis for linear elasticity in the next sections.

3.2 Fine and Coarse Triangulation

The fine grid: Let the domain Ω be of the form of a 3D cube, i.e. Ω̄ = [0, Lx] ×
[0, Ly] × [0, Lz] ⊂ R3 for given Lx, Ly, Lz > 0. The fine grid is constructed from an
initial voxel structure which is further decomposed into tetrahedral finite elements [28].
More precisely, the set of grid points in Ω̄ is given by

Σ̄h :=
{

(xi, yj , zk)T | xi = ihx, yj = jhy, zk = khz, (20)

i = 0, .., nx, j = 0, .., ny, k = 0, .., nz
}

where nx = Lx/hx,, ny = Ly/hy, nz = Lz/hz. For simplicity, we may assume that
L := Lx = Ly = Lz and h := hx = hy = hz, and thus nh := nx = ny = nz. That is, the
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fine grid can be decomposed into nh×nh×nh grid-blocks of size h×h×h. We denote
such a fine grid block by �ijk

h , 1 ≤ i, j, k ≤ nh. The triple (i, j, k) uniquely determines
the position of the corresponding block in Ω̄. Each block is further decomposed into
5 tetrahedral elements. The decomposition depends on the position of the specific
grid-block. To identify them, we introduce the notation sijk := s(�ijk

h ) = i + j + k.
We distinguish between two different decompositions, depending on the value of sijk

mod 2. We follow the numbering of the 8 vertices of a block as given in Figure 1. If
sijk is odd (see Figure 1 (a)), block �ijk

h is decomposed into 5 tetrahedrons which are
defined by the set of their four vertices within each block,{

{1, 2, 4, 6}, {1, 3, 4, 7}, {1, 5, 6, 7}, {4, 6, 7, 8}, {1, 4, 6, 7}
}
.

If sijk is even (see Figure 1 (b)), the decomposition of block �ijk
h into the tetrahedrons

is done such that their vertices are given by{
{1, 2, 3, 5}, {2, 3, 4, 8}, {2, 5, 6, 8}, {3, 5, 7, 8}, {2, 3, 5, 8}

}
.

With the given decomposition, a conformal triangulation of Ω into tetrahedral ele-

Figure 1: Decomposition of grid block into 5 tetrahedral elements

ments is uniquely defined, we denote this partition by Th. Th is referred to as the fine
grid triangulation, whereas the coarse grid triangulation, introduced in the following,
is denoted by TH .

Forming coarse elements by agglomeration: The coarse elements T ∈ TH are con-
structed by an agglomeration of the fine elements. We construct a set of agglomerated
elements {T} = TH such that each T =

⋃nT

i=1 τi, τi ∈ Th is a simply connected union
of fine grid elements. Thus, for any two τi, τj ∈ Th, there exists a connecting path
of elements {τk}k ⊂ T beginning in τi and ending in τj . Each fine grid element τ
should belong to exactly one agglomerated element T . Due to a certain structure of
the underlying grid, the agglomeration is done such that the coarse elements have the
same tetrahedral form as the fine elements, and automatically form a coarser grid of
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equal structure. The table AE element is used to store the fine elements which be-
long to an agglomerated (coarse) element. Given the fine triangulation Th of Ω, the
agglomeration process proceeds as follows:

1. Given a fixed coarsening-factor cf , compute the position of the coarse nodes to
decompose the domain Ω into imaginary coarse blocks �ijk

H of size H ×H ×H,
where 1 ≤ i, j, k ≤ nH ∈ N, nH = nh/cf , and H = cfh;

2. Build the CB element table:
For each τ ∈ Th, measure the position of τ in Ω and assign it to the belonging
coarse block �ijk

H ;

3. Build the AE element table:
For each coarse block �ijk

H ⊂ Ω and each τ ⊂ �ijk
H (CB element), measure the

position of τ in �ijk
H and assign it to the belonging coarse tetrahedron;

In step 3 of the agglomeration process, we use again the mapping sijk := s(�ijk
H ) =

i + j + k to identify the coarse tetrahedrons into which a given block is decomposed.
This partition automatically defines a set of coarse grid points, given by the vertices of
the coarse elements. It remains to be shown that a straightforward decomposition of
a coarse block into coarse tetrahedral elements leads to the same result as forming the
coarse tetrahedrons by agglomerating fine elements. The proof of this concept will be
discussed in more detail in a following report. Having defined the coarse partition TH
of Ω into tetrahedral elements, we need grid-transfer operators RH , respectively RTH
which connect fine and coarse grid. We state the requirements on the interpolation
operator and the construction of the coarse multiscale basis in section 5 and proceed
with a short background of the multiscale finite element method for scalar elliptic
PDEs.

4 From Scalar PDEs to the PDE System

In this section, we shortly review the MsFEM method for scalar elliptic PDEs. More
precisely, we show how the linear multiscale finite element basis functions are defined
and give the global Galerkin formulation that couples the multiscale basis functions.
A detailed and complete introduction into MsFEM methods for scalar PDEs can be
found in [9].

4.1 The MsFEM for Scalar Elliptic PDEs

We consider the scalar elliptic PDE

− div(α∇u) = f in Ω (21)

where α = α(x) is a highly varying field in Ω. For simplicity, we restrict here to homo-
geneous boundary conditions on ∂Ω. Let Vh,s0 (Ω) denote the space of scalar piecewise
linear basis functions on the fine triangulation Th, which vanish on the boundary. We
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define the multiscale basis functions on the coarse triangulation TH of Ω and construct
a multiscale coarse space VH,s0 as a subspace of Vh,s0 (Ω). We denote the set of coarse
grid points in Ω by ΣH(Ω). It is given by the vertices of the coarse elements T ∈ TH
which do not touch the boundary ∂Ω. For each coarse node xp ∈ ΣH , let

Sp =
{
T ∈ TH : xp ∈ T

}
(22)

be the union of the coarse elements which are attached to the node xp. We denote the
scalar coarse nodal basis function corresponding to xp by φlin

p : Sp → R. That is, φlin
p

is linear in T ∈ TH and it holds φlin
p (xq) = δpq, x

q ∈ ΣH . For T ⊂ Sp, let φms
p,T : T → R

be a function which coincides with φlin
p on the boundary ∂T of the coarse element.

In the interior of T , let φms
p,T be given by a (discrete) PDE-harmonic extension of the

linear boundary data φlin
p |∂T . The multiscale basis function φms

p : Sp → R is defined
elementwise by

φms
p |T=

{
φms
p,T if xp ∈ T

0 otherwise

To define the fine and coarse stiffness matrix, we introduce the corresponding bilinear
form of the PDE given in equation (21) by

as(u, v) :=
∫

Ω

α∇u · ∇v dx.

It defines the entries of the fine stiffness matrix Ãh to

Ãhij = as(ϕi, ϕj) =
∫

Ω

α∇ϕi · ∇ϕj dx.

Using the representation of the multiscale basis functions w.r.t the basis on the fine
grid, the entries in the coarse stiffness matrix are given by

ÃHpq = as(φms
p , φms

q ) =
∫

Ω

α∇φms
p · ∇φms

q dx

=
dimVh,s

0∑
i,j=1

rsp,i

∫
Ω

α∇ϕi · ∇ϕj dx rsq,j .

The coarse stiffness matrix can be computed by the Galerkin product

ÃH = RsHÃ
hRsH

T ,

where the restriction matrix RsH contains the coefficient vectors of the multiscale basis
functions in terms of the fine-grid basis by rows.

The following condition number estimates show the dependence of the precondi-
tioned system to the mesh parameters [30] and the magnitude of the jumps. It holds

κ(M−1
AS Ã

h) ≤ C max
i

sup
x,y∈Ωi

(
α(x)
α(y)

)(
1 +

H

δ

)
. (23)
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Here, H stands for the characteristic mesh size of the coarse triangulation and δ is
the smallest overlap diameter of the local subdomains. This estimate is valid for
scalar elliptic PDEs using a coarse space which is piecewise linear. However, it may
give too pessimistic estimates when other coarse spaces are used. In [12], sharper
coefficient explicit condition number bounds for the two-level additive Schwarz method
are presented. Their estimates are based on the energy of the coarse basis functions.
E.g., assuming that coefficient jumps occur only in the interior of coarse grid elements
where the basis functions are locally harmonic, the estimates presented there promise
convergence rates independent of variations in the fine mesh parameter h and the
material jumps. Therefore, reasonable assumptions on the overlapping subdomains
may be required. For the linear elasticity system, such condition number estimates
are not yet available.

5 MsFEM for the PDE System of Linear Elasticity

In this section, we extend the scalar MsFEM method as summarized in section (4.1)
to the 3D system of linear elasticity. We summarize the main properties of a robust
coarse space and state the requirements when applying the multiscale framework to
linear elasticity. The motivation is based on the increased kernel of the elasticity
operator, which consists of the 6 rigid body modes. In this section, we also give
the definition of the multiscale basis and the multiscale coarse space VH = VMS for
linear elasticity, and show some of it’s properties. Also, we define the interpolation,
respectively the restriction operator and show some details on their construction. We
see that the interpolation defined by the multiscale basis functions presented here,
satisfies the required properties. We end this section by giving an additional way to
define a multiscale coarse space which is spanned only by rigid body rotations.

5.1 Extensions to 3D Linear Elasticity

The proof of the convergence estimates for the scalar elliptic case, given in equation
(23), requires a quasi-interpolant (see [5]) for which stability and approximation esti-
mates hold in the semi-norm | · |H1 . Using similar arguments and a vector-valued linear
coarse space, one can show that a condition number bound κ(M−1

ASA) ≤ C
(
1 + H

δ

)
also holds for the system of linear elasticity (see [30]). The additional requirement in
the proof is that the coarse space preserves the full kernel of the elasticity operator.
However, the constant in the estimate may be very large as it depends on the material
coefficients and also on Korn’s constant. For any domain ω ⊂ Ω, Korn’s constant is
the smallest constant Cω > 0, such that

|v|2[H1(ω)]3 ≤ Cω‖ε(v)‖2[L2(ω)]3×3 . (24)

It strongly depends on the shape of the domain as well as the choice of the boundary
conditions. Note that such a constant cannot exist for any v ∈ [H1(ω)]3. It does not
hold for functions which characterize a rigid body rotation (see equation (25)). For
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any rotation, the right-hand side in equation (24) vanishes while the left one is unequal
to zero.

Theorem 3.2 motivates the construction of coarse spaces which allow a nearly a(·, ·)-
orthogonal decomposition for each v ∈ Vh. Orthogonality can be achieved locally by
constructing coarse basis functions which are PDE-harmonic in the interior of coarse
elements. This often leads to the argument of constructing coarse basis functions
with minimal energy. Such a basis should contain the eigenfunctions corresponding to
the smallest eigenvalues of the fine stiffness matrix. These eigenvalues are related to
eigenfunctions which are in the kernel of the PDE operator. They occur globally in
the computational domain, and locally around any high contrast inclusion.

Requirements of a robust coarse space:

1. The coarse space should approximate well the eigenfunctions corresponding to
the smallest eigenvalues of the underlying PDE.

2. The coarse basis functions should be locally supported, to ensure a certain spar-
sity pattern of the interpolation operator.

The 6 RBMs and their interpolation: In three dimensions, the eigenfunctions in the
kernel of the elasticity operator consist of the 6 rigid body modes. They are given by
the set

RBM(Ω̄) =
{
a+ b×X : a, b ∈ R3

}
. (25)

Here, the vector X = (x1, x2, x3)T denotes the position vector function in Ω̄. As
the dependence on the domain Ω̄ is obvious, we may simplify the notation and write
RBM = RBM(Ω̄) instead. It is easy to verify that for all u ∈ [H1(Ω)]3, it holds ε(u) =
0 ⇔ u ∈ RBM. At least away from the boundary ΓDi , i = 1, 2, 3, where Dirichlet
values are prescribed, the interpolation operator should be constructed such that it
preserves the six rigid body modes. We describe the construction of the multiscale
coarse space and the appropriate interpolation operator in the next section.

5.2 The Multiscale Basis for Linear Elasticity

Let TH be the coarse triangulation of Ω in tetrahedral elements, generated from ag-
glomerating fine grid elements as described in the previous section. We construct a
MsFEM coarse space VH as a subspace of the finite element space Vh of the piecewise
linear vector-valued basis functions (see equation (11)) on the fine triangulation Th.
That is, the coarse space basis functions are represented by their values at the fine-grid
DOFs. The coarse grid points in Ω̄ are given by

Σ̄H :=
{

(xi, yj , zk)T ∈ R3, | xi = iH, yj = jH, zk = kH, (26)

i, j, k = 0, .., nH
}

where nH = cfh and cf = H/h ∈ N denotes the coarsening ratio. To distinguish
between a coarse node and the 3 degrees of freedom corresponding to it, we introduce
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the set

DH =
{
p(m) ∈ Dh, xp ∈ Σ̄H ,m ∈ {1, 2, 3}

}
. (27)

That is, for each coarse node xp ∈ Σ̄H , we denote the m-th coarse degree of freedom,
m ∈ {1, 2, 3}, related to this node by p(m) ∈ DH . Let

Sp =
{
T ∈ TH : xp ∈ T

}
(28)

be the union of the coarse elements which are attached to the node xp. We denote
the scalar coarse nodal basis function corresponding to xp by φlin

p : Sp → R. That
is, φlin

p is linear in T ∈ Th and it holds φlin
p (xq) = δpq, x

q ∈ Σ̄H . For xp ∈ R3 and
m ∈ {1, 2, 3} we construct a vector valued multiscale basis function φMS

p(m) : Sp → R3.
The construction is done separately for each element T ∈ TH , such that it holds

div(C : ε(φMS
p(m) |T )) = 0 in T, T ⊂ Sp, (29)

φMS
p(m) |T = φlin

p |T em on ∂T, T ⊂ Sp. (30)

Equation (29) and (30) have to be understood in the sense that they hold for φMS
p(m)

w.r.t. the discretization given by the fine grid. The vector-field φMS
p(m) is homogeneous

in T ⊂ Sp. On ∂T , linear boundary conditions are imposed in the m-th component of
the vector-field and zero boundary conditions in the components j ∈ {1, 2, 3} \ {m}.
Note that the support Sp of the coarse basis function φMS

p(m) is the same for each function
φMS
p(m) ,m ∈ {1, 2, 3} at the node xp. Since we prescribe linear boundary conditions on

the boundaries of T ∈ TH , the multiscale basis functions are continuous along the faces
of the coarse elements. That is, it holds φMS

p(m)(x) |T ′= φMS
p(m)(x) |T= φlin

p (x) |T em for
all x ∈ ∂T ∩ ∂T ′, the corresponding multiscale coarse space is conforming. We define
the coarse space VH := VMS by

VMS := span
{
φMS
p(m) , x

p ∈ Σ̄H , m ∈ {1, 2, 3}
}
. (31)

In section 5.3 we see that, due to the PDE-harmonic extension of the linear boundary
conditions, the space VH contains the 6 rigid body modes.

5.3 Properties of the MsFEM Coarse Space

Indeed, assuming constant material coefficients in the PDE, the space VH recovers
exactly the linear vector valued basis functions on the coarse grid TH . For the general
case of varying coefficients, the following observation shows that the coarse space
preserves the 3 translations, separately for each unknown.

Global translations: For T ∈ TH , we denote by Σ̄H(T ) := Σ̄H ∩ T the set of vertices
of T . Due to the prescribed linear boundary conditions in equation (30), for each
m ∈ {1, 2, 3} and T ∈ TH , it holds∑

xp∈Σ̄H(T )

φMS
p(m) = 1Ω̄e

m on ∂T (32)
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where 1Ω̄ stands for the constant function in Ω̄ and em is the m-th Cartesian basis
vector in R3. The homogeneous extension of equation (32) to the interior of T by
equation (29), together with the uniqueness of the solution, gives∑

xp∈Σ̄H(T )

φMS
p(m) = 1Ω̄e

m in T, (33)

separately for each coarse element. Furthermore, this local argument can be extended
to the global domain and it holds∑

xp∈Σ̄H

φMS
p(m) = 1Ω̄e

m in Ω̄.

Thus, the 3 translations are contained in the coarse space VH , separately for each
unknown m ∈ {1, 2, 3}.

Global rotations: Next, we show that the introduced space VH contains also the 3
rigid body rotations.

Lemma 5.1. The six rigid body modes are contained in the space VH . That is, it
holds

RBM ⊂ VH .

Proof: We have to show that em×x ∈ VH , m ∈ {1, 2, 3}. Here, we do not distinguish
in our notation between a point x ∈ R3 and the identity mapping x : Ω̄→ R3, x 7→ x,
assuming that this should not lead to any confusion. For each xq ∈ Σ̄H , r ∈ {1, 2, 3},
we define the vector

βq(r) := er × xq ∈ R3,

and denote its components by βq(r)s := βq(r) · es ∈ R. We have x =
∑
xq∈Σ̄H

xqφlin
q (x)

in Ω̄. In what follows, we first assume x ∈ ∂T, T ∈ TH . It holds

em × x =
∑

xq∈Σ̄H

(em × xq)φlin
q (x) on ∂T

=
∑

xq∈Σ̄H

3∑
s=1

(em × xq) · es φlin
q (x) es on ∂T

=
∑

xq∈Σ̄H

3∑
s=1

βq(m)
s φMS

q(s)(x) on ∂T.

Thus, along the boundaries of the coarse elements T ∈ TH , we can represent em×x as
a linear combination of functions in VH . With the argument which we used to validate
equation (33), together with the uniqueness of the solution, we have

em × x =
∑

xq∈Σ̄H

3∑
s=1

βq(m)
s φMS

q(s)(x) in T,
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locally for each T ∈ TH and thus, also globally in Ω̄. The uniqueness argument holds
here since, by equation (25), the vector-field em × x is in the kernel of the elasticity
operator and thus, it is a solution of div(C : ε) = 0. �

Note that we concluded that from
∑
q φ

MS
q(m) ∈ VH , m ∈ {1, 2, 3}, it follows

∑
q φ

MS
q(m)×

em ∈ VH . Indeed, this only holds for the sum of the basis functions, but not separately
for each basis function. In general, we have φ ∈ VH 6⇒ φ× em ∈ VH . This character-
izes the main differences between the introduced space VH and the space VHRot which
will be introduced in section 5.6.

5.4 The MsFEM Interpolation Operator:

In the following, we form the interpolation operator which is implicitely defined by
the multiscale coarse basis. Let us first summarize some notations. The number of
grid points in Ω̄ on the fine grid is denoted by np, the number of grid points on
the coarse grid is denoted by Np. To each grid point, fine or coarse, we associate a
vector-field u = (u1, u2, u3)T : Ω̄→ R3 of displacements. We denote the corresponding
components ui, i = 1, 2, 3 of the vector-field by unknowns. The unknowns are defined
on the same grid-hierarchy. The number of fine and coarse degrees of freedom on
the fine and coarse triangulation (in Ω̄) is given by nd = 3np, Nd = 3Np, respectively.
Furthermore, for β ∈ {h,H}, the set Dβ = Dβ(Ω̄) denotes the index set of fine (β = h),
respectively coarse (β = H) degrees of freedom of Vβ . For any subset W ⊂ Ω̄, let
Dβ(W ) ⊂ Dβ(Ω̄) be the restriction of Dβ to the local set of degrees of freedom in W ,
given in a local numbering. To keep the notation with indices simpler for the reader,
we use the following convention. To indicate fine degrees of freedom in Dh, we use
either index i or j combined with an upper script k, l ∈ {1, 2, 3}, while the index p
or q with upper script m, r ∈ {1, 2, 3} is used to indicate a coarse degree of freedom
in DH . We use the fine scale representation of a coarse basis function φMS

p(m) to define
the interpolation operator, respectively the restriction operator. Each multiscale basis
function omits the representation

φMS
p(m) =

3∑
k=1

np∑
i=1

r̄p(m),i(k)ϕie
k. (34)

This representation defines the matrix R̄ ∈ RNd×nd which contains the coefficient
vectors, representing a coarse basis function in terms of the fine scale basis, by rows.
Note that R̄ does not define the final restriction operator used in the additive Schwarz
setting. Assuming a numbering of the degrees of freedom by unknowns, the matrix R̄
admits the block-decomposition

R̄ =
(
R̄IJ

)3
I,J=1

(35)

where R̄IJ ∈ RNp×np . Each block satisfies

Np∑
p=1

R̄IJp,j = δIJ ∀j ∈ {1, .., np}.
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That is, the column sum of the diagonal-blocks is one, while the off-diagonals have
column-sum zero. Note that, this is only true for the sum of the columns of each block.
In general, this is not true for the components itself. For I 6= J , we have R̄IJp,j = 0 for all
p ∈ {1, .., Np} and j ∈ {1, .., np} if and only if the underlying material is homogeneous.
In this case, where no coefficient jumps occur, the multiscale basis functions exactly
recover the vector-valued piecewise linear basis functions on the coarse grid, separately
for each unknown. By construction, each row of the matrix R̄ contains the fine-scale
representation of a basis function of VH . The restriction operator RH , which we use in
the Additive Schwarz algorithm is then constructed as a submatrix of R̄, which contains
only the rows corresponding to coarse basis functions of VH0 . Thus, it contains the
rows related to coarse basis functions which vanish on the global Dirichlet boundaries
ΓDi

, i = 1, 2, 3. Denoting the entries of RH by (rp′,j′)p′,j′ , we define

rp′,j′ = R̄p′,j′ , p′ ∈ DH(Ω∗), j′ ∈ Dh(Ω̄),

where DH(Ω∗), Ω∗ := Ω̄\(∪iΓDi
) denotes the coarse interior degrees of freedom in Ω∗.

The matrix representing the interpolation from the coarse space VH0 to the fine space
Vh0 is simply given by the transposed, RTH . The entries in the corresponding coarse
stiffness matrix are

AHp(m)q(r) =
∫

Ω

ε̃(φMS
p(m))T C̃ ε̃(φMS

q(r)) dx

=
3∑

k,l=1

nh∑
i,j=1

rp(m),i(k)

∫
Ω

ε̃(ϕiek)T C̃ε̃(ϕjel) dx rq(r),j(l) (36)

and the coarse stiffness matrix can be computed by the Galerkin product AH =
RHAR

T
H .

5.5 Construction of the MsFEM Basis Functions

The element-wise construction: Let T ∈ TH be a coarse tetrahedral element, let
xp be a vertex of T and let m ∈ {1, 2, 3}. By construction, T = ∪{τi}nT

i=1 consists of
a union of fine elements in Th. Recall the space Vh of piecewise linear vector-valued
nodal functions on Th in Ω̄. Let Vh(T ) = {ϕ ∈ Vh : supp(ϕ) ⊂ T} be the set of
functions in Vh which are supported in T and let Vh|T := {ϕ|T : ϕ ∈ Vh} denote the
restriction of functions in Vh to T . Note that T is a closed subset of Ω̄ and Vh|T contains
also the functions which do not vanish on ∂T . We denote the restriction of the bilinear
form defined in equation (9) to a coarse element T by aT ( · , · ) : Vh|T × V

h
|T → R. It

is given by aT (u, v) :=
∫
T

(C : ε(u)) : ε(v) dx. Thus, from equation (29) and (30), we

obtain the local linear system ATΦp
(m)

T = fp
(m)

T . It is formed following the construction
provided in section 2.3, with Ω̄ replaced by T , and ΓDi

, i = 1, 2, 3 replaced by ∂T . As
boundary conditions, u = ϕplinem on ∂T is imposed. The solution Φp

(m)

T of the linear
system defines the solution to the problem in equation (29) and (30), discretized on the
space Vh|T . It is given by φMS

p(m) |T
=
∑
j(k)∈Dh

|T (Ω̄) Φp
(m)

T,j(k)φj(k) |T . Here, Dh|T (Ω̄) denotes

19



the restriction of the global degrees of freedom Dh(Ω̄) to the element T . Note that the
table AE element formed in the element agglomeration process described in section
3.2 provides the required information of the fine elements contained in T = ∪{τi}nT

i=1.

Construction of the multiscale basis: Summarized, the procedure for the construc-
tion of the MsFEM basis is as follows:

1. For each coarse element T ∈ TH , the following applies

• for each vertex xp of T and m ∈ {1, 2, 3}, compute the solution φMS
p(m) |T of

the PDE given in equation (29) and (30). Therefore, follow the procedure
described above.

2. For each coarse grid-point xp ∈ Σ̄H and m ∈ {1, 2, 3}, the following applies

• assemble φMS
p(m) : Sp → R3 from the computed vector-fields φMS

p(m) |T : T → R3

for which T ⊂ Sp shares the vertex xp (see (28)). Therefore, assemble
Φp

(m) ∈ Rnd by

Φp
(m)

j(k) =

{
Φp

(m)

T,j(k) if xj ∈ Σh ∩ T, T ⊂ Sp
0 otherwise.

The given vector defines the rows in the matrix R̄ as given in equation (34).
Note that since the basis function φMS

p(m) is continuous along the element

boundaries, the vector Φp
(m)

is well-defined.

5.6 An Additional Coarse Space Formed by Rigid Body Rotations

We have seen that the multiscale coarse space VH , introduced in section 5.2, contains
the full kernel of the elasticity operator. In this section, we give some remarks on
an alternative construction of a coarse space VHRot, which spans the three rigid body
rotations. The construction is similar to that of VH , but different boundary conditions
are applied for the basis functions. With the definitions as in section 5.2, for each
xp ∈ Σ̄H , T ⊂ Sp, and m ∈ {1, 2, 3}, we define φR

p(m) : Sp → R3 by

div(C : ε(φR
p(m) |T )) = 0 in T, T ⊂ Sp, (37)

φR
p(m)(x) |T = φlin

p (x) |T em × x on ∂T, T ⊂ Sp. (38)

Again, equation (37) and (38) have to be understood in the sense that they hold
for φR

p(m) w.r.t. the discretization given by the fine grid. The vector-field φR
p(m) is

homogeneous in T ⊂ Sp. On ∂T , the boundary conditions are imposed such that
they preserve the rigid body rotation around the m-th axis, multiplied with a linear
partition of unity function. The support Sp of the coarse basis function φR

p(m) coincides
for each m ∈ {1, 2, 3}. Due to the prescribed boundary conditions along the faces of
the coarse elements, the corresponding coarse space

VHRot := span
{
φR
p(m) , x

p ∈ Σ̄H , m ∈ {1, 2, 3}
}

(39)
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is conforming. In the following we show that the space VHRot contains the 3 rigid body
rotations, locally as well as globally in Ω̄. Due to the prescribed boundary conditions
in equation (38), we have for m ∈ {1, 2, 3} and T ∈ TH ,∑

xp∈Σ̄H(T )

φR
p(m)(x) = 1Ω̄e

m × x on ∂T (40)

where, again, 1Ω̄ stands for the constant function in Ω̄ and em is the m-th Cartesian
basis vector in R3. With the same argument as we used in equation (33), here applied
to equation (37), and the uniqueness of the solution, we have∑

xp∈Σ̄H(T )

φR
p(m)(x) = 1Ω̄e

m × x in T. (41)

The uniqueness argument holds here since, by equation (25), the vector-field em × x
is in the kernel of the elasticity operator and thus, it is a solution of div(C : ε) = 0.
Again, we extend the local argument to a global one and get∑

xp∈Σ̄H

φR
p(m)(x) = 1Ω̄e

m × x in Ω.

This shows that the 3 rotations are contained in the coarse space VHRot.

The space VHRot: We have seen in section 5.3, due to the linear boundary conditions,
a straightforward extension of the scalar (linear) multiscale finite element approach
to elasticity leads to a coarse space VH which exactly contains the six rigid body
motions. However, if the material coefficients vary strongly near the boundary of
coarse elements, oscillatory boundary conditions as suggested in [14] for scalar elliptic
PDEs may be more appropriate. In the scalar case, oscillatory boundary conditions
are extracted by solving the harmonic PDE restricted to the edges (1D) and faces (2D)
of coarse elements. To solve the 1D problem on the edges, the Dirichlet conditions are
chosen to be 1 at one endpoint, and 0 at the other. In the scalar case, this procedure of
extracting boundary values by solving harmonic problems ensures that constants are
preserved along the edges, the faces, and in the interior of coarse elements. However,
in linear elasticity, rotations do not occur in 1D problems and thus, the coarse space
might not contain all the rigid body rotations anymore, when oscillatory boundary
conditions are applied. In applications where the prescribed boundary conditions do
not allow all the six rigid body motions to be contained in the coarse space, the space
VHRot gives a possibility of how to extend the coarse space, but special attention has
to be paid to ensure that the extension is done such that it does not lead to linear
dependencies of the coarse space.

6 Numerical Experiments

In this section, we give a series of examples involving binary media, showing the
performance of our multiscale preconditioner under variations of the mesh parameters
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as well as the material coefficients. In addition to that, we measure the approximation
error of the multiscale coarse space to a fine scale solution. In each experiment, we
compare the multiscale coarse space with a standard linear coarse space. We perform
our simulations on the domain Ω̄ = [0, 1] × [0, 1] × [0, L], L > 0, with fine and coarse
mesh as introduced in section 3.2. In our experiments, we consider two variants of
heterogeneous media. First, we assume that the discontinuities are isolated, such that
the material jumps occur only in the interior of coarse elements. Figure 2 shows such
a binary medium with one inclusion inside each coarse tetrahedral element. In a

Figure 2: Medium 1: binary composite; matrix material (grey) and 1x1x1 inclusions
(red); discretization in 12x12x12 voxels; each voxel is decomposed in 5 tetrahedrons;
3D view (left) and 2D projection with fine mesh, showing the position of the inclusions
(right);

Figure 3: Medium 2: binary medium consiting of 240x240x12 voxels; matrix mate-
rial (grey) and 1x1x1 inclusions (red) identically distributed; 3D view (left) and 2D
projection showing the position of the inclusions (right);

second set of experiments, we do not impose any restriction on the position of the
small inclusions. More precisely, we generate a binary medium whose inclusions are
identically distributed. An example of such a medium is given in Figure 3.
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In the following, we refer to the binary medium where inclusions are isolated in
the interior of coarse elements as Medium 1, while the medium with the random
distribution of the inclusions is referred to as Medium 2. For each media, the Young’s
modulus E as well as Poisson ratio ν for matrix material and inclusions are given in
Table 1. The contrast Ec := Einc/Emat may vary over several orders of magnitude.

Young’s modulus Poisson ratio

Emat = 1 MPa νmat = 0.2
Einc = EcEmat νinc = 0.2

Table 1: Young’s Modulus and Poisson ratio of matrix material and inclusions

6.1 Coarse Space Robustness

Let Ωp, p ∈ 1, .., N be given by the set of coarse elements which are attached to node
xp ∈ Σ̄H . Then, {Ωp, p = 1, .., N} defines an overlapping covering of Ω̄ into local
subdomains, often referred to as a generous overlap. We perform tests observing
the performance of the two-level Additive Schwarz preconditioner using linear and
multiscale coarsening. We show condition numbers as well as iteration numbers of
the Preconditioned Conjugate Gradient (PCG) algorithm. The stopping criterion is
to reduce the preconditioned initial residual by 6 orders of magnitude, i.e. ‖r‖M−1

AS
≤

10−6‖r0‖M−1
AS

. The estimated condition numbers of κ(M−1
ASA) are computed based on

the three term recurrence which is implicitely formed by the coefficients within the
PCG algorithm (c.f. [26]).

In a first experiment (1), we test the robustness of the method on Medium 1 for fixed
mesh parameters under the variation of the contrast Ec. The Tables 2 and 3 show the
corresponding condition numbers and iteration numbers having stiff (Ec > 1) and soft
(Ec < 1) inclusions. In the former case, robustness is achieved only for the MsFEM
coarse space, while linear coarsening leads to non-uniform convergence results. In

Linear MsFEM
Ec nit κ(M−1

ASA) nit κ(M−1
ASA)

100 13 4.4 13 4.4
103 21 18.7 13 4.4
106 25 109.0 13 4.4
109 25 109.0 13 4.4

Table 2: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 1;

geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and multiscale coarsening
for different contrasts Ec ≥ 1;
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Linear MsFEM
Ec nit κ(M−1

ASA) nit κ(M−1
ASA)

10−0 13 4.4 13 4.4
10−3 13 4.4 13 4.4
10−6 13 4.4 13 4.4
10−9 13 4.4 13 4.4

Table 3: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 1;

geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and multiscale coarsening
for different contrasts Ec ≤ 1;

Linear MsFEM
h nit κ(M−1

ASA) nit κ(M−1
ASA)

1/60 14 7.9 13 4.4
1/120 17 28.1 13 4.4
1/180 21 61.8 13 4.4
1/240 25 109.0 13 4.4

Table 4: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 2;

geometry: 1/h x 1/h x H/h; H = 12h; linear and multiscale coarsening for different
h; contrast: Ec = 106;

the later case, both coarse spaces are bounded in energy, an upper natural bound is
evidently given for Ec = 1. Linear coarse space and multiscale coarse space perform
equally well.

In Experiment 2, performed on Medium 1, we measure the condition numbers and
iteration numbers under variation of the mesh parameters, while the coefficients of the
PDE remain fixed. We observe similar results as in Experiment 1. Table 4 shows itera-
tion and condition numbers for linear and multiscale coarsening. For the linear coarse
space, the condition number shows a linear dependence on the number of subdomains,
while the condition number for multiscale coarsening is uniformly bounded.

To summarize, Experiment 1 and 2 show mesh and coefficient independent itera-
tion and condition numbers for the multiscale coarse space when the inclusions are
isolated. In a second part, we test the performance of the method when the small
inclusions are allowed to touch coarse element boundaries. More precisely, we perform
the same experiments again and replace Medium 1 by Medium 2. We denote them by
Experiment 3 and Experiment 4. As we already know, we cannot expect coefficient
independent convergence rates when the inclusions in the binary medium are such that
they cross coarse element boundaries. This is what we see in the Tables 5 and 6 for
Experiment 3: For fixed mesh parameters under the variation of the contrast Ec, they
show the corresponding condition numbers and iteration numbers having stiff (Ec > 1)
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and soft (Ec < 1) inclusions. Robustness is only achieved in the later case where soft
inclusions are considered. For stiff inclusions, both coarsening strategies lead to iter-
ation numbers and condition numbers which strongly depend on the contrast in the
medium. We observe that in comparison with linear coarsening, the multiscale coarse
space performs only slightly better.

Linear MsFEM
Ec nit κ(M−1

ASA) nit κ(M−1
ASA)

100 13 4.4 13 4.4
103 27 19.3 18 8.4
106 66 414 78 373
109 68 427 75 465

Table 5: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 3;

geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and multiscale coarsening
for different contrasts Ec ≥ 1;

Linear MsFEM
Ec nit κ(M−1

ASA) nit κ(M−1
ASA)

10−0 13 4.4 13 4.4
10−3 13 4.4 13 4.4
10−6 13 4.4 13 4.4
10−9 13 4.4 13 4.4

Table 6: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 3;

geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and multiscale coarsening
for different contrasts Ec ≤ 1;

In Experiment 4, we measure the condition numbers and iteration numbers under
variation of the mesh parameters for Medium 2. The PDE coefficients remain fixed.
The results agree with the observations in Experiment 3. Table 7 shows iteration and
condition numbers for linear and multiscale coarsening. Again, for each coarse space,
iteration numbers as well as condition numbers grow with the number of subdomains.
The multiscale coarse space does not perform noticeably better than the linear coarse
space.

6.2 Coarse Space Approximation

In a second set of experiments, we test the approximation properties of the multiscale
coarse space. The domain Ω̄ = [0, 1] × [0, 1] × [0, L] contains again a binary medium
with small inclusions. Again, we distinguish between Medium 1 (Figure 2: inclusions
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Linear MsFEM
h nit κ(M−1

ASA) nit κ(M−1
ASA)

1/60 26 39.2 27 37.7
1/120 48 154 43 109
1/180 52 261 62 230
1/240 66 414 78 373

Table 7: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 4;

geometry: 1/h x 1/h x H/h; H = 12h; linear and multiscale coarsening for different
h; contrast: Ec = 106;

in the interior of each coarse element) and Medium 2 (Figure 3: randomly distributed
inclusions). We solve the linear system −divσ(u) = f in Ω \ ΓD with a constant
volume force f = (1, 1, 0)T in the x- and y-component. Zero Dirichlet and Neumann
boundary conditions are applied on the boundary ∂Ω. Dirichlet conditions in the
first unknown are given on ΓD1 = {(x, y, z)T ∈ ∂Ω : x = 0, x = 1}, in the second
unknown on ΓD2 = {(x, y, z)T ∈ ∂Ω : y = 0, y = 1}, and in the third unknown on
ΓD3 = {(x, y, z)T ∈ ∂Ω : z = 0, z = L}.

Let uh denote the approximate solution on a fine mesh Th. With the bilinear form
defined in equation (10) and the space Vh0 of piecewise linear vector-valued basis func-
tions as defined in equation (12), it holds a(uh, vh) = F (vh) ∀vh ∈ Vh0 . This for-
mulation leads to the linear system Auh = fh. Let VH0 be the space of multiscale
finite element functions on the coarse triangulation TH which vanish on the Dirichlet
boundary ΓD. The multiscale finite element solution is given by uMS

H ∈ VH0 , such that
a(uMS

H , vMS
H ) = F (vMS

H ) ∀vMS
H ∈ VH0 . Using the fine-scale representation of a mul-

tiscale basis function as defined in equation (34), the equivalent linear system reads
AHuH = fH . Here, AH = RHAR

T
H is the coarse stiffness matrix defined in equation

(36), fH = Rfh and uMS
H = RTuH is the vector whose entries define the fine-scale

representation of uMS
H in terms of the basis of Vh0 .

For fixed mesh parameters h and H, under the variation of the contrast Ec, the
Tables 8 and 9 show the relative approximation errors ‖uh − ucH‖ in l2 and in the
”energy”-norm for linear (c=LIN) and multiscale (c=MS) coarse space for Medium 1
and Medium 2, respectively. The fine solution uh is computed approximately within
the PCG algorithm by reducing the initial preconditioned residual by 12 orders of
magnitude. The coarse solution ucH is computed exactly by a sparse direct solve of the
coarse linear system. For Medium 1, the multiscale coarse space gives stable approx-
imation errors, only slightly varying with the contrast. This is not the case anymore
for the linear coarse space. For Ec � 1, the fine-scale solution is contained in a space
which is nearly A-orthogonal to the space spanned by the linear coarse basis functions.
Note that this is in agreement with the results presented in Table 4, where the condi-
tion number grows almost linearly with the number of subdomains. For Ec →∞, the
coarse space does not correct the error anymore, the two-level method tends to perform
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‖uh−uc
H‖l2

‖uh‖l2

‖uh−uc
H‖A

‖uh‖A

Ec Linear MsFEM Linear MsFEM

10−9 8.63 · 10−3 8.11 · 10−3 8.92 · 10−2 8.54 · 10−2

10−6 8.63 · 10−3 8.11 · 10−3 8.92 · 10−2 8.54 · 10−2

10−3 8.63 · 10−3 8.11 · 10−3 8.91 · 10−2 8.54 · 10−2

100 8.09 · 10−3 8.09 · 10−3 8.53 · 10−2 8.53 · 10−2

103 7.39 · 10−1 9.42 · 10−3 8.60 · 10−1 9.44 · 10−2

106 9.97 · 10−1 9.44 · 10−3 9.99 · 10−1 9.45 · 10−2

109 9.97 · 10−1 9.44 · 10−3 9.99 · 10−1 9.45 · 10−2

Table 8: Approximation of fine-scale solution by linear and MsFEM coarse space for
Medium 1; geometry: 1/h x 1/h x H/h, h = 1/120, H = 12h;

as the one-level method. Considering Medium 2, both coarse spaces only show a weak
approximation of the fine-scale solution for high contrasts Ec � 1. We can summarize

‖uh−uc
H‖l2

‖uh‖l2

‖uh−uc
H‖A

‖uh‖A

Ec Linear MsFEM Linear MsFEM

10−9 8.60 · 10−3 8.25 · 10−3 8.90 · 10−2 8.65 · 10−2

10−6 8.60 · 10−3 8.25 · 10−3 8.90 · 10−2 8.65 · 10−2

10−3 8.60 · 10−3 8.25 · 10−3 8.90 · 10−2 8.65 · 10−2

100 8.09 · 10−3 8.09 · 10−3 8.53 · 10−2 8.53 · 10−2

103 7.01 · 10−1 3.12 · 10−1 8.37 · 10−1 5.58 · 10−1

106 9.99 · 10−1 9.95 · 10−1 1.00 · 10−0 9.97 · 10−1

109 1.00 · 10−0 9.99 · 10−1 1.00 · 10−0 9.99 · 10−1

Table 9: Approximation of fine-scale solution by linear and MsFEM coarse space for
Medium 2; geometry: 1/h x 1/h x H/h, h = 1/120, H = 12h;

the obtained results as follows. Assuming that the discontinuities are isolated in the
interior of coarse elements, the energy of a multiscale basis function is bounded inde-
pendently of the Young’s modulus of the inclusions. Our experiments show uniform
condition number bounds w.r.t. both, coefficient variations in the Young’s modulus
and the mesh size. When the distribution of the inclusions is such that they cross
coarse element boundaries, the linear multiscale basis function cannot capture the
smallest eigenvalues associated to those inclusions which touch the coarse element
boundary. The energy of the basis function strongly depends on the Young’s modulus
of the inclusion. As the experiments show, no uniform iteration number and condition
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number bounds are achieved. For the considered medium with randomly distributed
inclusions, the multiscale coarse space does not perform noticeably better then the
linear coarse space.

7 Discussion

In this report, we extended the (linear) multiscale finite element method to the (3D)
PDE system of linear elasticity. The linear boundary conditions along coarse elements
and the PDE-harmonic extension to their interior guarantees the following properties
of the MsFEM basis:

1. Given the local boundary conditions, the energy of a multiscale basis function is
minimal within each coarse element;

2. The 3 rigid body translations are contained in the coarse space;

3. The 3 rigid body rotations are contained in the coarse space;

4. Assuming homogeneous material coefficients, the multiscale basis coincides with
the piecewise linear vector-valued basis on the coarse triangulation;

We utilized the multiscale basis for the construction of a two-level Additive Schwarz
preconditioner. When the discontinuities are isolated in the interior of coarse elements,
our experiments show uniform condition number bounds w.r.t. both, coefficient vari-
ations in the Young’s modulus and the mesh size. Along coarse element boundaries,
the multiscale basis is not PDE-harmonic. When inclusions cross a coarse element
boundary, the prescribed linear boundary conditions lead to an increase in the energy
of the multiscale basis function. The magnitude of the energy grows with the Young’s
modulus of the inclusions which cross the element boundaries. The condition number
is not uniformly bounded. For the scalar case, it is shown in [12] that the robustness
of an overlapping two-level Domain Decomposition method w.r.t coefficient variations
is strongly related to the energy of the coarse basis functions. There, they introduce
a coarse space robustness indicator, a measure which is proportional to the weighted
H1-seminorm of the basis functions. Our experimental results justify expectations to
obtain similar condition number bounds for the PDE system of linear elasticity then
existing ones for scalar elliptic PDEs. This correspondence will be investigated in more
detail in a future work.

Using the MsFEM coarse space in an upscaling framework, we also presented ex-
perimental results in which we used the multiscale coarse space to approximate the
fine-scale solution. When the inclusions are randomly distributed, the multiscale coarse
space suffers from the inclusions which touch the coarse element boundaries and per-
forms very similar to the linear coarse space. For the isolated inclusions, almost uni-
form approximation properties, independent of the contrast in the Young’s modulus,
were achieved.

However, along the boundaries of the coarse elements, the small scale heterogeneities
cannot be captured accurately by the presented MsFEM coarse space with linear

28



boundary conditions. In case that material jumps occur through element boundaries,
the coarse space needs to be adapted. A possible extension can be given using oscil-
latory boundary conditions, similar to the ones in scalar case (c.f. [14, 12]), or energy
minimizing methods (c.f. [36, 31]). Attention has to be paid and modifications might
be required such that translations as well as rotations remain in the coarse space. An-
other interesting approach is motivated and discussed in detail in [8], with application
to scalar elliptic PDEs. There, local generalized eigenvalue problems are solved and
a multiscale coarse space is extended by the remaining eigenfunctions corresponding
to eigenvalues which lie under a predefined threshold. More recently, this approach is
extended in [35] from a two-level to a multilevel method with an extension to general
s.p.d. operators. A theoretical verification of the robustness of the method when ap-
plied to linear elasticity is also presented. Since the multiscale coarse space contains
the rigid body modes, the paper at hand promises a reasonably low dimension of the
coarse space presented in [35] for heterogeneous problems in (2D) linear elasticity.
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[28] V. Schulz, H. Andrä, K. Schmidt, Robuste Netzgenerierung zur Mikro-FE-Analyse
mikrostrukturierter Materialien, NAFEMS Magazin 2 (2007), 28–30.

[29] B.F. Smith Domain decomposition algorithms for the partial differential equations
of linear elasticity, PhD Dissertation, Courant Institute of Mathematical Sciences,
New York University (1990).

[30] A. Toselli, O. Widlund, Domain Decomposition methods, algorithms an theory,
Springer Verlag, Berlin-Heidelberg-New-York (2005).

[31] J. Van lent, R. Scheichl, I.G. Graham, Energy-minimizing coarse spaces for two-
level Schwarz methods for multiscale PDEs, Numer. Linear Algebra Appl., 16,
(2009), 775–799.

[32] P. Vanek, M. Brezina, R. Tezaur, Fast multigrid solver, Appl. Math., 40, (1995),
1–20.

[33] P. Vanek, Acceleration of convergence of a two-level algorithm by smoothing trans-
fer operator, Appl. of Math., 37, (1992), 265–274.

[34] P. Vanek, M. Brezina, R. Tezaur, Two-grid method for linear elasticity on un-
structured meshes, SIAM J. Sci Comput., 21 (1999), 900–923.

[35] J. Willems, Robust multilevel methods for general symmetric positive definite oper-
ators, Techinical Report 2012-06, RICAM Institute for Computational and Applied
Mathematics (2012).

[36] J. Xu, L.T. Zikatanov, On an energy minimizing basis in algebraic multigrid meth-
ods, Comput. Vis. Sci., 7, (2004), 121–127.

[37] Y. Zhu, A. Brandt, An efficient multigrid method for the simulation of high res-
olution elastic solids, ACM Trans. Graph., 29, (2010), 1–18.

31



Published reports of the 
Fraunhofer ITWM

The PDF-files of the following reports 
are available under: 
www.itwm.fraunhofer.de/de/
zentral__berichte/berichte

1.	 D. Hietel, K. Steiner, J. Struckmeier
A Finite - Volume Particle Method for  
Compressible Flows
(19 pages, 1998)

2.	 M. Feldmann, S. Seibold
Damage Diagnosis of Rotors: Application 
of Hilbert Transform and Multi-Hypothe-
sis Testing
Keywords: Hilbert transform, damage diagnosis,  
Kalman filtering, non-linear dynamics
(23 pages, 1998)

3.	 Y. Ben-Haim, S. Seibold
Robust Reliability of Diagnostic Multi- 
Hypothesis Algorithms: Application to  
Rotating Machinery
Keywords: Robust reliability, convex models, Kalman fil-
tering, multi-hypothesis diagnosis, rotating machinery, 
crack diagnosis
(24 pages, 1998)

4.	 F.-Th. Lentes, N. Siedow
Three-dimensional Radiative Heat Transfer 
in Glass Cooling Processes
(23 pages, 1998)

5.	 A. Klar, R. Wegener
A hierarchy of models for multilane vehicu-
lar traffic  
Part I: Modeling
(23 pages, 1998)

Part II: Numerical and stochastic investigations
(17 pages, 1998)

6.	 A. Klar, N. Siedow
Boundary Layers and Domain Decomposi-
tion for Radiative Heat Transfer and Diffu-
sion Equations: Applications to Glass Manu-
facturing Processes
(24 pages, 1998)

7.	 I. Choquet
Heterogeneous catalysis modelling and  
numerical simulation in rarified gas flows 
Part I: Coverage locally at equilibrium 
(24 pages, 1998)

8.	 J. Ohser, B. Steinbach, C. Lang
Efficient Texture Analysis of Binary Images
(17 pages, 1998)

9.	 J. Orlik
Homogenization for viscoelasticity of the  
integral type with aging and shrinkage
(20 pages, 1998)

10.	 J. Mohring
Helmholtz Resonators with Large Aperture
(21 pages, 1998)

11.	 H. W. Hamacher, A. Schöbel
On Center Cycles in Grid Graphs
(15 pages, 1998)

12.	 H. W. Hamacher, K.-H. Küfer
Inverse radiation therapy planning -  
a multiple objective optimisation approach
(14 pages, 1999)

13.	 C. Lang, J. Ohser, R. Hilfer
On the Analysis of Spatial Binary Images
(20 pages, 1999)

14.	 M. Junk
On the Construction of Discrete Equilibrium 
Distributions for Kinetic Schemes
(24 pages, 1999)

15.	 M. Junk, S. V. Raghurame Rao
A new discrete velocity method for Navier-
Stokes equations
(20 pages, 1999)

16.	 H. Neunzert
Mathematics as a Key to Key Technologies
(39 pages, 1999)

17.	 J. Ohser, K. Sandau
Considerations about the Estimation of the 
Size Distribution in Wicksell’s Corpuscle 
Problem
(18 pages, 1999)

18.	 E. Carrizosa, H. W. Hamacher, R. Klein,  
S. Nickel

Solving nonconvex planar location prob-
lems by finite dominating sets
Keywords: Continuous Location, Polyhedral Gauges,  
Finite Dominating Sets, Approximation, Sandwich Algo-
rithm, Greedy Algorithm
(19 pages, 2000)

19.	 A. Becker
A Review on Image Distortion Measures
Keywords: Distortion measure, human visual system
(26 pages, 2000)

20.	 H. W. Hamacher, M. Labbé, S. Nickel,  
T. Sonneborn

Polyhedral Properties of the Uncapacitated 
Multiple Allocation Hub Location Problem 
Keywords: integer programming, hub location, facility 
location, valid inequalities, facets, branch and cut
(21 pages, 2000)

21.	 H. W. Hamacher, A. Schöbel
Design of Zone Tariff Systems in Public 
Transportation
(30 pages, 2001)

22.	 D. Hietel, M. Junk, R. Keck, D. Teleaga
The Finite-Volume-Particle Method for  
Conservation Laws
(16 pages, 2001)

23.	 T. Bender, H. Hennes, J. Kalcsics, M. T. Melo, 
S. Nickel

Location Software and Interface with GIS 
and Supply Chain Management
Keywords: facility location, software development, 
geographical information systems, supply chain man-
agement
(48 pages, 2001)

24.	 H. W. Hamacher, S. A. Tjandra
Mathematical Modelling of Evacuation  
Problems: A State of Art
(44 pages, 2001)

25.	 J. Kuhnert, S. Tiwari
Grid free method for solving the Poisson 
equation
Keywords: Poisson equation, Least squares method,  
Grid free method
(19 pages, 2001)

26.	 T. Götz, H. Rave, D. Reinel-Bitzer,  
K. Steiner, H. Tiemeier

Simulation of the fiber spinning process
Keywords: Melt spinning, fiber model, Lattice Boltz-
mann, CFD
(19 pages, 2001)

27.	 A. Zemitis 
On interaction of a liquid film with an obstacle
Keywords: impinging jets, liquid film, models, numeri-
cal solution, shape
(22 pages, 2001)

28.	 I. Ginzburg, K. Steiner
Free surface lattice-Boltzmann method to 
model the filling of expanding cavities by 
Bingham Fluids
Keywords: Generalized LBE, free-surface phenomena, 
interface boundary conditions, filling processes, Bing-
ham viscoplastic model, regularized models
(22 pages, 2001)

29.	 H. Neunzert
»Denn nichts ist für den Menschen als Men-
schen etwas wert, was er nicht mit Leiden-
schaft tun kann« 
Vortrag anlässlich der Verleihung des 
Akademiepreises des Landes Rheinland-
Pfalz am 21.11.2001
Keywords: Lehre, Forschung, angewandte Mathematik, 
Mehrskalenanalyse, Strömungsmechanik
(18 pages, 2001)

30.	 J. Kuhnert, S. Tiwari
Finite pointset method based on the projec-
tion method for simulations of the incom-
pressible Navier-Stokes equations
Keywords: Incompressible Navier-Stokes equations, 
Meshfree method, Projection method, Particle scheme, 
Least squares approximation  
AMS subject classification: 76D05, 76M28
(25 pages, 2001)

31.	 R. Korn, M. Krekel
Optimal Portfolios with Fixed Consumption 
or Income Streams
Keywords: Portfolio optimisation, stochastic control, 
HJB equation, discretisation of control problems
(23 pages, 2002)

32.	 M. Krekel
Optimal portfolios with a loan dependent 
credit spread
Keywords: Portfolio optimisation, stochastic control, 
HJB equation, credit spread, log utility, power utility, 
non-linear wealth dynamics
(25 pages, 2002)

33.	 J. Ohser, W. Nagel, K. Schladitz
The Euler number of discretized sets – on the 
choice of adjacency in homogeneous lattices 
Keywords: image analysis, Euler number, neighborhod 
relationships, cuboidal lattice
(32 pages, 2002)



34.	 I. Ginzburg, K. Steiner 
Lattice Boltzmann Model for Free-Surface 
flow and Its Application to Filling Process in 
Casting 
Keywords: Lattice Boltzmann models; free-surface phe-
nomena; interface boundary conditions; filling pro-
cesses; injection molding; volume of fluid method; in-
terface boundary conditions; advection-schemes; up-
wind-schemes
(54 pages, 2002)

35.	 M. Günther, A. Klar, T. Materne,  
R. Wegener

Multivalued fundamental diagrams and stop 
and go waves for continuum traffic equations
Keywords: traffic flow, macroscopic equations, kinetic 
derivation, multivalued fundamental diagram, stop and 
go waves, phase transitions
(25 pages, 2002)

36.	 S. Feldmann, P. Lang, D. Prätzel-Wolters
Parameter influence on the zeros of net-
work determinants
Keywords: Networks, Equicofactor matrix polynomials, 
Realization theory, Matrix perturbation theory
(30 pages, 2002)

37.	 K. Koch, J. Ohser, K. Schladitz 
Spectral theory for random closed sets and 
estimating the covariance via frequency 
space
Keywords: Random set, Bartlett spectrum, fast Fourier 
transform, power spectrum
(28 pages, 2002)

38.	 D. d’Humières, I. Ginzburg
Multi-reflection boundary conditions for  
lattice Boltzmann models
Keywords: lattice Boltzmann equation, boudary condis-
tions, bounce-back rule, Navier-Stokes equation
(72 pages, 2002)

39.	 R. Korn
Elementare Finanzmathematik
Keywords: Finanzmathematik, Aktien, Optionen, Port
folio-Optimierung, Börse, Lehrerweiterbildung, Mathe-
matikunterricht
(98 pages, 2002)

40.	 J. Kallrath, M. C. Müller, S. Nickel
Batch Presorting Problems: 
Models and Complexity Results
Keywords: Complexity theory, Integer programming, 
Assigment, Logistics
(19 pages, 2002)

41.	 J. Linn
On the frame-invariant description of the 
phase space of the Folgar-Tucker equation 
Key words: fiber orientation, Folgar-Tucker equation, in-
jection molding
(5 pages, 2003)

42.	 T. Hanne, S. Nickel 
A Multi-Objective Evolutionary Algorithm 
for Scheduling and Inspection Planning in 
Software Development Projects 
Key words: multiple objective programming, project 
management and scheduling, software development, 
evolutionary algorithms, efficient set
(29 pages, 2003)

43.	 T. Bortfeld , K.-H. Küfer, M. Monz,  
A. Scherrer, C. Thieke, H. Trinkaus

Intensity-Modulated Radiotherapy - A Large 
Scale Multi-Criteria Programming Problem 

Keywords: multiple criteria optimization, representa-
tive systems of Pareto solutions, adaptive triangulation, 
clustering and disaggregation techniques, visualization 
of Pareto solutions, medical physics, external beam ra-
diotherapy planning, intensity modulated radiotherapy
(31 pages, 2003)

44.	 T. Halfmann, T. Wichmann
Overview of Symbolic Methods in Industrial 
Analog Circuit Design 
Keywords: CAD, automated analog circuit design, sym-
bolic analysis, computer algebra, behavioral modeling, 
system simulation, circuit sizing, macro modeling, dif-
ferential-algebraic equations, index
(17 pages, 2003)

45.	 S. E. Mikhailov, J. Orlik
Asymptotic Homogenisation in Strength 
and Fatigue Durability Analysis of Compos-
ites
Keywords: multiscale structures, asymptotic homoge-
nization, strength, fatigue, singularity, non-local con-
ditions
(14 pages, 2003)

46.	 P. Domínguez-Marín, P. Hansen,  
N. Mladenovic , S. Nickel

Heuristic Procedures for Solving the  
Discrete Ordered Median Problem
Keywords: genetic algorithms, variable neighborhood 
search, discrete facility location
(31 pages, 2003)

47.	 N. Boland, P. Domínguez-Marín, S. Nickel,  
J. Puerto

Exact Procedures for Solving the Discrete 
Ordered Median Problem
Keywords: discrete location, Integer programming
(41 pages, 2003)

48.	 S. Feldmann, P. Lang
Padé-like reduction of stable discrete linear 
systems preserving their stability 
Keywords: Discrete linear systems, model reduction, 
stability, Hankel matrix, Stein equation
(16 pages, 2003)

49.	 J. Kallrath, S. Nickel
A Polynomial Case of the Batch Presorting 
Problem 
Keywords: batch presorting problem, online optimization, 
competetive analysis, polynomial algorithms, logistics
(17 pages, 2003)

50.	 T. Hanne, H. L. Trinkaus
knowCube for MCDM –  
Visual and Interactive Support for  
Multicriteria Decision Making
Key words: Multicriteria decision making, knowledge 
management, decision support systems, visual interfac-
es, interactive navigation, real-life applications.
(26 pages, 2003)

51.	 O. Iliev, V. Laptev
On Numerical Simulation of Flow Through 
Oil Filters
Keywords: oil filters, coupled flow in plain and porous 
media, Navier-Stokes, Brinkman, numerical simulation
(8 pages, 2003)

52.	 W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva
On a Multigrid Adaptive Refinement Solver 
for Saturated Non-Newtonian Flow in  
Porous Media
Keywords: Nonlinear multigrid, adaptive refinement, 
non-Newtonian flow in porous media
(17 pages, 2003)

53.	 S. Kruse
On the Pricing of Forward Starting Options 
under Stochastic Volatility
Keywords: Option pricing, forward starting options, 
Heston model, stochastic volatility, cliquet options
(11 pages, 2003)

54.	 O. Iliev, D. Stoyanov
Multigrid – adaptive local refinement solver 
for incompressible flows
Keywords: Navier-Stokes equations, incompressible flow, 
projection-type splitting, SIMPLE, multigrid methods, 
adaptive local refinement, lid-driven flow in a cavity 
(37 pages, 2003)

55.	 V. Starikovicius 
The multiphase flow and heat transfer in 
porous media 
Keywords: Two-phase flow in porous media, various 
formulations, global pressure, multiphase mixture mod-
el, numerical simulation
(30 pages, 2003)

56.	 P. Lang, A. Sarishvili, A. Wirsen
Blocked neural networks for knowledge ex-
traction in the software development process
Keywords: Blocked Neural Networks, Nonlinear Regres-
sion, Knowledge Extraction, Code Inspection
(21 pages, 2003)

57.	 H. Knaf, P. Lang, S. Zeiser 
Diagnosis aiding in Regulation 
Thermography using Fuzzy Logic 
Keywords: fuzzy logic,knowledge representation,  
expert system
(22 pages, 2003)

58.	 M. T. Melo, S. Nickel, F. Saldanha da Gama
Largescale models for dynamic multi
commodity capacitated facility location 
Keywords: supply chain management, strategic  
planning, dynamic location, modeling
(40 pages, 2003)

59.	 J. Orlik 
Homogenization for contact problems with 
periodically rough surfaces
Keywords: asymptotic homogenization, contact problems
(28 pages, 2004)

60.	 A. Scherrer, K.-H. Küfer, M. Monz,  
F. Alonso, T. Bortfeld

IMRT planning on adaptive volume struc-
tures – a significant advance of computa-
tional complexity
Keywords: Intensity-modulated radiation therapy 
(IMRT), inverse treatment planning, adaptive volume 
structures, hierarchical clustering, local refinement, 
adaptive clustering, convex programming, mesh gener-
ation, multi-grid methods
(24 pages, 2004)

61.	 D. Kehrwald
Parallel lattice Boltzmann simulation  
of complex flows
Keywords: Lattice Boltzmann methods, parallel com-
puting, microstructure simulation, virtual material de-
sign, pseudo-plastic fluids, liquid composite moulding
(12 pages, 2004)

62.	 O. Iliev, J. Linn, M. Moog, D. Niedziela,  
V. Starikovicius

On the Performance of Certain Iterative 
Solvers for Coupled Systems Arising in Dis-
cretization of Non-Newtonian Flow Equa-
tions



Keywords: Performance of iterative solvers, Precondi-
tioners, Non-Newtonian flow
(17 pages, 2004)

63.	 R. Ciegis, O. Iliev, S. Rief, K. Steiner 
On Modelling and Simulation of Different 
Regimes for Liquid Polymer Moulding 
Keywords: Liquid Polymer Moulding, Modelling, Simu-
lation, Infiltration, Front Propagation, non-Newtonian 
flow in porous media 
(43 pages, 2004)

64.	 T. Hanne, H. Neu
Simulating Human Resources in  
Software Development Processes
Keywords: Human resource modeling, software process, 
productivity, human factors, learning curve
(14 pages, 2004)

65.	 O. Iliev, A. Mikelic, P. Popov
Fluid structure interaction problems in de-
formable porous media: Toward permeabil-
ity of deformable porous media
Keywords: fluid-structure interaction, deformable po-
rous media, upscaling, linear elasticity, stokes, finite el-
ements
(28 pages, 2004)

66.	 F. Gaspar, O. Iliev, F. Lisbona, A. Naumovich, 
P. Vabishchevich 

On numerical solution of 1-D poroelasticity 
equations in a multilayered domain
Keywords: poroelasticity, multilayered material, finite 
volume discretization, MAC type grid
(41 pages, 2004)

67.	 J. Ohser, K. Schladitz, K. Koch, M. Nöthe
Diffraction by image processing and its ap-
plication in materials science
Keywords: porous microstructure, image analysis, ran-
dom set, fast Fourier transform, power spectrum, Bar-
tlett spectrum
(13 pages, 2004)

68.	 H. Neunzert
Mathematics as a Technology: Challenges 
for the next 10 Years
Keywords: applied mathematics, technology, modelling, 
simulation, visualization, optimization, glass processing, 
spinning processes, fiber-fluid interaction, trubulence 
effects, topological optimization, multicriteria optimiza-
tion, Uncertainty and Risk, financial mathematics, Mal-
liavin calculus, Monte-Carlo methods, virtual material 
design, filtration, bio-informatics, system biology
(29 pages, 2004)

69.	 R. Ewing, O. Iliev, R. Lazarov, A. Naumovich
On convergence of certain finite difference 
discretizations for 1D poroelasticity inter-
face problems 
Keywords: poroelasticity, multilayered material, finite 
volume discretizations, MAC type grid, error estimates 
(26 pages,2004)

70.	 W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva 
On Efficient Simulation of Non-Newto-
nian Flow in Saturated Porous Media with a 
Multigrid Adaptive Refinement Solver 
Keywords: Nonlinear multigrid, adaptive renement, 
non-Newtonian in porous media
(25 pages, 2004)

71.	 J. Kalcsics, S. Nickel, M. Schröder 
Towards a Unified Territory Design Approach 
– Applications, Algorithms and GIS Integration
Keywords: territory desgin, political districting, sales 
territory alignment, optimization algorithms, Geo-
graphical Information Systems
(40 pages, 2005)

72.	 K. Schladitz, S. Peters, D. Reinel-Bitzer,  
A. Wiegmann, J. Ohser 

Design of acoustic trim based on geometric 
modeling and flow simulation for non-woven 
Keywords: random system of fibers, Poisson 
line process, flow resistivity, acoustic absorption, 
Lattice-Boltzmann method, non-woven
(21 pages, 2005)

73.	 V. Rutka, A. Wiegmann
Explicit Jump Immersed Interface Method 
for virtual material design of the effective 
elastic moduli of composite materials 
Keywords: virtual material design, explicit jump im-
mersed interface method, effective elastic moduli, 
composite materials
(22 pages, 2005)

74.	 T. Hanne
Eine Übersicht zum Scheduling von Baustellen
Keywords: Projektplanung, Scheduling, Bauplanung, 
Bauindustrie
(32 pages, 2005)

75.	 J. Linn
The Folgar-Tucker Model as a Differetial 
Algebraic System for Fiber Orientation 
Calculation 
Keywords: fiber orientation, Folgar–Tucker model, in-
variants, algebraic constraints, phase space, trace sta-
bility
(15 pages, 2005)

76.	 M. Speckert, K. Dreßler, H. Mauch,  
A. Lion, G. J. Wierda

Simulation eines neuartigen Prüfsystems 
für Achserprobungen durch MKS-Model-
lierung einschließlich Regelung
Keywords: virtual test rig, suspension testing, 
multibody simulation, modeling hexapod test rig, opti-
mization of test rig configuration
(20 pages, 2005)

77.	 K.-H. Küfer, M. Monz, A. Scherrer, P. Süss,  
F. Alonso, A. S. A. Sultan, Th. Bortfeld,  
D. Craft, Chr. Thieke 

Multicriteria optimization in intensity  
modulated radiotherapy planning 
Keywords: multicriteria optimization, extreme solu-
tions, real-time decision making, adaptive approxima-
tion schemes, clustering methods, IMRT planning, re-
verse engineering 
(51 pages, 2005)

78.	 S. Amstutz, H. Andrä 
A new algorithm for topology optimization 
using a level-set method
Keywords: shape optimization, topology optimization, 
topological sensitivity, level-set
(22 pages, 2005)

79. N. Ettrich
Generation of surface elevation models for 
urban drainage simulation
Keywords: Flooding, simulation, urban elevation  
models, laser scanning
(22 pages, 2005)

80.	 H. Andrä, J. Linn, I. Matei, I. Shklyar,  
K. Steiner, E. Teichmann

OPTCAST – Entwicklung adäquater Struk-
turoptimierungsverfahren für Gießereien 
Technischer Bericht (KURZFASSUNG)
Keywords: Topologieoptimierung, Level-Set-Methode, 
Gießprozesssimulation, Gießtechnische Restriktionen, 
CAE-Kette zur Strukturoptimierung
(77 pages, 2005)

81.	 N. Marheineke, R. Wegener
Fiber Dynamics in Turbulent Flows  
Part I: General Modeling Framework 
Keywords: fiber-fluid interaction; Cosserat rod; turbu-
lence modeling; Kolmogorov’s energy spectrum; dou-
ble-velocity correlations; differentiable Gaussian fields
(20 pages, 2005) 

Part II: Specific Taylor Drag  
Keywords: flexible fibers; k-e turbulence model; fi-
ber-turbulence interaction scales; air drag; random 
Gaussian aerodynamic force; white noise; stochastic 
differential equations; ARMA process 
(18 pages, 2005)

82.	 C. H. Lampert, O. Wirjadi 
An Optimal Non-Orthogonal Separation of 
the Anisotropic Gaussian Convolution Filter
Keywords: Anisotropic Gaussian filter, linear filtering, ori-
entation space, nD image processing, separable filters
(25 pages, 2005)

83.	 H. Andrä, D. Stoyanov
Error indicators in the parallel finite ele-
ment solver for linear elasticity DDFEM 
Keywords: linear elasticity, finite element method, hier-
archical shape functions, domain decom-position, par-
allel implementation, a posteriori error estimates
(21 pages, 2006)

84.	 M. Schröder, I. Solchenbach
Optimization of Transfer Quality in  
Regional Public Transit
Keywords: public transit, transfer quality, quadratic  
assignment problem
(16 pages, 2006)

85.	 A. Naumovich, F. J. Gaspar 
On a multigrid solver for the three-dimen-
sional Biot poroelasticity system in multi-
layered domains 
Keywords: poroelasticity, interface problem, multigrid, 
operator-dependent prolongation
(11 pages, 2006)

86.	 S. Panda, R. Wegener, N. Marheineke
Slender Body Theory for the Dynamics of 
Curved Viscous Fibers 
Keywords: curved viscous fibers; fluid dynamics; Navier-
Stokes equations; free boundary value problem; asymp-
totic expansions; slender body theory
(14 pages, 2006)

87.	 E. Ivanov, H. Andrä, A. Kudryavtsev
Domain Decomposition Approach for Auto-
matic Parallel Generation of Tetrahedral Grids
Key words: Grid Generation, Unstructured Grid, Delau-
nay Triangulation, Parallel Programming, Domain De-
composition, Load Balancing
(18 pages, 2006)

88.	 S. Tiwari, S. Antonov, D. Hietel, J. Kuhnert,  
R. Wegener 

A Meshfree Method for Simulations of In-
teractions between Fluids and Flexible 
Structures
Key words: Meshfree Method, FPM, Fluid Structure 
Interaction, Sheet of Paper, Dynamical Coupling
(16 pages, 2006)

89.	 R. Ciegis , O. Iliev, V. Starikovicius, K. Steiner
Numerical Algorithms for Solving Problems 
of Multiphase Flows in Porous Media
Keywords: nonlinear algorithms, finite-volume method, 
software tools, porous media, flows
(16 pages, 2006)



90.	 D. Niedziela, O. Iliev, A. Latz
On 3D Numerical Simulations of Viscoelastic 
Fluids
Keywords: non-Newtonian fluids, anisotropic viscosity, 
integral constitutive equation 
(18 pages, 2006)

91.	 A. Winterfeld
Application of general semi-infinite Pro-
gramming to Lapidary Cutting Problems
Keywords: large scale optimization, nonlinear program-
ming, general semi-infinite optimization, design center-
ing, clustering
(26 pages, 2006)

92.	 J. Orlik, A. Ostrovska
Space-Time Finite Element Approximation 
and Numerical Solution of Hereditary  
Linear Viscoelasticity Problems
Keywords: hereditary viscoelasticity; kern approxima-
tion by interpolation; space-time finite element approxi-
mation, stability and a priori estimate
(24 pages, 2006)

93.	 V. Rutka, A. Wiegmann, H. Andrä
EJIIM for Calculation of effective Elastic 
Moduli in 3D Linear Elasticity
Keywords: Elliptic PDE, linear elasticity, irregular do-
main, finite differences, fast solvers, effective elas-
tic moduli
(24 pages, 2006)

94.	 A. Wiegmann, A. Zemitis
EJ-HEAT: A Fast Explicit Jump Harmonic 
Averaging Solver for the Effective Heat 
Conductivity of Composite Materials
Keywords: Stationary heat equation, effective ther-
mal conductivity, explicit jump, discontinuous coeffi-
cients, virtual material design, microstructure simula-
tion, EJ-HEAT
(21 pages, 2006)

95.	 A. Naumovich
On a finite volume discretization of the 
three-dimensional Biot poroelasticity sys-
tem in multilayered domains
Keywords: Biot poroelasticity system, interface problems, 
finite volume discretization, finite difference method
(21 pages, 2006)

96.	 M. Krekel, J. Wenzel
A unified approach to Credit Default Swap
tion and Constant Maturity Credit Default 
Swap valuation
Keywords: LIBOR market model, credit risk, Credit De-
fault Swaption, Constant Maturity Credit Default Swap-
method
(43 pages, 2006) 

97.	 A. Dreyer
Interval Methods for Analog Circiuts
Keywords: interval arithmetic, analog circuits, tolerance 
analysis, parametric linear systems, frequency response, 
symbolic analysis, CAD, computer algebra
(36 pages, 2006)

98.	 N. Weigel, S. Weihe, G. Bitsch, K. Dreßler
Usage of Simulation for Design and Optimi-
zation of Testing
Keywords: Vehicle test rigs, MBS, control, hydraulics, 
testing philosophy
(14 pages, 2006)

99.	 H. Lang, G. Bitsch, K. Dreßler, M. Speckert
Comparison of the solutions of the elastic 
and elastoplastic boundary value problems

Keywords: Elastic BVP, elastoplastic BVP, variational 
inequalities, rate-independency, hysteresis, linear kine-
matic hardening, stop- and play-operator
(21 pages, 2006)

100.	M. Speckert, K. Dreßler, H. Mauch
MBS Simulation of a hexapod based sus-
pension test rig
Keywords: Test rig, MBS simulation, suspension, 
hydraulics, controlling, design optimization
(12 pages, 2006)

101.	 S. Azizi Sultan, K.-H. Küfer
A dynamic algorithm for beam orientations 
in multicriteria IMRT planning
Keywords: radiotherapy planning, beam orientation 
optimization, dynamic approach, evolutionary algo-
rithm, global optimization
(14 pages, 2006)

102.	T. Götz, A. Klar, N. Marheineke, R. Wegener
A Stochastic Model for the Fiber Lay-down 
Process in the Nonwoven Production
Keywords: fiber dynamics, stochastic Hamiltonian sys-
tem, stochastic averaging
(17 pages, 2006) 

103.	Ph. Süss, K.-H. Küfer
Balancing control and simplicity: a variable 
aggregation method in intensity modulated 
radiation therapy planning
Keywords: IMRT planning, variable aggregation, clus-
tering methods 
(22 pages, 2006)

104.	A. Beaudry, G. Laporte, T. Melo, S. Nickel
Dynamic transportation of patients in hos-
pitals
Keywords: in-house hospital transportation, dial-a-ride, 
dynamic mode, tabu search 
(37 pages, 2006)

105.	Th. Hanne
Applying multiobjective evolutionary algo-
rithms in industrial projects
Keywords: multiobjective evolutionary algorithms, dis-
crete optimization, continuous optimization, electronic 
circuit design, semi-infinite programming, scheduling
(18 pages, 2006)

106.	J. Franke, S. Halim
Wild bootstrap tests for comparing signals 
and images
Keywords: wild bootstrap test, texture classification, 
textile quality control, defect detection, kernel estimate, 
nonparametric regression
(13 pages, 2007)

107.	 Z. Drezner, S. Nickel
Solving the ordered one-median problem in 
the plane
Keywords: planar location, global optimization, ordered 
median, big triangle small triangle method, bounds, 
numerical experiments
(21 pages, 2007)

108.	Th. Götz, A. Klar, A. Unterreiter,  
R. Wegener

Numerical evidance for the non-existing of 
solutions of the equations desribing rota-
tional fiber spinning
Keywords: rotational fiber spinning, viscous fibers, 
boundary value problem, existence of solutions
(11 pages, 2007)

109.	Ph. Süss, K.-H. Küfer
Smooth intensity maps and the Bortfeld-
Boyer sequencer
Keywords: probabilistic analysis, intensity modulated 
radiotherapy treatment (IMRT), IMRT plan application, 
step-and-shoot sequencing
(8 pages, 2007)

110.	 E. Ivanov, O. Gluchshenko, H. Andrä,  
A. Kudryavtsev

Parallel software tool for decomposing and 
meshing of 3d structures
Keywords: a-priori domain decomposition, unstruc-
tured grid, Delaunay mesh generation
(14 pages, 2007)

111.	 O. Iliev, R. Lazarov, J. Willems
Numerical study of two-grid precondition-
ers for 1d elliptic problems with highly  
oscillating discontinuous coefficients
Keywords: two-grid algorithm, oscillating coefficients, 
preconditioner 
(20 pages, 2007)

112.	 L. Bonilla, T. Götz, A. Klar, N. Marheineke,  
R. Wegener

Hydrodynamic limit of the Fokker-Planck-
equation describing fiber lay-down pro-
cesses
Keywords: stochastic dierential equations, Fokker-
Planck equation, asymptotic expansion, Ornstein-
Uhlenbeck process
(17 pages, 2007)

113.	 S. Rief
Modeling and simulation of the pressing 
section of a paper machine
Keywords: paper machine, computational fluid dynam-
ics, porous media
(41 pages, 2007)

114.	 R. Ciegis, O. Iliev, Z. Lakdawala
On parallel numerical algorithms for simu-
lating industrial filtration problems
Keywords: Navier-Stokes-Brinkmann equations, finite 
volume discretization method, SIMPLE, parallel comput-
ing, data decomposition method 
(24 pages, 2007)

115.	 N. Marheineke, R. Wegener
Dynamics of curved viscous fibers with sur-
face tension
Keywords: Slender body theory, curved viscous bers 
with surface tension, free boundary value problem
(25 pages, 2007)

116.	 S. Feth, J. Franke, M. Speckert
Resampling-Methoden zur mse-Korrektur 
und Anwendungen in der Betriebsfestigkeit
Keywords: Weibull, Bootstrap, Maximum-Likelihood, 
Betriebsfestigkeit
(16 pages, 2007)

117.	 H. Knaf
Kernel Fisher discriminant functions – a con-
cise and rigorous introduction
Keywords: wild bootstrap test, texture classification, 
textile quality control, defect detection, kernel estimate, 
nonparametric regression
(30 pages, 2007)

118.	O. Iliev, I. Rybak
On numerical upscaling for flows in hetero-
geneous porous media



Keywords: numerical upscaling, heterogeneous porous 
media, single phase flow, Darcy‘s law, multiscale prob-
lem, effective permeability, multipoint flux approxima-
tion, anisotropy
(17 pages, 2007)

119.	 O. Iliev, I. Rybak
On approximation property of multipoint 
flux approximation method
Keywords: Multipoint flux approximation, finite volume 
method, elliptic equation, discontinuous tensor coeffi-
cients, anisotropy
(15 pages, 2007)

120.	O. Iliev, I. Rybak, J. Willems
On upscaling heat conductivity for a class of 
industrial problems
Keywords: Multiscale problems, effective heat conduc-
tivity, numerical upscaling, domain decomposition
(21 pages, 2007)

121.	 R. Ewing, O. Iliev, R. Lazarov, I. Rybak
On two-level preconditioners for flow in 
porous media
Keywords: Multiscale problem, Darcy‘s law, single 
phase flow, anisotropic heterogeneous porous media, 
numerical upscaling, multigrid, domain decomposition, 
efficient preconditioner
(18 pages, 2007)

122.	M. Brickenstein, A. Dreyer
POLYBORI: A Gröbner basis framework 
for Boolean polynomials
Keywords: Gröbner basis, formal verification, Boolean 
polynomials, algebraic cryptoanalysis, satisfiability
(23 pages, 2007)

123.	O. Wirjadi
Survey of 3d image segmentation methods
Keywords: image processing, 3d, image segmentation, 
binarization
(20 pages, 2007)

124.	S. Zeytun, A. Gupta
A Comparative Study of the Vasicek and the 
CIR Model of the Short Rate
Keywords: interest rates, Vasicek model, CIR-model, 
calibration, parameter estimation
(17 pages, 2007)

125.	G. Hanselmann, A. Sarishvili 
Heterogeneous redundancy in software 
quality prediction using a hybrid Bayesian 
approach
Keywords: reliability prediction, fault prediction, non-
homogeneous poisson process, Bayesian model aver-
aging
(17 pages, 2007)

126.	V. Maag, M. Berger, A. Winterfeld, K.-H. 
Küfer 

A novel non-linear approach to minimal 
area rectangular packing
Keywords: rectangular packing, non-overlapping con-
straints, non-linear optimization, regularization, relax-
ation 
(18 pages, 2007)

127.	 M. Monz, K.-H. Küfer, T. Bortfeld, C. Thieke 
Pareto navigation – systematic multi-crite-
ria-based IMRT treatment plan determina-
tion
Keywords: convex, interactive multi-objective optimiza-
tion, intensity modulated radiotherapy planning
(15 pages, 2007)

128.	M. Krause, A. Scherrer
On the role of modeling parameters in IMRT 
plan optimization
Keywords: intensity-modulated radiotherapy (IMRT), 
inverse IMRT planning, convex optimization, sensitiv-
ity analysis, elasticity, modeling parameters, equivalent 
uniform dose (EUD)
(18 pages, 2007)

129.	A. Wiegmann
Computation of the permeability of porous 
materials from their microstructure by FFF-
Stokes
Keywords: permeability, numerical homogenization, 
fast Stokes solver
(24 pages, 2007)

130.	T. Melo, S. Nickel, F. Saldanha da Gama
Facility Location and Supply Chain Manage-
ment – A comprehensive review
Keywords: facility location, supply chain management, 
network design
(54 pages, 2007)

131.	 T. Hanne, T. Melo, S. Nickel
Bringing robustness to patient flow 
management through optimized patient 
transports in hospitals
Keywords: Dial-a-Ride problem, online problem, case 
study, tabu search, hospital logistics 
(23 pages, 2007)

132.	R. Ewing, O. Iliev, R. Lazarov, I. Rybak,  
J. Willems

An efficient approach for upscaling proper-
ties of composite materials with high con-
trast of coefficients
Keywords: effective heat conductivity, permeability of 
fractured porous media, numerical upscaling, fibrous 
insulation materials, metal foams
(16 pages, 2008)

133.	S. Gelareh, S. Nickel
New approaches to hub location problems 
in public transport planning
Keywords: integer programming, hub location, trans-
portation, decomposition, heuristic
(25 pages, 2008)

134.	G. Thömmes, J. Becker, M. Junk, A. K. Vai-
kuntam, D. Kehrwald, A. Klar, K. Steiner,  
A. Wiegmann

A Lattice Boltzmann Method for immiscible 
multiphase flow simulations using the Level 
Set Method
Keywords: Lattice Boltzmann method, Level Set 
method, free surface, multiphase flow
(28 pages, 2008)

135.	J. Orlik
Homogenization in elasto-plasticity
Keywords: multiscale structures, asymptotic homogeni-
zation, nonlinear energy 
(40 pages, 2008)

136.	J. Almquist, H. Schmidt, P. Lang, J. Deitmer, 
M. Jirstrand, D. Prätzel-Wolters, H. Becker

Determination of interaction between 
MCT1 and CAII via a mathematical and 
physiological approach
Keywords: mathematical modeling; model reduction; 
electrophysiology; pH-sensitive microelectrodes; pro-
ton antenna 
(20 pages, 2008)

137.	 E. Savenkov, H. Andrä, O. Iliev∗
An analysis of one regularization approach 
for solution of pure Neumann problem
Keywords: pure Neumann problem, elasticity, regular-
ization, finite element method, condition number
(27 pages, 2008)

138.	O. Berman, J. Kalcsics, D. Krass, S. Nickel
The ordered gradual covering location 
problem on a network
Keywords: gradual covering, ordered median function, 
network location
(32 pages, 2008)

139.	S. Gelareh, S. Nickel
Multi-period public transport design: A 
novel model and solution approaches
Keywords: Integer programming, hub location, public 
transport, multi-period planning, heuristics
(31 pages, 2008)

140.	T. Melo, S. Nickel, F. Saldanha-da-Gama
Network design decisions in supply chain
planning
Keywords: supply chain design, integer programming 
models, location models, heuristics
(20 pages, 2008)

141.	 C. Lautensack, A. Särkkä, J. Freitag,  
K. Schladitz

Anisotropy analysis of pressed point pro-
cesses
Keywords: estimation of compression, isotropy test, 
nearest neighbour distance, orientation analysis, polar 
ice, Ripley’s K function
(35 pages, 2008) 

142.	O. Iliev, R. Lazarov, J. Willems
A Graph-Laplacian approach for calculating 
the effective thermal conductivity of com-
plicated fiber geometries
Keywords: graph laplacian, effective heat conductivity, 
numerical upscaling, fibrous materials
(14 pages, 2008)

143.	J. Linn, T. Stephan, J. Carlsson, R. Bohlin
Fast simulation of quasistatic rod deforma-
tions for VR applications
Keywords: quasistatic deformations, geometrically 
exact rod models, variational formulation, energy min-
imization, finite differences, nonlinear conjugate gra-
dients
(7 pages, 2008)

144.	J. Linn, T. Stephan
Simulation of quasistatic deformations us-
ing discrete rod models
Keywords: quasistatic deformations, geometrically 
exact rod models, variational formulation, energy min-
imization, finite differences, nonlinear conjugate gra-
dients
(9 pages, 2008)

145.	J. Marburger, N. Marheineke, R. Pinnau
Adjoint based optimal control using mesh-
less discretizations
Keywords: Mesh-less methods, particle methods, Eul-
erian-Lagrangian formulation, optimization strategies, 
adjoint method, hyperbolic equations
(14 pages, 2008

146.	S. Desmettre, J. Gould, A. Szimayer
Own-company stockholding and work effort 
preferences of an unconstrained executive
Keywords: optimal portfolio choice, executive compen-
sation
(33 pages, 2008)



147.	 M. Berger, M. Schröder, K.-H. Küfer
A constraint programming approach for the 
two-dimensional rectangular packing prob-
lem with orthogonal orientations
Keywords: rectangular packing, orthogonal orienta-
tions non-overlapping constraints, constraint propa-
gation
(13 pages, 2008)

148.	K. Schladitz, C. Redenbach, T. Sych,  
M. Godehardt

Microstructural characterisation of open 
foams using 3d images
Keywords: virtual material design, image analysis, open 
foams
(30 pages, 2008)

149.	E. Fernández, J. Kalcsics, S. Nickel,  
R. Ríos-Mercado

A novel territory design model arising in 
the implementation of the WEEE-Directive
Keywords: heuristics, optimization, logistics, recycling
(28 pages, 2008)

150.	H. Lang, J. Linn
Lagrangian field theory in space-time for 
geometrically exact Cosserat rods
Keywords: Cosserat rods, geometrically exact rods, 
small strain, large deformation, deformable bodies, 
Lagrangian field theory, variational calculus
(19 pages, 2009)

151.	 K. Dreßler, M. Speckert, R. Müller,  
Ch. Weber

Customer loads correlation in truck engi-
neering
Keywords: Customer distribution, safety critical compo-
nents, quantile estimation, Monte-Carlo methods
(11 pages, 2009)

152.	H. Lang, K. Dreßler
An improved multiaxial stress-strain correc-
tion model for elastic FE postprocessing
Keywords: Jiang’s model of elastoplasticity, stress-strain 
correction, parameter identification, automatic differ-
entiation, least-squares optimization, Coleman-Li algo-
rithm
(6 pages, 2009)

153.	J. Kalcsics, S. Nickel, M. Schröder
A generic geometric approach to territory 
design and districting
Keywords: Territory design, districting, combinatorial 
optimization, heuristics, computational geometry
(32 pages, 2009)

154.	Th. Fütterer, A. Klar, R. Wegener
An energy conserving numerical scheme for 
the dynamics of hyperelastic rods
Keywords: Cosserat rod, hyperealstic, energy conserva-
tion, finite differences
(16 pages, 2009)

155.	A. Wiegmann, L. Cheng, E. Glatt, O. Iliev,  
S. Rief

Design of pleated filters by computer sim-
ulations
Keywords: Solid-gas separation, solid-liquid separation, 
pleated filter, design, simulation
(21 pages, 2009)

156.	A. Klar, N. Marheineke, R. Wegener
Hierarchy of mathematical models for pro-
duction processes of technical textiles

166.	J. I. Serna, M. Monz, K.-H. Küfer, C. Thieke
Trade-off bounds and their effect in multi-
criteria IMRT planning
Keywords: trade-off bounds, multi-criteria optimization, 
IMRT, Pareto surface
(15 pages, 2009)

167.	 W. Arne, N. Marheineke, A. Meister, R. We-
gener

Numerical analysis of Cosserat rod and 
string models for viscous jets in rotational 
spinning processes
Keywords: Rotational spinning process, curved viscous 
fibers, asymptotic Cosserat models, boundary value 
problem, existence of numerical solutions
(18 pages, 2009)

168.	T. Melo, S. Nickel, F. Saldanha-da-Gama
An LP-rounding heuristic to solve a multi-
period facility relocation problem
Keywords: supply chain design, heuristic, linear pro-
gramming, rounding
(37 pages, 2009)

169.	I. Correia, S. Nickel, F. Saldanha-da-Gama
Single-allocation hub location problems 
with capacity choices
Keywords: hub location, capacity decisions, MILP for-
mulations
(27 pages, 2009)

170.	S. Acar, K. Natcheva-Acar
A guide on the implementation of the 
Heath-Jarrow-Morton Two-Factor Gaussian 
Short Rate Model (HJM-G2++)
Keywords: short rate model, two factor Gaussian, 
G2++, option pricing, calibration
(30 pages, 2009)

171.	 A. Szimayer, G. Dimitroff, S. Lorenz
A parsimonious multi-asset Heston model: 
calibration and derivative pricing
Keywords: Heston model, multi-asset, option pricing, 
calibration, correlation
(28 pages, 2009)

172.	N. Marheineke, R. Wegener
Modeling and validation of a stochastic 
drag for fibers in turbulent flows
Keywords: fiber-fluid interactions, long slender fibers, 
turbulence modelling, aerodynamic drag, dimensional 
analysis, data interpolation, stochastic partial differen-
tial algebraic equation, numerical simulations, experi-
mental validations
(19 pages, 2009)

173.	S. Nickel, M. Schröder, J. Steeg
Planning for home health care services
Keywords: home health care, route planning, meta-
heuristics, constraint programming
(23 pages, 2009)

174.	G. Dimitroff, A. Szimayer, A. Wagner
Quanto option pricing in the parsimonious 
Heston model
Keywords: Heston model, multi asset, quanto options, 
option pricing
(14 pages, 2009) 174.	 G. Dimitroff, A. Szimayer, A. 
Wagner

175.	S. Herkt, K. Dreßler, R. Pinnau
Model reduction of nonlinear problems in 
structural mechanics
Keywords: flexible bodies, FEM, nonlinear model reduc-
tion, POD
(13 pages, 2009)

Keywords: Fiber-fluid interaction, slender-body theory, 
turbulence modeling, model reduction, stochastic dif-
ferential equations, Fokker-Planck equation, asymptotic 
expansions, parameter identification
(21 pages, 2009)

157.	 E. Glatt, S. Rief, A. Wiegmann, M. Knefel,  
E. Wegenke

Structure and pressure drop of real and vir-
tual metal wire meshes
Keywords: metal wire mesh, structure simulation, 
model calibration, CFD simulation, pressure loss
(7 pages, 2009)

158.	S. Kruse, M. Müller
Pricing American call options under the as-
sumption of stochastic dividends – An ap-
plication of the Korn-Rogers model
Keywords: option pricing, American options, dividends, 
dividend discount model, Black-Scholes model
(22 pages, 2009)

159.	H. Lang, J. Linn, M. Arnold
Multibody dynamics simulation of geomet-
rically exact Cosserat rods
Keywords: flexible multibody dynamics, large deforma-
tions, finite rotations, constrained mechanical systems, 
structural dynamics
(20 pages, 2009)

160.	P. Jung, S. Leyendecker, J. Linn, M. Ortiz
Discrete Lagrangian mechanics and geo-
metrically exact Cosserat rods
Keywords: special Cosserat rods, Lagrangian mechanics, 
Noether’s theorem, discrete mechanics, frame-indiffer-
ence, holonomic constraints
(14 pages, 2009)

161.	 M. Burger, K. Dreßler, A. Marquardt,  
M. Speckert

Calculating invariant loads for system simu-
lation in vehicle engineering
Keywords: iterative learning control, optimal control 
theory, differential algebraic equations (DAEs)
(18 pages, 2009)

162.	M. Speckert, N. Ruf, K. Dreßler
Undesired drift of multibody models excit-
ed by measured accelerations or forces
Keywords: multibody simulation, full vehicle model, 
force-based simulation, drift due to noise
(19 pages, 2009)

163.	A. Streit, K. Dreßler, M. Speckert, J. Lichter, 
T. Zenner, P. Bach

Anwendung statistischer Methoden zur  
Erstellung von Nutzungsprofilen für die  
Auslegung von Mobilbaggern
Keywords: Nutzungsvielfalt, Kundenbeanspruchung,
Bemessungsgrundlagen
(13 pages, 2009)

164.	I. Correia, S. Nickel, F. Saldanha-da-Gama
The capacitated single-allocation hub loca-
tion problem revisited: A note on a classical 
formulation
Keywords: Capacitated Hub Location, MIP formulations
(10 pages, 2009)

165.	F. Yaneva, T. Grebe, A. Scherrer
An alternative view on global radiotherapy 
optimization problems
Keywords: radiotherapy planning, path-connected sub-
levelsets, modified gradient projection method, improv-
ing and feasible directions
(14 pages, 2009)

http://www.hgvoberthal.de/
index.php/veranstaltungsplan/
details/1-10-internationaler-
toepfermarkt-oberthal



176.	M. K. Ahmad, S. Didas, J. Iqbal
Using the Sharp Operator for edge detec-
tion and nonlinear diffusion
Keywords: maximal function, sharp function,image pro-
cessing, edge detection, nonlinear diffusion
(17 pages, 2009)

177.	 M. Speckert, N. Ruf, K. Dreßler, R. Müller,  
C. Weber, S. Weihe

Ein neuer Ansatz zur Ermittlung von Er-
probungslasten für sicherheitsrelevante 
Bauteile
Keywords: sicherheitsrelevante Bauteile, Kundenbean
spruchung, Festigkeitsverteilung, Ausfallwahrschein-
lichkeit, Konfidenz, statistische Unsicherheit, Sicher-
heitsfaktoren
(16 pages, 2009)

178.	J. Jegorovs
Wave based method: new applicability areas
Keywords: Elliptic boundary value problems, inho-
mogeneous Helmholtz type differential equations in 
bounded domains, numerical methods, wave based 
method, uniform B-splines
(10 pages, 2009)

179.	H. Lang, M. Arnold
Numerical aspects in the dynamic simula-
tion of geometrically exact rods
Keywords: Kirchhoff and Cosserat rods, geometri
cally exact rods, deformable bodies, multibody 
dynamics,artial differential algebraic equations, 
method of lines, time integration
(21 pages, 2009)

180.	H. Lang
Comparison of quaternionic and rotation-
free null space formalisms for multibody 
dynamics
Keywords: Parametrisation of rotations, differential-
algebraic equations, multibody dynamics, constrained 
mechanical systems, Lagrangian mechanics 
(40 pages, 2010)

181.	 S. Nickel, F. Saldanha-da-Gama, H.-P. Ziegler
Stochastic programming approaches for risk 
aware supply chain network design problems
Keywords: Supply Chain Management, multi-stage sto-
chastic programming, financial decisions, risk 
(37 pages, 2010)

182.	P. Ruckdeschel, N. Horbenko
Robustness properties of estimators in gen-
eralized Pareto Models
Keywords: global robustness, local robustness, finite 
sample breakdown point, generalized Pareto distribution 
(58 pages, 2010)

183.	P. Jung, S. Leyendecker, J. Linn, M. Ortiz
A discrete mechanics approach to Cosserat 
rod theory – Part 1: static equilibria
Keywords: Special Cosserat rods; Lagrangian mechan-
ics; Noether’s theorem; discrete mechanics; frame-
indifference; holonomic constraints; variational formu-
lation
(35 pages, 2010)

184.	R. Eymard, G. Printsypar
A proof of convergence of a finite volume 
scheme for modified steady Richards’ equa-
tion describing transport processes in the 
pressing section of a paper machine
Keywords: flow in porous media, steady Richards’ 
equation, finite volume methods, convergence of 
approximate solution
(14 pages, 2010)

185.	P. Ruckdeschel
Optimally Robust Kalman Filtering
Keywords: robustness, Kalman Filter, innovation outlier, 
additive outlier
(42 pages, 2010)

186.	S. Repke, N. Marheineke, R. Pinnau
On adjoint-based optimization of a free  
surface Stokes flow
Keywords: film casting process, thin films, free surface 
Stokes flow, optimal control, Lagrange formalism
(13 pages, 2010)

187.	 O. Iliev, R. Lazarov, J. Willems
Variational multiscale Finite Element 
Method for flows in highly porous media
Keywords: numerical upscaling, flow in heterogeneous 
porous media, Brinkman equations, Darcy’s law, subgrid 
approximation, discontinuous Galerkin mixed FEM
(21 pages, 2010)

188.	S. Desmettre, A. Szimayer
Work effort, consumption, and portfolio
selection: When the occupational choice
matters
Keywords: portfolio choice, work effort, consumption, 
occupational choice
(34 pages, 2010)

189.	O. Iliev, Z. Lakdawala, V. Starikovicius
On a numerical subgrid upscaling algorithm 
for Stokes-Brinkman equations
Keywords: Stokes-Brinkman equations, subgrid 
approach, multiscale problems, numerical upscaling
(27 pages, 2010)

190.	A. Latz, J. Zausch, O. Iliev
Modeling of species and charge transport in 
Li-Ion Batteries based on non-equilibrium 
thermodynamics
Keywords: lithium-ion battery, battery modeling, elec-
trochemical simulation, concentrated electrolyte, ion 
transport
(8 pages, 2010)

191.	 P. Popov, Y. Vutov, S. Margenov, O. Iliev
Finite volume discretization of equations
describing nonlinear diffusion in Li-Ion bat-
teries
Keywords: nonlinear diffusion, finite volume discretiza-
tion, Newton method, Li-Ion batteries
(9 pages, 2010)

192. W. Arne, N. Marheineke, R. Wegener
Asymptotic transition from Cosserat rod 
to string models for curved viscous iner-
tial jets
Keywords: rotational spinning processes; inertial and 
viscous-inertial fiber regimes; asymptotic limits; slender-
body theory; boundary value problems
(23 pages, 2010)

193. L. Engelhardt, M. Burger, G. Bitsch
Real-time simulation of multibody-systems 
for on-board applications
Keywords: multibody system simulation, real-time simu-
lation, on-board simulation, Rosenbrock methods
(10 pages, 2010)

194. M. Burger, M. Speckert, K. Dreßler
Optimal control methods for the calculation 
of invariant excitation signals for multibody 
systems
Keywords: optimal control, optimization, mbs simula-
tion, invariant excitation
(9 pages, 2010)

195. A. Latz, J. Zausch
Thermodynamic consistent transport theory 
of Li-Ion batteries
Keywords: Li-Ion batteries, nonequilibrium thermody-
namics, thermal transport, modeling
(18 pages, 2010)  

196. S. Desmettre
Optimal investment for executive
stockholders with exponential utility
Keywords: portfolio choice, executive stockholder, 
work effort, exponential utility
(24 pages, 2010) 

197. W. Arne, N. Marheineke, J. Schnebele,  
R. Wegener

Fluid-fiber-interactions in rotational spin-
ning process of glass wool production
Keywords: Rotational spinning process, viscous thermal 
jets, fluid-fiber-interactions, two-way coupling, slender-
body theory, Cosserat rods, drag models, boundary 
value problem, continuation method
(20 pages, 2010)

198. A. Klar, J. Maringer,  R. Wegener
A 3d model for fiber lay-down in nonwoven
production processes
Keywords: fiber dynamics, Fokker-Planck equations, 
diffusion limits
(15 pages, 2010)

199. Ch. Erlwein, M. Müller
A regime-switching regression model for 
hedge funds
Keywords: switching regression model, Hedge funds, 
optimal parameter estimation, filtering
(26 pages, 2011)

200. M. Dalheimer
Power to the people – Das Stromnetz der 
Zukunft
Keywords: Smart Grid, Stromnetz, Erneuerbare Ener-
gien, Demand-Side Management
(27 pages, 2011)

201. D. Stahl, J. Hauth
PF-MPC: Particle Filter-Model Predictive 
Control
Keywords: Model Predictive Control, Particle Fil-
ter, CSTR, Inverted Pendulum, Nonlinear Systems, 
Sequential Monte Carlo
(40 pages, 2011)

202. G. Dimitroff, J. de Kock
Calibrating and completing the volatility 
cube in the SABR Model
Keywords: stochastic volatility, SABR, volatility cube, 
swaption
(12 pages, 2011)

203. J.-P. Kreiss, T. Zangmeister
Quantification of the effectiveness of a 
safety function in passenger vehicles on  
the basis of real-world accident data
Keywords: logistic regression, safety function, real-
world accident data, statistical modeling
(23 pages, 2011)

204. P. Ruckdeschel, T. Sayer, A. Szimayer
Pricing American options in the Heston 
model: a close look on incorporating corre-
lation
Keywords: Heston model, American options, moment 
matching, correlation, tree method 
(30 pages, 2011)

http://www.hgvoberthal.de/
index.php/veranstaltungsplan/
details/1-10-internationaler-
toepfermarkt-oberthal



205. H. Ackermann, H. Ewe, K.-H. Küfer,  
M. Schröder

Modeling profit sharing in combinatorial
exchanges by network flows
Keywords: Algorithmic game theory, profit sharing, 
combinatorial exchange, network flows, budget bal-
ance, core 
(17 pages, 2011)

206. O. Iliev, G. Printsypar, S. Rief
A one-dimensional model of the pressing 
section of a paper machine including dy-
namic capillary effects
Keywords: steady modified Richards’ equation, finite 
volume method, dynamic capillary pressure, pressing 
section of a paper machine 
(29 pages, 2011)

207. I. Vecchio, K. Schladitz, M. Godehardt,  
M. J. Heneka

Geometric characterization of particles in 3d 
with an application to technical cleanliness
Keywords: intrinsic volumes, isoperimetric shape factors, 
bounding box, elongation, geodesic distance, techni-
cal cleanliness 
(21 pages, 2011)

208. M. Burger, K. Dreßler, M. Speckert
Invariant input loads for full vehicle  
multibody system simulation
Keywords: multibody systems, full-vehicle simulation, 
optimal control 
(8 pages, 2011)

209. H. Lang, J. Linn, M. Arnold
Multibody dynamics simulation of geomet-
rically exact Cosserat rods
Keywords: flexible multibody dynamics, large deforma-
tions, finite rotations, constrained mechanical systems,
structural dynamics 
(28 pages, 2011)

210. G. Printsypar, R. Ciegis
On convergence of a discrete problem de-
scribing transport processes in the pressing 
section of a paper machine including dynam-
ic capillary effects: one-dimensional case
Keywords: saturated and unsaturated fluid flow in po-
rous media, Richards’ approach, dynamic capillary pres-
sure, finite volume methods, convergence of approxi-
mate solution
(24 pages, 2011)

211. O. Iliev, G. Printsypar, S. Rief
A two-cimensional model of the pressing 
section of a paper machine including dy-
namic capillary effects
Keywords: two-phase flow in porous media, steady 
modified Richards’ equation, finite volume method, dy-
namic capillary pressure, pressing section of a paper 
machine, multipoint flux approximation
(44 pages, 2012)

212. M. Buck, O. Iliev, H. Andrä
Multiscale finite element coarse spaces for 
the analysis of linear elastic composites
Keywords: linear elasticity, domain decomposition, mul-
tiscale finite elements, robust coarse spaces, rigid body 
modes, discontinuous coefficients
(31 pages, 2012)

Status quo: April 2012




	MsFEM_report_ITWM_prof.pdf
	Introduction
	Governing Equations and their Discretization
	The Equation of Linear Elasticity
	Weak Formulation
	The Finite Element Discretization
	Assembling the Stiffness Matrix

	Fine and Coarse Grid for the Two-Level Method
	Two-level Additive Schwarz
	Fine and Coarse Triangulation

	From Scalar PDEs to the PDE System
	The MsFEM for Scalar Elliptic PDEs

	MsFEM for the PDE System of Linear Elasticity
	Extensions to 3D Linear Elasticity
	The Multiscale Basis for Linear Elasticity
	Properties of the MsFEM Coarse Space
	The MsFEM Interpolation Operator:
	Construction of the MsFEM Basis Functions
	An Additional Coarse Space Formed by Rigid Body Rotations

	Numerical Experiments
	Coarse Space Robustness
	Coarse Space Approximation

	Discussion


