BEYOND SIC POWER DEVICES AND TECHNOLOGY – *NOVEL HIGH TEMPERATURE SIC CMOS 1 MICRON TECHNOLOGY*

T. Erlbacher

Fraunhofer Institute for Integrated Systems and Device Technology IISB

26.11.2020

4th International Symposium on SiC Materials and Devices 2020

Busan, Republic of Korea

Priv.-Doz. Dr. Tobias Erlbacher

Fraunhofer IISB Schottkystrasse 10 91058 Erlangen Germany

+49 (0) 9131 761-319

tobias.erlbacher@iisb.fraunhofer.de

Content

- Motivation
 - Latest Power Electronics Development
 - Exploiting benefits of SiC technology beyond Discrete Power Devices
- SiC CMOS technology: Circuits for Harsh Environments
 - PMOS device technology and performance
 - SPICE Modelling and design kits
- SiC CMOS circuits
 - Sensing and signal conditioning at high temperature
 - Lateral Power Devices and Process Modelling
 - Integrated SiC Gate Drivers for next-generation Power Electronics
- Conclusion and Outlook: SiC Quantum Electronics beyond 4mK operation

Content

- Motivation
 - Latest Power Electronics Development
 - Exploiting benefits of SiC technology beyond Discrete Power Devices
- SiC CMOS technology: Circuits for Harsh Environments
 - PMOS device technology and performance
 - SPICE Modelling and design kits
- SiC CMOS circuits
 - Sensing and signal conditioning at high temperature
 - Lateral Power Devices and Process Modelling
 - Integrated SiC Gate Drivers for next-generation Power Electronics
- Conclusion and Outlook: SiC Quantum Electronics beyond 4mK operation

Volume fabrication of 1.2kV/1.7kV MOSFETs

Recent SiC MOSFET device activities/innovations

→ Transition from R&D to ramp-up around the globe New SiC technologies beyond Power MOSFETs await!

Devices & Reliability

4th International SiC Symposium 2020

Exploiting benefits of SiC Power Device technology

Significant effort to increase SiC wafer diameter

4H-SiC technology: 150mm: 1980th silicon era 200mm: 1990th silicon era

Silicon concepts in SiC: Shorter developments

Devices & Reliability

Exploiting benefits of SiC Power Device technology

Devices & Reliability

4th International SiC Symposium 2020

Exploiting benefits of SiC Power Device technology

SiC CMOS: High temperature beyond Silicon

Unreliable Unreliable Bulky ٠ Wide application range Inefficient Expensive Inaccurate Power Oil & Gas Industria Aircraft Automotive Energy Geothermal Industries Exploration **Gas Turbines** Engines Engines Electronics Required Sensing **Temperatures** 600°C 275°C 375°C 600°C 300°C Pressure Pressure Pressure Pressure Integrated Pressure Desired Gatedriver: Temperature Temperature Temperature Temperature Temperature Sensing Current • • H,S Hydrocarbon Flame speed Flame speed Flame speed Measurands Temperature ٠ • Strain Acceleration Acceleration •0, Strain High switching • Harsh Environment Sensor Cluster, University of California, San Diego frequencies Reliabilty

Devices & Reliability

4th International SiC Symposium 2020

Content

- Motivation
 - Latest Power Electronics Development
 - Exploiting benefits of SiC technology beyond Discrete Power Devices
- SiC CMOS technology: Circuits for Harsh Environments
 - PMOS device technology and performance
 - SPICE Modelling and design kits
- SiC CMOS circuits
 - Sensing and signal conditioning at high temperature
 - Lateral Power Devices and Process Modelling
 - Integrated SiC Gate Drivers for next-generation Power Electronics
- Conclusion and Outlook: SiC Quantum Electronics beyond 4mK operation

- SiC MOS devices can be operated beyond 300°C
 - Addition of PMOS transistors beyond power electronics
 - Enables well-known silicon topologies: CMOS circuits

- High temperature circuits using "SiC power technology"
 - High temperature sensing
 - Signal amplification and conditioning
- Challenges: Optimization of pMOS transistors, high-temperature stability, MPW design capability (Fab-less + Foundry concepts)

Triple-well SiC CMOS 1P1M high-temperature technology

- Process modules
 - Triple well SiC CMOS with 2 implantations!
 - Retrograde doping profiles possible
 - NMOS+PMOS transistors high-side capable

IISB

Triple-well SiC CMOS 1P1M high-temperature technology

- Process modules
 - Self-aligned gate module cannot be implemented (SiC requires implant anneal before oxide!)
 - Active area for gate width control possible
 - Additional gate area overlap has to be included
 - → Increased gate-source/gate-drain capacitance

IISB

4th International SiC Symposium 2020

Devices & Reliability

Triple-well SiC CMOS 1P1M high-temperature technology

Pt-based metallization stack **NWELL** implant Ohmic contact is sensitive to degradation **PWELL** implant Passivation using SiN or a-SiC:H S/D implants FIB/SEM image of 20/6µm SiC PMOS transistor after Ohmic contacts Implant annealing Active Area IMD PolySi gate PolySi Ohmic contacts Gate oxide Via Metal 1 **PPLUS** nWell HFW mag 🗖 WD det | mode μm Passivation 00 kV TLD SE |5.12 µm| 50 000 x | 4.3 mm IISB

Fraunhofer

Alignment marks

Devices & Reliability

4th International SiC Symposium 2020

Process modules

- "Triple-well" SiC CMOS 1P1M technology beyond 300°C
 - NMOS and PMOS transistors fabricated by ion implantation (w/ channel)
 - Polygate process, 1Pt metal
 - Ohmic contact formation using NiAl and RTP
 - NMOS V_{Th}: 1.5V PMOS V_{Th}: -6.0V, contact resistance

→ There is still room for improvement!

Albrecht et al., Mat. Sci. Forum **1004** (2020) 1123–1128

Devices & Reliability

4th International SiC Symposium 2020

- "Triple-well" SiC CMOS 1P1M technology beyond 300°C
 - NMOS and PMOS transistors fabricated by ion implantation
 - Polygate process, 1Pt metal
 - Logic circuit example (base functionality)
 - High temperature SRAM capability with low leakage current demonstrated

Devices & Reliability

V DD

Modelling of SiC CMOS technology

- Physical SPICE modelling for fast CMOS technology prototyping
 - Characterization of primitive devices (not IVs)
 - Extraction of physical and geometrical parameters
 - E.g. Interface state density, channel length
 - Modelling of device performance and comparison
 - SPICE Optimization: Fast BSIM model based on physical models

Energie E-EC in eV

Unpublished work

Devices & Reliability

Process development kit and multi project wafer runs

- PDK: Combination of process technology, device performance and circuit evaluation
 - Physical SPICE modelling for fast CMOS technology prototyping
 - Design rule check (DRC), e.g. Poly gate layer

Poly1

- E1 Minimum size 3 μm
- E2 Minimum spacing 3 μm
- E3 Spacing to Active 2 μm
- E4 Gate Extension 2 μm
- E5 Poly over p+/n+: 1μm

Process development kit and multi project wafer runs

- PDK: Combination of process technology, device performance and circuit evaluation
 - Physical SPICE modelling for fast CMOS technology prototyping \checkmark
 - Design rule check (DRC)
 - Layout versus schematics (LVS) and Electric rule check (ERC) \checkmark
 - Circuit examples / Design library for proven design
 - Design IP
- Prerequisite for MPW (multi-project wafer) services
 - Combination of different circuit designs \checkmark
 - Leveraging R&D cost across several partners
 - Continuous technology improvement using dedicated process wafers \checkmark
 - Process IP

Content

- Motivation
 - Latest Power Electronics Development
 - Exploiting benefits of SiC technology beyond Discrete Power Devices
- SiC CMOS technology: Circuits for Harsh Environments
 - PMOS device technology and performance
 - SPICE Modelling and design kits
- SiC CMOS circuits
 - Sensing and signal conditioning at high temperature
 - Lateral Power Devices and Process Modelling
 - Integrated SiC Gate Drivers for next-generation Power Electronics

- Accurate temperature sensing beyond 300°C (and down to 80K)
 - Capability demonstrated using stand-alone pin-structures
 - Wide temperature range with excellent linearity
 - Sensitivity up to 4.5 mV/K

C. Matthus et al., IEEE Sensors J. **19** (2019) 2871-2878

C. Matthus et al., IEEE Trans. Electron Dev. 64 (2017) 3399-4404

Devices & Reliability

4th International SiC Symposium 2020

- Example: SiC High-temperature operational amplifier
 - Challenge: Evaluating low current/voltages
 - Signal conditioning at elevated temperatures

Albrecht et al., Mat. Sci. Forum **1004** (2020) 1123–1128

Devices & Reliability

4th International SiC Symposium 2020

transistor

M1. M2

M3, M4

M5, M7, M8

M6

W/L in

 $\mu m/\mu m$

40/6

200/6

225/6

400/6

type

n

р

n

p

- Example: SiC High-temperature operational amplifier
 - Signal conditioning at elevated temperatures
 - 20V, 10V, 5V variants
 - Sensor reading: Improved SNR by pre-amplification at hightemperature

Albrecht et al., Mat. Sci. Forum **1004** (2020) 1123–1128

SiC "out-of-the-box" performance biasing circuit 1. stage 2. stage V_{DD} M6 M3 M4 R_{BIAS} VOUT M1 M2 M5 M8 M7 V_{SS}

Devices & Reliability

4th International SiC Symposium 2020

High voltage integrated circuits beyond Silicon

- Combination of CMOS and power device technology: Smart Power ICs
 - RESURF LDMOS: Another concept inspired from silicon technology

Weisse et al., ECSCRM 2018

- Achieved by N-impl. RESURF region, Optimal RESURF-dose: 6*10¹²cm⁻²
 - Integration in 5/10V SiC CMOS process
 - **R**_{on} = $17m\Omega cm^2$ @ 1.3kV

High voltage integrated circuits beyond Silicon

Combination of CMOS and power device technology: Smart Power ICs **RESURF LDMOS:** Another concept inspired from silicon technology

🗾 Fraunhofer

IISB

High voltage integrated circuits beyond Silicon

Combination of CMOS and power device technology: Smart Power ICs
 RESURF LDMOS: Another concept inspired from silicon technology

- 1200V SiC LDMOS can outperform silicon
 - \rightarrow Charge balance is required (Al compensation and field spike)!

Integrated SiC Gate Drivers for Power Electronics

- Next-generation SiC Power Modules require low-inductive packaging
 - Implementation of gate driver into the module, e.g. Flip-chip assembly
 - Integration concept

Abbasi et al., iMAPS 2020

Integrated SiC Gate Drivers for Power Electronics

- Next-generation SiC Power Modules require low-inductive packaging
 - Implementation of gate driver into the module, e.g. Flip-chip assembly
 - Circuit components and fabricated die

Abbasi et al., iMAPS 2020

Integrated SiC Gate Drivers for Power Electronics

- Next-generation SiC Power Modules require low-inductive packaging
 - Implementation of gate driver into the module, e.g. Flip-chip assembly
 - Gate driver performance and test results

Time (us)

Parameters	Measured Results (25°C)	Measured Results (200°C)	Simulated Results (300°C)	Measured Results (300°C)
Peak Drive Current	2.26 A (sink)	*3.52 A (sink)	4.52 A (sink)	*3.96 A (sink)
	1.04 A (source)	*1.34 A (source)	1.79 A (source)	*1.43 A (source)
Output Voltage Swing	0.35V - 18.92V	0.31V - 18.91V	0V - 18.98V	0.45V - 18.92V
Propagation Delays	895 ns (Falling)	472 ns (Falling)	191 ns (Falling)	412 ns (Falling)
	972 ns (Rising)	497 ns (Rising)	271 ns (Rising)	451 ns (Rising)
Rise and Fall Times	485 ns (Falling)	294 ns (Falling)	21 ns (Falling)	234 ns (Falling)
	876 ns (Rising)	678 ns (Rising)	103 ns (Rising)	595 ns (Rising)

Devices & Reliability

4th International SiC Symposium 2020

Content

- Motivation
 - Latest Power Electronics Development
 - Exploiting benefits of SiC technology beyond Discrete Power Devices
- SiC CMOS technology: Circuits for Harsh Environments
 - PMOS device technology and performance
 - SPICE Modelling and design kits
- SiC CMOS circuits
 - Sensing and signal conditioning at high temperature
 - Lateral Power Devices and Process Modelling
 - Integrated SiC Gate Drivers for next-generation Power Electronics

Conclusion and Outlook: SiC Quantum Electronics beyond 4mK operation

- SiC Quantum Electronics beyond cryogenic operation
 - Silicon qbits demonstrated up to 1.1K (C.H. Yang et al., Nature 2020)

Henson et al., Nature

- Metal-oxide-silicon dots Nanotechnology 15, (2020) 13–17
 - Coupling of electron spins with 29Si spins and transfer of electrons to neighboring dots
 - Cryogenic temperatures, typ. < 4K</p>
- Tunneling field effect transistors
 - Stronger confinement due to spin-blockade effective offering electron confinement up to 0.3eV
 - Cryogenic temperature, 5–10K demonstrated

Ono et al., Scientific Reports volume 9 (2019) #469

- SiC Quantum Electronics beyond cryogenic operation
 - Silicon qbits demonstrated up to 1.1K (C.H. Yang et al., Nature 2020)
 - SiC color centers can be stable at room temperature
 - Reduced cooling effort
 - Suitable for mass products
 - Technology platform available
 - \rightarrow A new application for SiC?

	Si	GaAs	diamond	6H/4H-SiC	3C-SiC
Index	3.5	3.4	2.4	2.6	2.6
Band gap [eV]	1.12	1.42	5.5	3.05/3.23	2.36
Quantum emitter	-	Quantum dots	Color centers	Color centers	Color centers
Room T emission	-	No	Yes	Yes	Yes
Wafer- scale substrates	Yes	Yes	No	Yes	Yes
Sacrificial layer	SOI	AlGaAs	-	-	Si

Table 1 - Properties of substrates commonly used in photonics.

Radulaski, Vučković, Stanford Univ. 2020

Ivady et al., Nature Communications 10 (2019) # 5607

Fig. 2 Common SiC polytypes and structure of a stacking fault in 4H-SiC.

15 Å

- reference beam Silicon carbide quantum gates BS Logic building blocks for quantum electronics, e.g. FO \sqrt{NOT} (SRN) \Leftrightarrow Superposition (Reversible, pure-optical quantum gate) EOM₂ $\sqrt{SWAP} \Leftrightarrow$ Entanglement V_{SP} Dev and Mukhopadhyay, Pauli-X gate / Pauli-Y gate Electronic Letters 53 (2017) 1375–1377 Pauli-Z-gate ⇔ Phase shift gate \rightarrow Optical interference $|0\rangle_a |0\rangle_b$ ΔE_{ab} $|1\rangle_a |0\rangle_b$ Combination with ordinary logic circuits Pazy et al., Europhys. Lett. 62
 - 4H SiC Quantum CMOS technology?

(2003) 175-181

 \rightarrow Quantum Conversion (QADCs) circuits for interfacing

Conclusion

- Conclusion
 - SiC process technology enables CMOS circuits
 - Harsh environment applications (Room temperature can be harsh!)
 - New possibilities in power electronics
 - Technology development has just started
 - PDKs ensures MPW capability and accessibility
 - SiC CMOS technology enabling quantum electronic applications?
 - Templates for Quantum Dots
 - Logic gates and quantum computing
 - Matching application pull and technology push beyond Si CMOS
 Innovation

Acknowledgements

- **Contributors and Partners**
 - IISB: A. May , M. Kocher
 - University of Erlangen: M. Albrecht, C. Matthus, J. Weisse
 - University of Salerno: L. DiBenedetto
 - University of Arkansas: A. Abbasi, A. UrRashid, A. Mantooth

- Financial support: The work shown was in part supported by
 - The German Minstry of Science and Education (FMD)
 - The German Research Foundation (DFG, project ER755/1-1)

IISB

4th International SiC Symposium 2020

Devices & Reliability

Thank you for Your attention!

