

Quality Modeling based on Coupling Measures
in a Commercial Object-Oriented System

Authors:
Lionel C. Briand
Premkumar Devanbu
Walcélio L. Melo

IESE-Report No. 001.98/E
Version 1.0
January, 1998

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Copyright © Fraunhofer IESE 1998 v

Abstract

This paper proposes a comprehensive suite of measures to quantify the level of
class coupling during the design of object-oriented (OO) systems. This suite
takes into account different OO design mechanisms, such as usage, specializa-
tion, and aggregation, thus capturing different kinds of coupling in OO sys-
tems. Based on data about operational failures of a commercial software sys-
tem, our coupling measures are empirically investigated by analyzing their rela-
tionship with the probability of fault detection across classes. The results dem-
onstrate that some of these coupling measures, along with some of Chidamber
and Kemerer’s measures, may be useful early quality indicators of the design of
OO systems. In addition, principal component analysis shows that the underly-
ing theory on which are based our coupling measures is partially supported by
evidence. The results are then compared with a previous university study: we
found a significant level of consistency and stability in the results.

Keywords: coupling in object-oriented designs, C++ programming language, prediction
model of fault-prone classes.

Copyright © Fraunhofer IESE 1998 vi

Copyright © Fraunhofer IESE 1998 1

1 Introduction

Software design is defined as the process of designing system components, and
the interactions between those components, to solve a specific problem. Errors
in design are costly, more so than errors in coding. We should, therefore, elimi-
nate them early, before they propagate to other phases. One well-known qual-
ity heuristic is that good software design should obey the principle of low cou-
pling. Stevens, Myers and Constantine [27] define coupling as “the measure of
the strength of association established by a connection from one module to
another”. Strong coupling makes a software system more complex; highly in-
ter-related modules are harder to understand, change or correct [14]. Complex-
ity can be reduced by designing the systems with the weakest possible coupling
between modules. A software designer must, therefore, strive to minimize cou-
pling to reduce the risk of error propagation across modules.

However, the goal of minimizing coupling contradicts some aspects of OO de-
sign, particularly the use of inheritance: Inheritance couples a class to its de-
scendants and ancestors. Thus one might ask the following questions:

• Is inheritance coupling comparable to the standard notion of coupling?

• What is the impact of inheritance coupling on quality?

To settle these questions, we have investigated coupling in the design of OO
systems and quantitativelyevaluated the impact of coupling on software quality.

The goals of this work are:

1. to define a suite of measures that quantify the level of coupling between
classes in OO software systems. The suite will differentiate among different
linguistic and design mechanisms.

2. to empirically evaluate the capability of this suite to predict fault-prone
classes.

We have created a metrics suite designed to investigate the quality impact of
the different design mechanisms in C++. We have called this suite C-FOOD
(Coupling measures For Object-Oriented Design). Classes can be coupled in
many different ways (e.g., specialization, generalization, aggregation, usage,
and friendship [4]). The C-FOOD suite of measures distinguish these types of
coupling during the design phase. We can thus provide early feedback to the
software developers regarding, for example, where to focus design/code in-
spections or which design alternative is more appropriate.

Copyright © Fraunhofer IESE 1998 2

This paper is organized as follows. Section 2 presents related work. Section 3
first discusses different forms of interactions which can be statically captured
from an OO design. Then, a suite of coupling measures capturing different
forms of interactions is introduced. Section 4 addresses the empirical evaluation
of our OO design coupling measures. Via a standard and statistically-based clas-
sification technique, logistic regression, it is demonstrated that these measures
can be used to predict fault-prone classes at the early design phases. To do so,
we use process (e.g., detected faults) and product (i.e., OO design artifacts)
data from a medium-size industrial OO software system. Then, our suite of OO
design coupling measures is used in combination to Chidamber and Kemerer’s
(CK) suite thus showing that our suite of measures is, with respect to coupling,
complementary to what can be considered the de facto standard metric suite in
OO software development. Finally, Section 5 concludes the paper by presenting
lessons learned and future work.

2 Related Work

Despite the importance of evaluating and predicting the quality of software
products based on design properties such as coupling, there is little work in this
area. Most existing measures capture coupling between modules using source
code which is only available after implementation, e.g., [3]. Some research has
addressed this issue, e.g., [11], [22], and [5], which measure coupling using OO
design documents usually available before implementation. In [11], a coupling
measure named Coupling Between Object classes (CBO) is defined, and empiri-
cally validated in [2]. With the CBO measure, class A is coupled to class B if A
uses B's member functions and/or instance variables. CBO counts the number
of classes to which a given class is coupled.

Chidamber and Kemerer’s measures [11] do not distinguish between the differ-
ent types of interactions two C++ classes can have and do not take into ac-
count the extent of the dependency between classes. These issues have been
partially addressed by [5] where ratio scale coupling measures have been de-
fined. These measures are used to detect difficult to maintain and fault-prone
Ada packages [5]. Abstract Data Types (ADT) is used as a unit of analysis. They
define different types of interactions between pairs of Ada packages: import
coupling and export coupling, which capture, respectively, the impact of
changes performed in external packages on a given package and the impact on
external packages when changes are performed in a given package.

Copyright © Fraunhofer IESE 1998 3

Our suite of C++ coupling measures is based on the suite of cohesion and cou-
pling measures proposed in [5], e.g., the concepts of import and export cou-
pling. To handle OO language features, in [23] the coupling measures defined
in [5] have been extended to handle inheritance, usage and aggregation. How-
ever, they do adopt the coupling concepts and the underlying product abstrac-
tion representation proposed in [5].

In a previous study [9], we have further formalized the measurement frame-
work proposed in [5] and [23] and performed a first empirical evaluation of our
suite of measures by studying their relationship to the probability of fault de-
tection across C++ classes. To do so, we have used data from an empirical
study conducted at the University of Maryland with graduate and senior stu-
dents. This paper complements the work described in [9] in several ways. We
investigate a medium size industrial project fully designed and implemented in
an OO software development environment by a team composed of senior
software engineers. We analytically compare the results obtained from these
two studies and explain differences between the results. We also show how
well the C-FOOD suite complements already existing OO design measures: ac-
curate predictive software quality models combining [9] and the CK suite of
measures are constructed and validated. In [9], the use of friend classes was in-
vestigated and, consequently, 18 coupling measures were defined and investi-
gated, 6 of them being related to coupling with friend classes. Since the indus-
try system used here does not contain friend classes, these results cannot be in-
vestigated, compared with [9], or replicated.

3 A suite of coupling measures for object-oriented design

We define here fine-grained measures which capture different types of interac-
tions between classes. Based on them, we can provide more precise guidance
and feedback to software designers, e.g., which type of coupling may affect
error-proneness, maintenance costs, and reusability.

There are 3 different facets, or modalities, of coupling between classes in OO
systems developed with C++. We refer to them as locus, type, nd relationship.
Coupling between classes in C++ can be due to any combination of these fac-
ets. Using measures that can account for all different types of interactions, we
can evaluate the actual impact of each coupling dimension on the quality of the
resulting artifact.

Copyright © Fraunhofer IESE 1998 4

• Relationship refers to the type of relationship: inheritance or other (nei-
ther). Clearly, a class C is most closely coupled with all its descendants or an-
cestorsWe would like to measure the quality impact of coupling due to each
type of relationship.

• Locus refers to expected locus of impact; i.e., whether the impact of
change flows towards a Class (import) or away from a Class (export) . Thus
changes to an ancestor flows towards a class (import) and changes to a class
flows towards its descendants (export). Which direction is more important
for predicting the number of faults in a class? We would like the C-FOOD
measures to distinguish between them (see [5] for more details and justifica-
tions). With respect to the relationship dimension above, notice that a Class
C exports impact to its descendants, and imports impact from its ancestors.

• Type refers to the type of interactions between classes (or their elements):
It may be Class-Attribute interaction , Class-Method interaction, or Method-
Method interaction. In the following, when we discuss attributes and
methods of a class C, we only mean newly defined or overriding methods
and attributes of C, (not ones inherited from C’s ancestors in the inheritance
hierarchy).

Based on these are 3 different facets, or modalities, of coupling between
classes in OO systems developed with C++, we can have the following types of
interactions between classes.

1. Class Attribute (CA) interaction
From Figure 1, notice the CA interaction between classes A and B through
the attributes public_ab1 and public_ab2. Clearly, if class A is changed,
class B is impacted via the two public attributes of class B that depend on
class A (more precisely: its data type identified by the class name). By defini-
tion, there is no CA interaction between class B and class A directly, but only
between elements of class B and class A. According to Booch this type of in-
teraction is defined as "aggregation". Class B objects can aggregate Class A
objects.

2. Class-Method (CM) interaction
The signature of a method mi of class ci, can have a reference to another
class cj. Here, ci is coupled with cj via the method mi. In addition, the method
mi can be a function which returns an instance (or a pointer to an instance)
of cj. Consider the declarations of classes A and B presented in Figure 1;
there is an CM interaction between class A and mb1, a method of class B.
According to BOOCH this type of interaction is defined as "usage".

3. Method-Method (MM) interaction
Let us consider two methods, mi and mj, which belong, respectively, to
classes ci and cj. If a method mi calls a method mj, or if mj is passed as pa-

Copyright © Fraunhofer IESE 1998 5

rameter (function pointer) to mi, we say that there is a MM interaction be-
tween ci and cj through the methods mi and mj. For instance, consider the
declarations of classes A and B in Figure 1. There is a MM interaction be-
tween class A and class B through the method mb2 and ma1, since ma1 is
used as a parameter by the method mb2. This kind of interaction occurs
frequently in the design of graphical user interfaces [25], e.g., call-back pro-
cedures; such low-level design interactions also occur in the design patterns
literature (e.g., Bridge, Adapter, Observer etc). Indeed, the OMT-based nota-
tion (See pp 16-17, [18]) used for design patterns indicates these MM inter-
actions.

Which type of interaction more accurately indicates fault likelihood? We would
like the C-FOOD measures to distinguish these three kinds of coupling.

1 class B{
2 public:
3 A* public_ab1;
4 A public_ab2;
5 private:
6
7 void mb1(A &);
8 A mb2((void (A::*)());
9 …
10 };
11 void B::mb1(A& a1)
12 { A a2;
13 …
14 a2 = mb2(&A::ma1);
15 };

class A{
 public:
...
 };

Figure 1: Examples of interactions between two classes.

As can be seen above, we have three types of relationship, two loci, and three
types of interactions. Considering all combinations, we have 12 different possi-
ble types of coupling measures such as descendent attribute interaction export,
ancestor method interaction import, and so on. This certainly leads to a large
number of measures, and a corresponding increase in the difficulty of con-
structing tools, data gathering, and also in the analysis; however, since these
types of coupling are different, arise from distinct language features, and pre-
sumably cause varying "cognitive loads" on programmers, it is important to
evaluate them separately. Generally, we use the letters “CA” for Class-
Attribute interaction, “CM” for Class-Method interaction, and “MM” for
Method-Method interaction. Our goal is to define each of the 12 measures to
gauge the level of coupling along the appropriate dimensions; in general, when
the values of coupling are higher, we would expect more interactions. We are
now ready to state the hypotheses that we intend to test in this study:

• Hypothesis 1: The higher the export coupling of a class C, the greater the
impact of a change to C on other classes. If many classes depend on the de-

Copyright © Fraunhofer IESE 1998 6

sign of C, and thus there is greater likelihood of failures being traced back
to faults in C.

• Hypothesis 2: The higher the import coupling of a class C, the greater the
impact of a change in other classes on C itself. Thus if C depends on many
other classes, and the consequences are two-fold: (1) understanding C may
be more difficult and therefore more fault-prone, (2) coupled classes are
more likely to be misunderstood and therefore misused by C.

• Hypothesis 3: Identical to Hypothesis 1, but for (export) inheritance cou-
pling to descendants.

• Hypothesis 4: Identical to Hypothesis 2, but for (import) inheritance cou-
pling from ancestors.

The above 4 hypotheses are consistent with current beliefs about good OO de-
sign; there may be other hypotheses to be tested about coupling, of course. On
some issues, there appears to be no popular consensus; thus for example, there
seems to be no folklore on whether attribute coupling is better or worse than
method coupling. In any case, the measures defined above measure coupling
along several dimensions, including the import/export locus and the friend rela-
tionship, and we would expect to be able to shed light on the above hypothe-
ses. We can now introduce the formalism to define the 12 measures. First, we
present some definitions:

Definition: System

A system is defined as a collection of OO classes. Let us assume a function
called Classes which when applied to a system S, gives the distinct classes of S,
such that:

Classes(S) = { c1, c2, c3, …, cn} such that if ci = cj then i = j where i, j = 1, …, n.

In addition, the following functions need to be specified to enable the defini-
tion of our metrics:

Ancestors(c) is a function that returns the set of classes that are the ancestors
of c. Ancestors(c) refers to the base classes of c, and their base classes, and so
on (closure).

Descendants(c) is a function that returns the set of classes that are the de-
scendants of c.

Others(c) = System(S) - Descendants(c) - Ancestors(c) - {c}.

All the metrics presented in the sections below correspond to particular counts
of interactions and are of the generic form:

Copyright © Fraunhofer IESE 1998 7

Metric(ci)

= Interactions c ci j
c Relationship cj i

(,)
()∈

∑

where the two sources of variation across metrics: Interaction(ci, cj) and rela-
tionship(ci) in the formula above, corresponds to a particular type of interaction
in a certain direction and a particular type of relationship, respectively, between
ci and cj.

The acronyms for the metrics follow the rationale below:

• The first letter(s) represent the type of relationship considered (i.e, D for de-
scendant, A for ancestor, O for others).

• The 2 letters afterwards capture the type of interaction (i.e., CA, CM, MM).

• The last 2 letters says whether this is import (IC) or export coupling (EC).

3.1 Class coupling through Class-Attribute Interaction

3.1.1 Function: Actual CA interaction(ACA)

ACA(ci, cj) is defined as the number of Actual Class-Attribute interactions that
are present among the attribute declarations of class ci and the class cj. For ex-
ample, from Figure 1, the Actual Attribute Interaction between class A and B is
2.

However, it should be noted that ACA(B,A) = 0.

3.1.2 Measures for import coupling based on CA interactions

 Interactions(Ci, Cj) Relationship(Ci)

ACAIC: Ancestors CA Import Coupling ACA(Ci, Cj) Ancestors

OCAIC: Others CA Import Coupling ACA(Ci, Cj) Others

Copyright © Fraunhofer IESE 1998 8

3.1.3 Measures for export coupling based on CA interactions

 Interactions(Ci, Cj) Relationship(Ci)

DCAEC: Descendant CA Export Coupling ACA(Cj, Ci) Descendants

OCAEC: Others CA Export Coupling ACA(Cj, Ci) Others

3.2 Class coupling through Class-Method interaction

3.2.1 Definition: Actual CM interaction(ACM)

ACM(ci, cj) is defined as the number of Actual Class-Method interactions be-
tween the methods of the class cj and the class ci. For instance, from Figure 1,
ACM(A,B) = 2. However, ACM(B,A) = 0.

3.2.2 Measures for Import Coupling based on CM interaction

 Interactions(Ci, Cj) Relationship(Ci)

ACMIC: Ancestors CM Import Coupling ACM(Ci, Cj) Ancestors

OCMIC: Others CM Import Coupling ACM(Ci, Cj) Others

3.2.3 Measures for Export Coupling based on CM interactions

 Interactions(Ci, Cj) Relationship(Ci)

DCMEC: Descendant CM Export Cou-
pling

ACM(Cj, Ci) Descendants

OCMEC: Others CM Export Coupling ACM(Cj, Ci) Others

3.3 Class coupling through method-method interaction

3.4 Definition: Actual MM interaction (AMM)

AMM(ci, cj) is defined as the number of Actual Method-Method interactions
that are present among the methods of class cj and the methods of class cj.

For example, from Figure 1, AMM(A,B) = 1 whereas AMM(A,B) = 0.

Copyright © Fraunhofer IESE 1998 9

3.4.1 Measures for Import Coupling based on MM interactions

 Interactions(Ci, Cj) Relationship(Ci)

AMMIC: Ancestors MM Import Cou-
pling

AMM(Ci, Cj) Ancestors

OMMIC: Others MM Import Coupling AMM(Ci, Cj) Others

3.4.2 Measures for Export Coupling based on MM interactions

 Interactions(Ci, Cj) Relationship(Ci)

DMMEC: Descendant MM Export Coupling AMM(Cj, Ci) Descendants

OMMEC: Others MM Export Coupling AMM(Cj, Ci) Others

4 Empirical Validation of Coupling Measures

4.1 Data Set

The data were collected from an open multi-agent system development envi-
ronment, called LALO. This system has been developed and maintained since
1993 at CRIM (Centre de Recherche Informatique de Montreal); it includes 87
C++ classes with approximately 40K source lines of code (SLOC). Classes auto-
matically generated by software tools, e.g., OO lex/yacc, or those verbatim re-
used from libraries, are included in this amount. Therefore, in the analysis be-
low, these classes were not investigated since verbatim reused classes or classes
generated automatically are much less likely to contain faults than those im-
plemented or modified by software engineers [8]. In fact, the use of these
classes could have biased the results.

Mostly, LALO is developed in Windows NT using Visual C++ and then ported to
Sun OS and Solaris. We have investigated only the Sun OS version. Before being
delivered to its 50 world-wide users, LALO is tested using structural and func-
tional tests. During testing phases, tools are used to help the software engi-
neers detect errors from memory manipulation which are common on C and
C++ programs

Copyright © Fraunhofer IESE 1998 10

In order to validate our coupling measures, we use the following information:
(1) the source code of the C++ system, (2) design measurement of its classes,
(3) fault data. The fault data collected report concrete manifestations of errors
found by the 50 beta-testers of LALO, versions 1.0, delivered on October 1996.
The faults we have investigated have been detected from October 1996 to No-
vember 1997. After these errors have been fixed, Version 1.1 of LALO was de-
livered.

The actual data for the suite of measures we have proposed were collected di-
rectly from the source code of the version 1.1 of LALO. This version is the prod-
uct of changes performed to fix the errors found on version 1.0. To extract the
design coupling measures, we have used a tool set consisting of a source code
analyzer built with GEN++ [15] and some simple shell scripts. It is important to
note here that the metrics were derived purely by static analysis; thus, MM in-
teractions resulting via dynamic interactions due to run-time virtual function
bindings are not captured. Although our results were obtained by analyzing the
source code, the empirical relations that were used in our data gathering may
equally well be obtained from a standard design notation such as UML [28].

4.2 Validation Strategy

When validating a product measure, there are at least four questions to be con-
sidered [7]: (1) is the measure adequately capturing the attribute it purports to
measure (i.e., construct validity)? (2) is the attribute itself well-defined based on
an explicit empirical model (i.e., empirical relational system) (3) is there any em-
pirical evidence supporting the underlying hypotheses of the empirical model?
(4) Is the measure useful from a practical perspective? (1) and (2) have been al-
ready addressed in the previous sections, (3) is addressed by applying univariate
logistic regression analysis, and (4) is addressed by building multivariate logistic
regression models for prediction. Logistic regression analysis [20] was selected
here as a means to empirically validate the coupling measures we defined. Lo-
gistic regression has shown to have better properties than discriminant analysis,
e.g., no distributional assumptions [M95], and is a standard statistical classifica-
tion technique for which tools are broadly available.

4.2.1 Logistic Regression: a brief overview

To validate the OO design measures as quality indicators, we use a binary de-
pendent variable aimed at capturing the fault-proneness of classes: was a fault
detected in a class during testing phases? We used logistic regression, a stan-
dard technique based on maximum likelihood estimation, to analyze the rela-
tionships between measures and the fault-proneness of classes. Logistic regres-
sion has already been used in several instances to predict error-prone compo-
nents [2] [5].

Copyright © Fraunhofer IESE 1998 11

Other classification techniques such as classification trees [20], Optimized Set
Reduction [6], or neural networks [21] could have been used. However, our
goal here is not to compare multivariate analysis techniques (see [6] for a com-
parison) but, based on a suitable and standard technique, to validate empirically
a set of product measures. We first used univariate logistic regression, to evalu-
ate the relationship of each of the measures in isolation with fault probability.
We then performed multivariate logistic regression to evaluate the predictive
capability of those measures that had been assessed as sufficiently significant in
the univariate analysis.

A multivariate logistic regression model is based on the following relationship
equation (the univariate logistic regression model is a special case of this, where
only one variable appears):

π(X ,...,X)1 n

(C0 C1.X1 ... Cn.Xn)

(C0 C1.X1 ... Cn.Xn)=
+

+ + +

+ + +

e
e1

where p is the probability that a fault was found in a class during the validation
phase, Xi's are the design coupling measures included as explanatory variables
in the model (called covariates of the logistic regression equation), and the Ci's
are regression coefficients to be estimated. The curve between p and any single
X

i
—i.e., assuming that all other X

j
’s are constant takes a flexible S shape which

ranges between two extreme cases:

(1) when a variable is not significant, then the curve approximates a horizontal
line, i.e., p does not depend on X

i

(2) when a variable entirely differentiates error-prone software parts, then the
curve approximates a step function.

The coefficients C
i
's will be estimated through the maximization of a likelihood

function, built in the usual fashion, i.e., as the product of the probabilities of
the single observations, which are functions of the covariates (whose values are
known in the observations) and the coefficients (which are the unknowns). This
procedure assumes that all observations are statistically independent.

In our context, an observation is the (non) detection of a fault in a C++ class.
Each (non) detection of a fault is assumed to be an event independent from
other fault (non) detection. Each data vector in the data set describes an obser-
vation and has the following components: an event category (fault, no fault)
and a set of OO design measures characterizing either the class where the fault
was detected or a class where no fault was detected. For each measure, we
provide the following statistics:

Copyright © Fraunhofer IESE 1998 12

1. Coefficient: the estimated regression coefficient. The larger the coefficient in
absolute value, the stronger the impact (positive or negative, according to
the sign of the coefficient) of the explanatory variable on the probability π of
a fault to be detected in a class.

2. Dy which is based on the notion of odds ratio, and provides an evaluation of
the impact of the measure on the response variable. More specifically, the
odds ratio ψ(X) represents the ratio between the probability of having a fault
and the probability of not having a fault when the value of the measure is X.
As an example, if, for a given value X, ψ(X) is 2, then it is twice as likely that
the class does contain a fault than that it does not contain a fault. The value
of Dy is computed by means of the following formula:

∆ψ =
ψ(+)
ψ()
X 1

X

Therefore, ∆ψ represents the reduction/increase in the odds ratio when the
value X increases by 1 unit. ∆ψ provides an insight into the impact of ex-
planatory variables and is more interpretable than logistic regression coeffi-
cients. In this study, use ∆ψ's to assess quantitatively the impact of coupling
measures on π.

1. The statistical significance provides an insight into the accuracy of the coeffi-
cient estimates. It tells the reader about the probability of the coefficient be-
ing different from zero by chance. Historically, a significance threshold of α
= 0.05 (i.e., 5% probability) has often been used to determine whether an
explanatory variable was a significant predictor. However, the choice of a
particular level of significance is a subjective decision and other levels such as
α = 0.01 or 0.1 are common. Also, the larger the level of significance, the
larger the standard deviation of the estimated coefficients, and the less be-
lievable the calculated impact of the explanatory variables. The significance
test is based on a likelihood ratio test [20] commonly used in the framework
of logistic regression.

The goodness of fit of a multivariate classification model based on logistic re-
gression can be evaluated in several ways. First, the correctness and complete-
ness of classification based on the model can be computed. Correctness is de-
fined here as the percentage of classes predicted as faulty that are actually
faulty. Completeness is computed as either the percentage of faulty classes that
are identified as such or the percentage of faults they contain, depending on
whether or not we want the completeness figure to take into account the
number of faults in each class identified as faulty. In an application context
where classes classified as faulty would undertake (additional) inspections, the
latter measure makes more sense and we will use it in the remainder of the pa-
per. Completeness and correctness figures have the advantage to be intuitive

Copyright © Fraunhofer IESE 1998 13

and practical to compute the benefits of using a given classification model.
However, completeness and correctness have to be used together to allow
meaningful comparisons. This is not always practical and may lead to ambigu-
ous comparison results.

Another way to assess the goodness of fit of a model is to use the R2 statistic
for logistic regression—not to be confused with the least-square regression R2
[10]—they are built upon very different formulae, even though they both range
between 0 and 1 and are similar from an intuitive perspective. The higher R2,
the higher the effect of the model’s explanatory variables, the more accurate
the model. However, as opposed to the R2 of least-square regression, high R2s
are rare for logistic regression. For this reason, the reader should not interpret

logistic regression R2s using the usual heuristics for least-square regression R2s.
(The interested reader may refer to [24] for a detailed discussion of this issue.)
Logistic regression R2 is defined by the following ratio:

R2 =
LL - LL

LL
 S

S

where:

• LL is the log likelihood obtained by Maximum Likelihood Estimation of the
model for computing π above

• LLS is the log likelihood obtained by Maximum Likelihood Estimation of a
model without any variables, i.e., with only C0. By carrying out all the calcu-
lations, it can be shown that LLS is given by

LLS = m0 ln (
m

m + m
 0

0 1

) + m1 ln (
m

m + m
 1

0 1

)

where m0 (resp., m1) represents the number of observations for which there
are no faults (resp., there is a fault). Looking at the above formula, LLS/(m0 +
m1) may be interpreted as the uncertainty associated with the distribution of
the dependent variable Y, according to Information Theory concepts. It is the
uncertainty left when the variable-less model is used. Likewise, LL/(m0 + m1)
may be interpreted as the uncertainty left when the model with the covariates
is used. As a consequence, (LLS - LL)/(m0 + m1) may be interpreted as the part
of uncertainty that is explained by the model. Therefore, the ratio (LLS - LL)/LLS
may be interpreted as the proportion of uncertainty explained by the model.

Another way to assess the performance of a classifier is to use the Kappa statis-
tic defined by Cohen [13]. The kappa statistic is a degree of agreement be-

Copyright © Fraunhofer IESE 1998 14

tween 0 and 1 for nominal scales, 1 being a perfect agreement between pre-
dicted and actual classifications. It assumes that, in a contingency table whose
columns and rows capture identical response categories coming from two dif-
ferent sources (i.e., predicted and actual class category: faulty, not faulty), most
of the counts will be on the diagonal if the responses, i.e., predicted and actual
categories, tend to agree. A Kappa values of 0 indicates that the predictions are
not more diagonal than expected from chance alone. Negative values can only
occur if agreement is weaker than expected by chance, but this is rare. Kappa
has the advantage to have a more intuitive definition than R2 while being also
amenable to statistical testing, i.e., checking whether the association between
predicted and actual classifications may be due to chance.

In the remainder of the paper, we will use the three types of indicators pre-
sented above to measure and compare the goodness of fit of the various multi-
variate classification models we have developed.

4.2.2 Principal Components Analysis

Principal components analysis (PCA) is a statistical techniques that can be used
to analyse a set of explanatory variables to try to identify components Compo-
nents are groups of variables can be usefully thought of as capturing some
common factor or trait; they represent an underlying process or principle that
creates correlations among the members of the group. The PC analysis itera-
tively searches for such correlated groups of variables which also show inde-
pendence from other groups. One reason to use principal component analysis
(PCA) [16] is to reduce the dimensionality of the sample space in which the
data analysis is taking place, i.e., the number of explanatory variables to take
into account. When one deals with a large number of explanatory variables, it is
usually interesting to determine whether these variables capture common un-
derlying factors or dimensions. In addition, it provides a more solid ground to
interpret the measures and identify the factors they are really capturing.

PCA attempts to identify orthogonal dimensions which are the result of differ-
ent linear combinations of the explanatory variables and which explain the vari-
ance of the data set in the sample space. It is hoped that the main dimensions
capture most of the variance in the data set and can be used instead of the ex-
planatory variables. This would allow us to deal with a smaller set of explana-
tory variables which are moreover all orthogonal, thus facilitating the contruc-
tion of multivariate regression models [16].

4.3 Analysis Results for the LALO system

This analysis investigates the coupling measures presented above but also the
CK suite of measures. It is composed of the following steps. First, we look at
the distributions of the measures in the LALO dataset. This is necessary to help

Copyright © Fraunhofer IESE 1998 15

interpret any subsequent result in the analysis. Then, as suggested in [25], we
perform a principal component analysis (PCA) to determine the actual underly-
ing dimensions of the dataset. Indeed, despite differences in their definitions,
many measures may capture similar underlying dimensions. A small number of
dimensions may be used instead of the measures as potential explanatory vari-
ables, thus simplifying the subsequent analysis. PCA is also useful to help inter-
preting subsequent results and tells us whether our theories regarding the di-
mensions captured by the the CK suite and our coupling measures seem to be
supported by evidence. Using logistic regression, we then analyze the relation-
ships between fault-proneness and the principal components resulting from
PCA and the measures themselves, respectively. Multivariate analysis is then
performed in order to build a classification model based on principal compo-
nents and the measures, respectively. Results are then compared to determine
the impact of PCA on classification results and comparisons with a previous
academic study (performed at the University of Maryland, referred to as UMD)
are then performed to assess the stability and external validity of the results.

4.3.1 Descriptive Statistics

Looking at the measurement distributions will allow us to make more informed
comparisons with the UMD study. Very often, differences in results across data
sets are the results of varying distributions. We present in Tables 1 and 2 all the
descriptive statistics regarding the LALO and UMD data sets, respectively.

DCAEC and DCMEC show little variance in the LALO system and are therefore
not likely to show any relationship with fault-proneness. Other industrial data-
sets would be necessary to study their effect on fault-proneness. Many differ-
ences may be noticed between the distributions in the LALO data set and the
UMD data set. OCMEC, OCMIC, OCAEC, OMMIC, and AMMIC show much
larger variance, mean, and median in the LALO dataset. Since the LALO system
is larger than the UMD systems, we expect overall higher class import, export,
and inheritance coupling. On the other end, DIT shows a smaller variance,
mean, and median in the LALO dataset, i.e., the depth of inheritance is in aver-
age not as large in the LALO system. Since the LALO programmers were trained
professionals, it may be assumed they used inheritance more properly than the
students who developed the UMD system. This might also explain why friend
classes were not used in the LALO system.

4.3.2 Principal Component Analysis

Overview of results

On the LALO data set, when using our coupling measures and the CK suite,
PCA yields 4 principal components whose Eigenvalue is above one, a usual cri-
terion in PCA to select principal components (PCs) [16]. The Eigenvalue is the

Copyright © Fraunhofer IESE 1998 16

variance of the standardized explanatory variables explained by the PC, multi-
plied by the number of variables and divided by one hundred. The four selected
principal components (PC) represent four orthogonal dimensions in the sample
space formed by all the measures. Table 3 shows, for these four principal com-
ponents, what are the weightings of each explanatory variable (design meas-
ure) in the linear expression forming each PC. In addition, it shows the Eigen-
value of each PC, the percentage of variance of the standardized variables that
is explained by the PC, and the cum ulative variance explained from left to
right. In fact, although this is out of the scope of this paper, the principal com-
ponents shown in Table 3 are rotated [16] in order to make the weightings
more interpretable. The basic principle is that principal components are rotated
in the sample space to minimize or maximize the weights corresponding to
each explanatory variable. Rotated PCs capture the same information as non-
rotated ones and are sometimes referred to as factors. The larger the absolute
weight associated with a design measure, the larger the impact of this measure
on the principal component.

Interpretation of results

The first (rotated) principal component (PC1) seems to capture import coupling
since OCAIC, OCMIC, OMMIC, and RFC are the measures providing most of
the weight for PC1. Although it also takes into account the public methods of
the class to be measured, RFC can be expected to strongly influence PC1 since
it mainly captures import coupling through external method invocations. Since
the weights are negative, PC1 is actually inversely related to import coupling
(This is just a result of the PC rotation mentioned above). PC1 actually explains
40% of the variance in the sample space. Based on a similar analysis of
weights, PC2 and PC3 seem to capture export coupling and inheritance import
coupling, respectively. The interpretation of PC4 is unclear. The main weights
are from LCOM and, to a lesser extent, WMC and DMMEC. This dimension
might capture (lack of) cohesion, which is itself somewhat related to the size of
the class (WMC) and the number of method invocations from descendant
classes (DMMEC).

From a general perspective, PCA confirms the existence of at least three dimen-
sions in the measurement of design quality: import coupling, export coupling,
and inheritance import coupling. This supports in part the basic theory on
which is based the definition of our coupling measures since the locus and rela-
tionship facets appear to capture different visible dimensions of coupling in the
LALO dataset. From a practical perspective, this suggests that coupling should
be measured independently along the three dimensions above and that meas-
ures aggregating them are not likely to be optimal. On the contrary, the type
facet of coupling does not seem to capture different dimensions since CA, CM,
and MM interactions are systematically merged into common principal compo-
nents.

Copyright © Fraunhofer IESE 1998 17

However, it is important to note that PCA systematically generates low weights
for low variance variables. Therefore, although there may be additional impor-
tant coupling dimensions, we might not be able to see them in the LALO data-
set.

4.3.3 Univariate Analysis

In this section, using logistic regression, we provide the results regarding the
analysis of the individual relationship of each principal component, but also
each measure, with fault-proneness.

Using Factors (rotated principal components)

Table 4 shows that the four factors identified during PCA are significant uni-
variate predictors of fault-proneness. This basically means that all four dimen-
sions capture underlying attributes that are relevant predictors of fault-
proneness. In other words, all kinds of coupling (i.e., import, export, inheri-
tance) are indicators of fault-proneness. Based on the regression coefficients
and their standard error, it seems that Factor 2, i.e., export coupling, shows a
particularly strong effect. We did not show the factors’ ∆ψs here since they are
not really interpretable for factors, which are based on standardized variables
and do not have a measurement unit. Univariate analysis was performed by
looking carefully at the impact of extreme observations or outliers. These may
have a strong impact on the resulting estimated coefficients and it is therefore
important to check whether an observed significant relationship is not only due
to one or a few outliers, a result which would cast doubt on the validity of the
observed relationship. Consequently, the results in Table 4 are not always based
on the whole set of observations. In some cases, one observation was removed
when it was deemed overly influential on the univariate analysis results.

Using Design Measures Directly

Table 5 shows all the design measures that appear statistically significant (α =
0.05) during univariate analysis. Many of the measures that do not appear sig-
nificant do not show much variability in the LALO dataset. No trend can there-
fore be detected regarding these measures when using this dataset. In particu-
lar, no friend classes were used in the LALO system so that all the metrics de-
fined in [9] for coupling between friend classes are not relevant here.

The results indicate that increased import coupling (OCAIC, OCMIC, ACMIC,
AMMIC, OCMIC, OMMIC, RFC), export coupling (OCMEC, OCAEC, OMMEC,
DMMEC, CBO), lack of cohesion (LCOM), and class size (WMC) increases the
likelihood of a defect detection in a class. Inheritance coupling through
method-method interactions, whether it is import (AMMIC, ACMIC) or export
(DMMEC), also appears to have an impact on fault-proneness. This would sug-

Copyright © Fraunhofer IESE 1998 18

gest that inheritance coupling with ancestors and descendants, like regular
coupling, is fault-prone. Again, its impact seems significantly stronger than for
regular coupling. This can be explained in part by the fact that measures like
ACMIC can indicate misuses of inheritance. When inheritance is used as a
means to specialize classes, then we do not expect methods in descendent
classes to frequently access objects of ancestor classes. Otherwise, this might be
an indication of inheritance whose purpose is only internal reuse, not specializa-
tion (also referred to as implementation inheritance).

Based on an analysis of the ∆ψs, aggregation-based coupling with/from unre-
lated classes and inheritance coupling seem to have a strong relationship with
fault-proneness whereas other forms of coupling, such as method invocation
and parameter passing, show weaker effects. These results show that Hypothe-
ses 1-4 are supported by the results, although not all forms of coupling are
equivalent with regard to their impact on fault-proneness. LCOM, although
significant, has a weak effect on fault-proneness. This might also be due to the
flaws identified and discussed in [8,12, 19].

4.3.4 Multivariate Analysis

This section focuses on the construction of multivariate models for the purpose
of classification. Both factor and raw design measures will be used and the re-
sults compared. Factors or measures will be selected according to a typical
backward regression process (as recommended in [20]) using a α value of 0.05
as a selection threshold.

Using principal components

All factors contribute to the goodness of fit of the multivariate model that pre-
dicts fault-proneness. All p-values are below α = 0.05, but the intercept is, as
expected, not significantly different from 0, i.e., if all coupling, cohesion, and
size measures are equal to 0, then the probability to detect a fault is 0. This
means that import, export, inheritance, and cohesion/size (the last factor is un-
clear) are all contributing factors to fault-proneness.The obtained R2 and Kappa
values are 0.40 and 0.472, respectively. From Table 6, we can compute that
this classification model yields a completeness of 70% (of faults in classes iden-
tified as faulty) and a correctness of 73% (of actual faulty classes classified as
such) when using a π = 0.4 threshold for classification. Other thresholds could
have been selected, depending on how completeness and correctness are
weighted for a given application. In our case, the one yielding the most bal-
anced completeness and correctness results is used.

Using Metrics Directly

Copyright © Fraunhofer IESE 1998 19

The best model is a seven measures model (WMC, CBO, LCOM, OCAEC,
ACMIC, AMMIC, DMMEC in Table 7), yields a R2 of 0.60 and a kappa value of
0.595. Again and for the same reasons, the intercept is not significantly differ-
ent from 0. We can conclude that, in terms of goodness of fit and based on the
resuls of the previous section, PCA does not seem to help since the model
based on PCs only yielded a R2 of 0.40. Moreover, PCA leads to a more expen-
sive data collection since a lot of more measures need to be collected to com-
pute the factors and use the PCA-based model. It is interesting to note that the
measures selected in the measures-based model cover PC2, PC3 and PC4, three
of the 4 principal components that capture most of the dataset variance. In Ta-
bles 4 and 6, we can see that PC1 shows the largest p-values (0.035 and
0.061), that is the weakest significance, and it is therefore consistent with the
fact that no variable from PC1 was selected in this multivariate model.

Table 8 shows the actual count of (non) faulty classes versus their respective
classifications when using the two models presented in Section 4.3.4. The
counts between parentheses show the number of faults detected in the faulty
classes within each cell. The design measures-based model yields a complete-
ness of 79% and a correctness of 75%, for a threshold π = 0.4. Again, the re-
sults seem to indicate that the design measures-based model is significantly
better. This is further confirmed when using the Kappa statistic [13] to measure
the degree of agreement (between 0 and 1) between actual classification and
the model classification. The PCA-based and design measures-based models
yields, respectively, a Kappa value of 0.472 and 0.6. Both levels of agreement
show a p-value = 0.0000. Therefore, despite the fact that PCA helped us iden-
tify the actual factors captured by the measures and thus facilitated the inter-
pretation of the results, it leads to a poorer and less practical classification
model.

4.3.5 Comparison with the UMD Study

The CK suite and the coupling measures presented above have already been
validated by the authors on a dataset resulting from a student experiment (the
UMD dataset). Further details can be found in [8,9]. We compare below the re-
sults we obtain with the LALO system with the results we obtained in these two
previous validation studies. Since these two datasets come from very different
environments, such a comparison should give us some insight into the external
validity and robustness of the LALO results regarding the impact of design
measures on fault-proneness.

We consider the univariate analysis results and compare the size effect (∆ψ) of
the various coupling measures across the two datasets. Table 9 shows the ∆ψs
for the UMD and LALO datasets, respectively. This allows us to compare the
size effects of each design measure across datasets. Significant differences

Copyright © Fraunhofer IESE 1998 20

across the two columns are investigated and tentative explanations are pro-
vided.

There are two main types of differences: (1) Some measures appear significant
in one dataset only, (2) They are significant and have an effect in the same di-
rection in the two datasets, but show significantly different impacts on fault-
proneness (say a difference >20% in ∆ψ). Both (1) and (2) can be at least in
part explained in terms of differences between distributions across the datasets.

In category (1), we find DIT, LCOM, OCAEC, AMMIC, and DMMEC. All of these
can be easily explained by large differences in means, median, and standard
deviations (larger in UMD for DIT and larger in LALO for the other measures).
LALO being a larger system, all these differences but the one regarding DIT are
to be expected. The fact that the inheritance structure is shallow in the LALO
system is consistent with other studies showing that inheritance is not exten-
sively used in many commercial OO systems [11]. When a variable shows little
variation in a data set, then there is little chance any relationship will be visible
or appear to have a strong impact.

In category (2), we find ACMIC since it shows a much smaller mean, median,
and standard deviation in the UMD dataset, we can easily explain the large dif-
ference in impact (39% in ∆ψ).

When no strong differences in distribution are present, all the coupling meas-
ures presented in this paper have a consistent relationship with fault-proneness
across the UMD and LALO studies. This shows, despite small differences, a re-
markable stability of results across two datasets despite different data collec-
tion settings, i.e., students vs. professional programmers, academic experiment
versus commercial system. The differences in system types are still visible in the
descriptive statistics of the design measures. LALO is a much larger system and
shows larger scale coupling, as expected. We did notice, however, that (per-
haps because of more professionalism and rigor) the use of friend classes have
been avoided and inheritance seems to be used with more caution.

5 Conclusions

This paper has proposed a comprehensive suite of design coupling measures
that capture what we believe to be distinct dimensions of coupling. The analysis
of an industrial C++ system has shown that these design coupling measures
are, when they show variability in the dataset, good indicators of fault-

Copyright © Fraunhofer IESE 1998 21

proneness, i.e., the likelihood of fault detection in a class. In addition, the
analysis shows that the underlying theory on which is based our suite of cou-
pling measures is in part supported by the results since principal component
analysis shows that the underlying, orthogonal dimensions of the dataset
match in part our distinct coupling dimensions. A particularly interesting point
is that certain types of coupling in the inheritance hierarchies seem to be
strongly fault-prone. They may capture (may be necessary) “misuses” of inheri-
tance, e.g., implementation inheritance [27].

When, based on our coupling measures and Chidamber & Kermerer’s (CK) suite
of measures, multivariate logistic regression analysis is used to build an optimal
classifier, then good results are obtained in terms of correctness (75%) and
completeness (79%), that is the percentage of faulty classes correctly classified
and the percentage of faults in the classes classified as faulty. From these two
figures, the cost/benefit of using a classifier can be estimated in a given envi-
ronment based on the average costs of defect detection, unecessary inspections
and testing, and undetected defects. In this case, 29 classes out of 85 have
been classified as faulty and might undertake additional inspections. These in-
spections are useless for 7 of these 28 classes since they do not contain any
fault. However, 79% of all faults may be detected by inspecting 28 classes, that
is 33% of all the system’s classes. From these results, we may also conclude
that the suite of coupling measures proposed in this paper is complementary to
the Chidamber and Kemerer’s suite since both types of measures appear as
significant covariates in multivariate classification models.

When comparing the results obtained based on the industrial system studied in
this paper and previous results obtained by the authors on student projects,
many similarities are visible with respect to the impact of design measures on
fault-proneness. The differences between the studies results can mostly be ex-
plained by the differences in dataset distributions, themselves being the conse-
quence of the different nature of the compared systems, i.g., small student sys-
tems versus a significantly larger commercial system. This provides us with addi-
tional confidence regarding the use of the coupling measures presented above,
as well as some of the CK measures, as design quality indicators. The results
show remarkable consistency in light of the very different origins of the two
datasets.

As in [5], principal component analysis did not show to be useful to improve
the prediction capability of the classification models. On the other hand, princi-
pal components helped interpreting the results and assess the validity of the
coupling theory presented in this paper. However, on datasets where the num-
ber of variables is larger when compared with the dataset size, PCA may still in-
crease the chances to develop a better multivariate model when using a step-
wise regression procedure, thus leading to better classification results.

Copyright © Fraunhofer IESE 1998 22

Overall, the results in this paper show that useful quality models can be devel-
oped based on locally collected design measures and defect data. Although
there is still room for improvement and such models are likely not to be port-
able across environments, they should, in the environment where they are de-
veloped, help focus inspections and testing on fault-prone parts, help control
the decay of system structure during maintenance, and help assess the quality
of object-oriented designs.

Our plans for the future include the refinement of the C-FOOD suite, the inves-
tigation of other measurement concepts such as cohesion, and the replication
of our study on additional industrial object-oriented software systems.

Acknowledgments. We are grateful to Jürgen Wüst, from the Fraunhofer
IESE, who built tools to gather the data. During this work W. Melo was, in part,
supported by NSERC operation grant #OGP 0197275 and the Bell Canada
Software Quality Group; his work was performed in the context of the MODL
unit at CRIM. This work would not be possible without the help of the CRIM
SBC Unit, especially H. Marchal and C. Saldanha.

Copyright © Fraunhofer IESE 1998 23

6 References

[1] V. Basili, L. Briand et W. Melo, “How reuse influences productivity in
object-oriented systems”, Communications of ACM, 39(10):104-116,
October 1996.

[2] V. Basili; L. Briand; W. Melo, “A validation of object-oriented design
metrics as quality indicators.”, IEEE Trans. Software Eng., 22(10):751-761,
1996.

[3] J. M. Bieman and L. M. Ott, “Measuring Functional Cohesion”.
Computer Science Dept., Colorado State Univ., June 1993, Fort Collins,
CO, USA. TR#: CS-93-109.

[4] G. Booch. "OO Analysis and design with applications". 2nd edition,
Benjamin Cunnings, 1994.

[5] L. Briand; S. Morasca; V. Basili; “Defining and validating high-level design
metrics”. UMD-CSD, College Park, MD, USA, TR#: CS-TR-3301, 1994.

[6] L. Briand, V. Basili and C. Hetmanski, “Developing Interpretable Models
with Optimized Set Reduction for Identifying High Risk Software
Components,” IEEE Trans. Software Eng., SE-19 (11):1028-1044, 1993.

[7] L. Briand, K. El Emam, S. Morasca, “Theoretical and Empirical Validation
of Software Product Measures.” ISERN technical report 95-03, 1995.

[8] L. Briand, S. Morasca, and V. Basili, “Property Based Software
Engineering Measurement.” IEEE Trans. on Software Eng., 22(1): 68-86,
Jan. 1996.

[9] L. Briand, P. Devanbu, W. Melo, “An Investigation into Coupling
Measures for C++”. Proc. of the 19th Int’l Conf. on S/W Eng., Boston,
USA, 1997.

[10] J. Capon, “Elementary Statistics for the Social Sciences”, Wadworth
Publishing Company, 1988.

[11] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object-oriented
design.”, IEEE Trans. Software Eng., 20(6):476–493, 1994.

[12] N. I. Churcher and M. J. Shepperd, “Comments on ‘A Metrics Suite for
Object-Oriented Design’”, IEEE Trans. Software Eng., 21(3):263–265,
1995.

[13] J. Cohen “A Coefficient of Agreement for Nominal Scales”, Educational
and Psychological Measurement, Vol. XX, No 1, 1960.

Copyright © Fraunhofer IESE 1998 24

[14] L. Constantine, E. Yourdon, "Structured Design," Prentice Hall, 1979

[15] P. Devanbu, “A language and front-end independent source code
analyzer”, Proc. of the 12th Int’l Conf. on S/W Eng., Melbourne,
Australia, 1992.

[16] G. Dunteman, “Principal Component Analysis”, SAGE publications, 1989.

[17] W. Everitt, “Cluster Analysis.”, Edward Arnold, 1993.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”. Addison Wesley.
October 1994.

[19] M. Hitz and B. Montazeri, “Chidamber and Kemerers’s metrics suite: a
measurement theory perspective.”, IEEE Trans. Software Eng., 22(4):267-
271, April, 1996.

[20] D. Hosmer and S. Lemeshow, “Applied Logistic Regression.” Wiley-
Interscience. 1989.

[21] T.M. Khohgoftaar, A.S. Panday, and H.B. More, “A Neural Network
Approach for Predicting Software Development Faults”,Proc. of the 3rd
Int’l IEEE Symp. on S/W Reliability Engineering, NC. 1992

[22] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability.”, JSS. 23(2):111–122, 1993.

[23] W. Melo and A. Rajput, “Definition and Validation of metrics for
Coupling in OO Design Metrics” , 1996, Unpublished manuscript.

[24] S. Menard. “Applied Logistic Regression Analysis”, SAGE publications,
1995.

[25] J. Munson and K. Khoshgoftaar, “The Detection of Fault-Prone
Programs,” IEEE Trans. Software Eng., SE-18 (5):423-433, 1992.

[26] R. Selby and A. Porter, “Learning from Examples: Generation and
Evaluation of Decision Trees for Software Resource Analysis.”, IEEE Trans.
Software Eng., 14(2): 1743-1747, 1988.

[27] W. Stevens, G. Myers, L. Constantine, "Structured Design", IBM Systems
Journal, Vol.13, 1974, 115-139

[28] Unified Modeling Language Resources,
http://www.rational/com/uml

[29] D. A. Young, "Object-Oriented Programming with C++ and OSF/Motif",
Prentice-Hall, 1992.

Minimum Maximum Median Mean Std Dev

Copyright © Fraunhofer IESE 1998 25

WMC 0.00 126.00 12.00 15.89655 17.41760
DIT 0.00 3.00 1.00 0.79310 0.85096

NOC 0.00 8.00 0.00 0.57831 1.34455
CBO 1.00 40.00 9.00 12.93103 9.26207
RFC 0.00 229.00 24.00 34.39080 35.17576

LCOM 0.00 2214.0 0.0 60.5513 343.4843
OCAIC 0.00 12.00 1.00 1.68966 2.02491
OCAEC 0.00 34.00 1.00 1.68966 4.07577
DCAEC 0.00 2.00 0.00 0.02299 0.21442
OCMIC 0.00 217.00 11.00 17.87356 32.58720
ACMIC 0.00 9.00 0.00 0.87356 1.83509
OCMEC 0.00 233.00 6.00 17.22989 35.25776
DCMEC 0.00 49.00 0.00 0.87356 5.42133
OMMIC 0.00 505.00 10.00 32.11494 76.65453
AMMIC 0.00 350.00 1.00 6.17241 37.52246
OMMEC 0.00 382.00 12.00 31.33333 64.21687
DMMEC 0.00 73.00 0.00 2.14943 8.77699

Table 1: Descriptive Statisitcs for the LALO System

 Minimum Maximum Median Mean Std Dev

WMC 1 99 9.5 13.4 14.9
DIT 0 9 0 1.32 1.99

NOC 0 13 0 0.23 1.54
CBO 0 30 5 6.8 7.56
RFC 0 105 19.5 33.91 33.37

LCOM 0 426 0 9.7 63.77
OCAIC 0 10 0 0.97 1.55
ACAIC 0 3 0 0.07 0.35
OCAEC 0 33 0 0.99 3.34
DCAIC 0 3 0 0.02 0.28
OCMIC 0 50 3 4.9 6.42
ACMIC 0 2 0 0.09 0.41
OCMEC 0 84 1 4.61 10.62
DCMIC 0 0 0 0 0
OMMIC 0 112 4 9.14 14.31
AMMIC 0 11 0 0.72 1.85
OMMEC 0 59 4 8.12 11.1
DMMEC 0 26 0 0.27 2.45

Table 2: Descriptive Statistics for the UMD systems

Copyright © Fraunhofer IESE 1998 26

 PC1 PC2 PC3 PC4

EigenValue 5.206 3.227 1.528 1.103

Percent 40.048 24.822 11.751 8.488

CumPercent 40.048 64.870 76.621 85.109

WMC -0.536 0.159 0.364 0.586

CBO -0.553 0.644 0.289 0.181

RFC -0.873 0.043 0.241 0.342

LCOM -0.115 0.056 -0.027 0.923

OCAIC -0.745 0.073 -0.094 0.379

OCAEC 0.015 0.846 0.230 -0.016

OCMIC -0.983 0.014 0.041 0.093

ACMIC 0.019 0.252 0.917 0.022

OCMEC 0.055 0.961 0.206 0.027

OMMIC -0.954 -0.008 -0.017 0.051

AMMIC -0.114 0.121 0.910 -0.100

OMMEC -0.075 0.885 -0.040 0.030

DMMEC -0.437 -0.056 -0.190 0.680

Table 3: Rotated Principal Components for the LALO dataset

 Est. Coeff. Std. Error p-value

PC 1 - 0.44 0.24 0.0354

PC 2 1.797 0.559 0.0000

PC 3 0.739 0.232 0.0000

PC 4 0.809 0.37 0.0035

Table 4: Univariate Logistic Regression Analysis with Factors

Copyright © Fraunhofer IESE 1998 27

 Est. Coeff. Std. Error p-value ∆ψ (%)

WMC 0.1273 0.0315 0.0000 14%

CBO 0.2128 0.0389 0.0000 23%

RFC 0.0338 0.0096 0.0000 3%

LCOM 0.0361 0.0188 0.0010 4%

OCAIC 0.2992 0.1133 0.0025 35%

OCAEC 0.6945 0.1839 0.0000 100%

OCMIC 0.0423 0.0184 0.0009 4%

ACMIC 0.6469 0.1634 0.0000 91%

OCMEC 0.0620 0.0187 0.0000 6%

OMMIC 0.0112 0.0053 0.0033 1%

AMMIC 0.2327 0.0759 0.0000 26%

OMMEC 0.0327 0.0085 0.0000 3%

DMMEC 0.1348 0.0749 0.0033 14%

Table 5: Significant Univariate Logistic Regression Results with the Design Measures

Term Estimate Std Error p-value

Intercept -0.0455 0.3211 0.8873

PC 1 0.4959 0.2650 0.0613

PC 2 -2.0943 0.8132 0.0100

PC 3 -1.3858 0.4391 0.0016

PC 4 -0.8374 0.4032 0.0378

Table 6: Multivariate Logistic Regression Model with Factors

Term Estimate Std Error p-value

Intercept 1.144 1.024 0.264

WMC - 0.378 0.142 0.008

CBO 0.264 0.097 0,006

LCOM 0,149 0,067 0,0272

OAEC 0,983 0,468 0,036

ACMIC 2,020 0,558 0,0003

AMMIC -0,416 0,213 0,051

DMMEC 0.588 0.241 0.014

Table 7: Multivariate Logistic Regression Model with Design Measures

Copyright © Fraunhofer IESE 1998 28

 Factors Based Model Measures Based Model

Classification Non-Faulty Faulty Non-Faulty Faulty

Actually Non-Faulty 50 6 49 7

Actually Faulty 13(17 faults) 16(40 faults) 8(12 faults) 21(45 faults)

Table 8: Classification results for factors- and design measures-based models

 ∆ψ UMD ∆ψ LALO

WMC 2% 14%

CBO 15% 23%

RFC 9% 3%

DIT 62% NS

LCOM NS 4%

OCAIC 38% 35%

OCAEC NS 100%

OCMIC 10% 4%

ACMIC 52% 91%

OCMEC 12% 6%

OMMIC 12% 1%

AMMIC NS 26%

OMMEC 6% 3%

DMMEC NS 14%

Table 9: Size Effects Comparisons between Studies

Document Information

Copyright 1998, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Quality Modeling based on
Coupling Measures in a
Commercial Object-
Oriented System

Date: January, 1998
Report: IESE-001.98/E
Status: Final
Distribution: Public

also published as
ISERN-98-01

