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Abstract—Curtailments due to grid congestions (often
called EinsMan or Eisman) are of high (economical) interest
especially for direct marketers but also for grid operators and
providers of wind power forecasts. To establish a curtailment
forecast these stakeholders can benefit from, a method is
presented to analyse the importance of several commonly
available parameters / features and the interaction between
them. The analyses shown are carried out for a wind park
located in Schleswig-Holstein, the state with most of the
curtailments in Northern Germany and generally concentrated
on. Reasons to define the forecast as a binary classification
problem are given and the usage of Matthews Correlation
Coefficient (MCC) is proposed as the cost function for machine
learning algorithms to select the best performing model and
be able to compare the forecasts of parks with a different
curtailment rate. With a model based on an extreme learning
machine (ELM) with logistic regression the performance of
a day-ahead forecast of the probability for an occurring
curtailment is demonstrated (MCC: 0.73).

Keywords: curtailments, EinsMan, wind power, forecasts,
machine learning, grid congestion, feature importance, SHAP
values

I. INTRODUCTION

Wind power has seen a steady growth of capacity in
Germany within the last 20 years. By the end of 2018 the
installed wind power capacity in Germany reached about
59 GW producing 111.5TWh of electricity corresponding
to a share of 20% within the German power mix [1].
However, the penetration of such high shares into the
existing power grid is challenging due to its weather
dependent production usually not correlating with the local
demand in the system. While the generation from wind (but
also from PV) increased quickly the grid reinforcement and
expansion could not keep pace. As a result, the amount
of grid congestions within the transmission grid, which
could not be solved by re-dispatching conventional power
stations, increased as well. Consequently, a frequently used
option to ensure grid security by grid operators is to curtail
the wind/PV power production in regions with high wind
power and less consumption — also called Ei(n)sMan.

In 2018 about 5.4TWh (2017: 5.5TWh) of wind power
have been curtailed in Germany, resulting in 635 million
EUR of financial compensation being paid in the end by
the consumers [2], [3]. These numbers by itself indicate a
high interest to reduce these costs. In the north of Germany
the biggest factor limiting the possible power generation
are curtailments due to grid congestions [4]. The problem
is not limited to Germany though, Ireland e.g. experiences
similar problems [5].

Prior knowledge of situations with high curtailment risks

can be a helping tool in several decision making processes
of different stakeholders.

This paper provides an insight into this field of research
and shows results of curtailment forecasts for wind parks
in the region of Schleswig-Holstein (Northern Germany)
based on machine learning algorithms such as extreme
learning machines (ELM) and random forests. The models
are using numerical weather prediction (NWP) inputs in
combination with, among others demand forecasts. We
focus on a day-ahead forecast (DAF) and the interaction of
variables from NWP to gain insight into the basic principle
of a curtailment forecast, omitting the actual available
power measurements. As target time series, we use the
SCADA signal. In case the information is not available
from the SCADA system we use the curtailments published
by SH-Netz.

In [4] a method was shown to detect curtailments in
power measurement data with a short delay and different
approaches to improve short-term forecasts (STF) with this
information. Although we focus on DAF our method can
be used for STF as well.

To the best of our knowledge, so far there has not been
any publications on (wind) curtailment forecasts, yet.

II. BENEFITS AND PROFITEURS OF CURTAILMENT
FORECASTS

Periods prone to a high risk of curtailments, correlate
(mostly, but not alone) with high feed-in from renewable
energy sources (RES) and bare the risk of the highest
possible forecast errors — forecasting nominal power output
while the plant’s generation in reality is reduced to zero.
Even if it is possible to update a short-term forecast with
the incoming power measurements the duration of the
curtailment itself stays unclear.

With the information of future curtailments providers of
wind/pv power or vertical power flow forecasts can proac-
tively integrate this information into their processes to deliver
more precise forecasts of both actual and available power [4].
But these forecasts alone are not necessarily the best solution
for all customers of forecasts. While working with actual
power forecasts taking into account EinsMan actions, these
forecasts include a prediction of the TSOs/DSOs actions he
is (at least partly) obtaining from the forecast itself; i.e. the
forecast most certainly does not indicate a problem with
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Fig. 1. Share of curtailment level per turbine in SH-Netz region in 2018

a high feed-in the TSO/DSO is supposed to take counter-
actions on, because they are already included.

But also in the case of direct marketers a good forecast
of available power together with a separately delivered
EinsMan-forecast is preferred, as it enables choices based
on a more diverse view of the information.

(For now) it is the plant owners who receive the payments
for financial losses due to curtailments — as long as the day-
ahead prices were not negative for at least six consecutive
hours, while the direct marketers themselves have to
counter-trade the differences to their priorly traded power at
the market. Hence, they have an urge for this information
in order to optimize their portfolio and bidding strategies [6].

For the plant operators or their service providers early
knowledge of curtailment periods can indicate preferred
times for maintenance tasks independent from higher wind
speeds.

Furthermore, curtailment forecasts could provide
necessary information for a good working demand-side
management, hence increasing the share of renewable
energies while reducing the amount of curtailed power.
Two examples would be optimizing storage options, as
proper unit commitment and dispatch plans of classical
storage systems as well as batteries and P2X-processes
kind of require and rely on curtailment forecasts, or
providing consumers with easily accessible information
(and incentives) to reduce the pressure on the grid by
shifting or reducing their consumption.

All of these stakeholders would profit from a (probabilis-
tic?) curtailment forecast, for either a single power plant, a
portfolio, or different aggregation levels like grid nodes.

III. METHODOLOGY

To show the feasibility of a meaningful curtailment fore-
cast, relevant input data has to be identified after the target is
defined, and a verification process determined. Furthermore,
the applicability of different forecasting methods with the
given input data has to be proven on a test setup.

A. Target Data

The initial target time-series are the curtailment level the
park/plant is reduced to, i.e. a value of 0’ corresponds to
the TSO/DSO curtailing the plant to zero power output, a
value of 0.6 means the plant is not allowed to feed-in more
than 0.6 times its nominal power.

As mentioned in [4] there are three main ways to obtain
a curtailment time series — from SCADA data, with an
detection algorithm from the power data and from the public
data of the corresponding DSO. The time-series from the
DSO though, is given per single plant/turbine, whereas the
time-series of the selected turbine might be not sufficient to
represent the curtailment behavior of a whole park.

If possible, the curtailment time-series — wherever it
stems from — should be checked for plausibility against the
measurements, especially if the plant-ID (EEG-ID) is not
known.

Analyzing the data from wind turbines curtailed at least
once in the region of one DSO (SH-Netz) in the North
of Germany reveals the (un-)importance of certain level.
Even though technically possible, only a few level are
actually used. The analysis gives the level distribution of all
curtailed quarter hours (15,343,545) of all wind turbines still
operational of the aforementioned DSO for the year 2018
and their frequency of occurrence:

0: 13,690,154  0.3: 973,622  0.6: 679,769

This means that in 89.2 % of all curtailed quarter hours the
turbines feed-in was set to zero.

Inspecting the data more detailed on the turbine level
reveals several findings. Figure 1 shows the distribution of
curtailment level per turbine sorted by the total share of
curtailments over the year 2018. The 1200 most curtailed
turbines’ output was almost solely curtailed to zero.
Although the curtailment rate reaches up to nearly 40 % the
1000 mostly affected turbines have an average curtailment
rate of 28.4%. On the other hand more than half of the
turbines (ca. 2700) have curtailment rates below 5 % with



a higher mixture of level. As turbines with high shares of
level 0.3 and 0.6 are clustered both in their similar total
curtailment rate as well as in their level distribution they
are most likely parks positioned geographically close to
each other and probably connected to the same transformer
station.

It has to be mentioned that the analysis can include
turbines installed within the year 2018, therefore not
operational throughout whole 2018. In this context those
turbines would be showing both a distorted curtailment rate
as well as a wrong distribution of level. The total amount
of these special cases is assumed to be negligible, though.

The case is completely different for the offshore wind
parks (OWP). Instead of three reduction level (0, 0.3 and
0.6 of nominal power) OWP are down-regulated in much
finer steps of 0.01, which makes sense regarding their high
installed capacity and the resulting change in output. This
results in 1000 possible level of which indeed nearly 760
were used for the Tennet OWP in the first eight months of
2019 already [7].

With this information it is decided to concentrate on
onshore first, neglect the different level and define the target
input as a binary: ’true/1’ for a curtailment and ’false/0’ for
no reduction. Especially from a machine learning point of
view this is crucial as with the data being aggregated to
parks and an uneven distribution of level over the parks but
especially over the year, the absolute amount of data-points
for each level per park in the training set shrinks, making it
difficult to get sufficient training data. In case the forecast is
for one of the turbines/parks with a high share of different
level this decision could be reassessed.

This creates a binary-classification problem which is
usually easier to handle than a multi-class one. Depending
on the forecast model used the output is given as the
probability for a curtailment event to happen — providing
more information than a binary output would.

B. Input Data / Features

As wind turbines are hit with curtailments by a huge mar-
gin (72 % on-, 25.1 % offshore wind vs 2.2 % pv of down-
regulated GWh in 2018 [3]) the conclusion of possible wind
power production being the decisive factor for curtailments
is easily to be drawn but still has to be proven first. The
high share of curtailments could also simply be due to a
high share of installed capacity.

Nevertheless, it makes sense that other factors are playing
a role for a precise curtailment forecast, as well. With the
same possible wind power generation e.g. the load can
be the difference between a curtailment enforced and an
operation without any intervention necessary. The first case
results in an amount of energy being generated exceeding
the demand (including transmission line capacities to other
regions) whereas in a higher load scenario the system might
stay balanced.

Besides the meteorological ones (most importantly wind-
speed) there are more parameters, that at least potentially

can play a role in a congestion case and can therefore be of
interest as input features from a machine learning point of
view. These are among others: load forecasts, day-ahead and
intra-day prices (as forecasts), day-of-week or time-of-day.

But the data is not always easy to obtain and the avail-
ability of features are depending on the customer, the use
case and the time the forecast is needed; e.g. if the forecast
is due as DAF shortly before 12:00 day-ahead prices are not
yet available and only forecasts can be used for them (which
will already account for possible curtailments), while for the
clearing of the intra-day market at 15:00 those numbers are
available.

Hence, here the importance of commonly available input
data for the prediction model is analyzed beforehand to
concentrate further research on those with a big decisive
impact and get a rough estimate of the lost potential of a
potentially unavailable feature.

C. Feature Importance

The suspect of wind speed being one if not the biggest
drivers of curtailments in the examined region additional to
the aforementioned evidences can be supported with Fig. 2.

66 ws_100m_0
8000

6000

4000

# of occurences

2000

0 5 10 15
wind speed [m/s]

Fig. 2. Distribution of curtailed (orange) and not curtailed (green) wind
speed at 100 m height for March 2017 till March 2019

It shows the distribution of wind speeds for one wind park
with a quarterly hour resolution. All plots in this section
use data from the same park. The orange area marks those
quarter hours the park was curtailed at the corresponding
wind speeds. It is apparent that from around 14m/s on
more than 90 % of the times are curtailed. The share of
curtailments per wind speed bin increases the most from
ca. 10 to 13m/s. This wind speed region falls in the area
of wind turbines reaching their nominal power (maximum
power generation). With the wind further increasing it is
more probable larger regions experience wind speeds high
enough to reach nominal power — and therefore chances
of grid congestion rise a lot as well. This correlation is
probably the explanation/reason that one DSO gave out
some kind of ’static’ forecast, which only gives a wind
speed value for certain transformers. With the exceedance
of this value at a turbine connected to the corresponding
transformer, a curtailment is supposed to be very likely [8].

Of course, this kind of plot can be made and analysed
for each available feature to highlight some correlation



(but not necessarily a causation!) between their value and
the probability of curtailment at the same time, but this
'method” completely neglects interactions between the
features.

An alternative approach is to make use of cooperative
game theory methods to ’explain a prediction as a game
played by the feature values’ [9]. This method can also be
used to explain individual predictions of machine learning
models while also including the interactions between the
features by working with Shapley values [10]. Shapley
values can be interpreted as:

’Given the current set of feature values, the contri-
bution of a feature value to the difference between
the actual prediction and the mean prediction is
the estimated Shapley value.’” [9]

Here, SHAP (SHapley Additive exPlanations) values and
SHAP interaction values are used which are based on the
classic Shapley values [11], [12] but are computationally less
expensive — especially for trees and ensembles of trees — and
are easily obtained from the data via the SHAP package in
python. This concept was e.g. shown in [13] to explain the
risk factors in real time predictions being made during a
surgery on the risk of hypoxaemia.

In this case though the method is applied for a XGBoost
model (gradient-boosted decision tree) with the data for
one park at a time and a period of two years to analyse
the importance of the features and the interactions between
them, which gives their significance in the model. The
method is applied to several parks to get an indication if
there are substantial differences between the parks or if the
results can be generally used for all parks in the region. It
was decided to not split the data into training, validation
and test but to give the model all the data available, as
the goal is not to establish a good forecast model but to
give advice in the decision-making process of evaluating
the importance of certain features in general. Consequently
over-fitting is not to be seen as a problem. Not splitting the
data prevents seasonal differences in feature importance to
distort the overall results. These differences are supposed
to be learned by the forecasting method after the features
were selected.

Figure 3 shows the positive or negative impact of each
features time step colored after the normed value of the
feature itself. Its importance as mean of the absolute SHAP
values corresponding to the average impact on model output
magnitude are displayed as gray bars for one specific park
over the whole time period. Meteorological parameters
used in this example are: wind speed (ws) in different
heights and triangularly decomposed wind direction (wd),
temperature () and dew point (d) at two meters height,
pressure at the surface (p_sfc), global horizontal irradiance
(Ggh) as well as solarAzimuth and solarHeight. In case
of ws* and ggh* the last number indicates a time shift,
’1” for normal, ’0’ or 2’ for minus or plus one hour
shift respectively. Non-meteorological features are: a
sinus-cosinus-wise decomposition of hour-of-day-time (hod
1&2) and day-of-week-time (dow [&2), a load forecast for
Germany (demand_DAF) and night_time, a logical value
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0.0 0.5 1.0 1.5 2.0 2.5

High
'ws_100m_1' - -’-
'ws_10m_0" N
'ws_100m_0' 4——
'ws_100m_2" ..'__
t2m_ -
'Ggh_0' +_
'p_sfc_* —-—+—
'wd_100m 2" o
‘wd_100m_1' -—’-
'ws_10m_1* R v
‘demand_DAF' +-—-— g
‘d_2m_" _{}_ %
‘Ggh_2' == &
'dow_time_2' 4}—
'solarAzimuth_' -——ﬂ— -
'dow_time_1' —-.—-
'ws_10m_2' + -—
'hod_time_2' 4
hod_time_1' -+
'solarHeight ' -'-
'Ggh_1' {—
‘'night_time_' {
?

T T T Low
-6 -4 -2
SHAP value (impact on model output)

Fig. 3. Importance of features (gray bars, top x-axis) and SHAP values per
feature colored after the normed value of the feature itself (bottom x-axis)

representing the times defined as ’night’ by German law
(important for noise-emission-reductions).

It is to be seen, that the wind speeds are clearly the
important features, with the wind speed close to hub height
and without any time shift being the most important one.
Low values for this feature have a big negative impact on
the model — corresponding probabilities for a curtailment
are very low, while high wind speeds increase the chances,
as expected. The case is similar for Ggh whereas a negative
time shift of one hour reveals higher importance. Again,
high values result in positive SHAP values, but the impact
of low Ggh-values is very small. This comes from the
values not having a lot of influence when being constant "0’
during the night — other parameters must be the deciding
factors for or against a curtailment. During the day (in
combination with hod, solarAzimut or solarHeight) though,
low irradiance values explain small PV-generation and less
pressure on the grid. Keep in mind, that the results differ
between analysed time periods.

But even though wind speed is the most important
parameter, the model relies on more input but wind speed
to decide in the transitional region between ’curtailment’ or
’no curtailment’ being the most probable as can be seen in
Figure 5. The figure shows the SHAP values of all features
for all time steps (covering 2 years), sorted ascending by
the normed wind speed input data without time shift. The
output value (probability of curtailment; watch the y-axis’
scale) is indicated as the line between all the blue and red
areas. Areas marked in red correspond to values pushing
the output value from the class average of ca. 23 % upwards
while those marked in blue reduce the probability. While
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Fig. 5. SHAP values sorted by wind speed value in 100 m height; border
between red and blue areas define the probability of a curtailment; watch
the y-axis’ scale

the output value is similarly low for wind speeds between
0-0.23 and relatively high for wind speeds above 0.5 the
transitional phase between 0.3 and 0.45 can be seen. Here,
the importance of the wind speed is reduced while other
parameters are the deciding factors. The conclusion is that
as an rough estimate the wind speed seems sufficient to
forecast most of the curtailments correctly, while more
parameters are necessary to obtain especially the start and
end times of a curtailment more precisely and increase
certainty in the more uncertain cases.

It is also possible to plot the data over time, either for
a single feature or for all features at once. This enables
to detect temporal dependencies, e.g. the importance of
a certain feature over the seasons or for specific events.
Figure 4 shows the contributions of all features to the final
output value (probability of a curtailment) over a time
period of around 20 days.

Additionally the SHAP interaction values allow to go a
little further into details. As an example Figure 6 shows the
interaction between the shifted wind speed at 100 m and first
un-shifted wind direction component. It illustrates, that the
interaction between the two features is low, for low wind

speeds — the blue dots gather around zero. Nevertheless some
kind of linear behavior from slightly negative to positive
interaction values the higher the wind direction component.
This changes for high wind speeds: the absolute interaction
values are higher and a fitted line would have a negative
slope. It would be nice, if the interaction can be directly
explained roughly by a line with a fixed point at 0.5 of
wind direction and zero interaction, with the slope linearly
depending from the wind speed, but the slope. But the slope
increases for wind speed values of up to 0.35 then switches
signs.

These kind of plots are created for all pairwise combina-
tions of features to find more information on the dependen-
cies between them.
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Fig. 6. Interaction values between wind speed and wind direction at 100 m

D. Cost Function / Verification Method

With the target defined as above a binary classification
problem has to be solved. Depending on the wind park the
classification problem can be quite strongly miss-balanced,
more than half of the turbines ever effected in 2018 are
curtailed less than 4 % of the year (see Fig. 1). At the same
time nearly 20 % experience curtailment rates of more than
20% and up to 38 %. In case the usage of cross-validation
is desired one has to keep the time (especially seasonal)
dependency in mind, which can result in a strong miss-
balance between the classes, even down to no occurrences
of curtailments in some folds.
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As described in Section II different ways to take advantage
of curtailment forecasts exist. But already this forecast itself
— as it is the case for all forecasts — is depending on the
chosen error measure / score.

Depending on the customer and his use-case it is more
important to get warned for as many events as possible
(high true positive rate, tpr) while false alarms (false
positive rate, fpr) do not play such a big role while for
others false positives rates are the ones to be avoided with
all force (low fpr). The weighting between those values
can already be taken into account during the training to
some extend and has to be discussed with the customer
beforehand.

Accuracy and F1-Score are error measures often used in
classification problems, with miss-balanced classes though,
the classifier will just tend to be biased towards the class
with most samples. Similar problems arise with precision or
recall, other frequently used error measures, because they
can not easily be used as a solitary score [14].

To ensure a score being able to handle miss-balanced
classes and hence enabling the comparability of varying time
periods and parks with different curtailment rates, Matthews
correlation coefficient M CC' is used [15], [16].

tp-tn— fp- fn

MCC =
V(tp+ fp) - (tp+ fn) - (tn+ fp) - (tn+ fn)

Just like the other previously named scores it works with
values of the confusion matrix, namely true positive (tp),
true negative (tn), as well as false positive (fp) and false
negative (fp) values, respectively. But unlike the others it
is indifferent to classes of different sizes. The value ranges
from -1 to 1 with one being a perfect forecast.

During the training a threshold of 0.5 is used to convert the
forecasted probability into a binary. Depending on the use
case the threshold can be set differently in order to modify
the entries’ weighting of the confusion matrix.

IV. RESULTS

In Fig. 7 a day-ahead curtailment forecast for one park for
a time period of several curtailments is demonstrated. The
model (ELM) is trained with the feature data listed in Fig.3
of only one year (including a test and validation periods).
The curtailment rate for the training and validation period
is 22 % which places the park just in the upper quarter
of most curtailed turbines (Fig. 1). The measurements
are displayed in black and the curtailments are visualized
with the highlighted gray areas. The blue line shows the
probability of a curtailment itself. Though not perfect,
overall the forecasted probabilities correlate quite well
with the actual curtailed times. The high power output
(corresponding to high wind speeds) combined with a
curtailment probability of max. 20 % around the 16th of
February shows that curtailments can not be predicted by
the power output of a turbine/park or the corresponding
wind speed alone. Another interesting detail is the (seldom)
reduction to 0.3 of nominal power on the 14th while at the
same time the probability starts to decrease immediately
before, which is even more interesting as the turbines can
not produce up to that level at all times.

Curtailed | not-curtailed
curt.-pred. 1586 (tp) 102 (fp)
no curt. pred. | 542 (fn) | 2401 (tn)

With in total 4613 values from the confusion matrix
the MCC value of the forecast for the test period of mid
February to mid March 2019 results in: 0.73. One has to
keep in mind though, that the binary evaluation values are
obtained with a threshold of 0.5 but they can be tuned in
desired direction, either towards more correctly predicted
curtailments while increasing the amount of fp or in the
direction of less fp with the trade-off of fewer correctly
forecasted curtailments.



V. DISCUSSION / OUTLOOK

So far it is reasonable to define a curtailment forecast as
a binary class problem but for offshore parks and maybe in
the future also onshore more level than 0/0.3/0.6/(1) are set
by the grid operator and change with a higher frequency.
The problem gets more complicated: it is multi-class target
and very few samples per level are likely to be found in the
relevant input data set.

It can be difficult to assure enough curtailed training
samples for parks with very low curtailment rates, especially
considering the unbalanced distribution over a year and
possible splits of the training data. Yet the focus is first on
the parks with high rates as curtailment forecasts should
have the highest value for them. Therefore a park with a
curtailment rate of 22 % — just in the upper quarter of most
curtailed turbines — was picked. Nevertheless, it is important
to test the method also with parks being less curtailed or
located in different regions.

Besides the load forecast all the features are based on
the forecast of local conditions (excluding the time based
variables dow, hod or night_time). One of the next steps
is to analyse the benefit of information not directly con-
nected to the parks location. These are e.g. meteorological
conditions for other wind parks, especially offshore wind
parks (the conditions differ, but they can still contribute to
the grids’ congestion) and add spatio-temporal information.
Also the interconnector capacities to other countries (DK and
after the completion of NordLink NO) and their renewable
energy generation can be helpful. But not only transmission
capacities to other countries are of interest and subject
to changes, with reinforced transmission lines inside of
Germany these characteristics are going to alter and it will
be the challenge to adapt the forecast models accordingly.
Also in those cases knowledge of grid regions can provide
further information on the characteristics of curtailments.

At the same time the aspect of adding locally restricted
demand forecasts is assumed to get more important in the
future, due to the regions different capacities of demand
side management (industry, storage systems, PtX, etc.).

Additional to the challenges based on the input features or
the changes in the grid infrastructure another development
will add complexity to the topic. As of fall 2021 an amend-
ment of the curtailment regulation is supposed to enter into
force [17]. From then on renewable energy will be part of
the re-dispatch process in case of grid congestion (loses part
of its feed-in priority during the re-dispatch process). This
marked based solution is supposed to reduce the amount of
curtailed power and reduce the costs for society until the grid
is sufficiently reinforced to cope with (most of) the available
power, but the power will not be feed-in anyway.

Instead of calling it a curtailment forecast small tweaks
should do to transform/adjust the curtailment forecast to a
congestion forecast, which would still be important, less so
for the grid operators but for the direct marketers even more
so. Most of the factors will stay the same — the grid would
be congested nevertheless, if all the power available would
be fed-in. But the price levels at which power generation
creates a loss for the direct marketer and a down-regulation

is triggered is going to change (probably rise).

While the results seem to have a quite static behavior we
assume curtailment forecasts to get more complex with the
aforementioned changes.

VI. CONCLUSION

Curtailments due to grid congestions are a topic of high
interest especially for direct marketers, forecast providers
and grid operators. To establish a curtailment forecast,
these stakeholders can benefit from, a method is presented
to analyse the importance of several commonly available
parameters / features and the interaction between them for
a wind park in the examined region of SH-Netz. The usage
of Matthews Correlation Coefficient (M C'C') is proposed as
a cost function for machine learning algorithms to select the
best performing model and be able to compare the forecasts
of parks with a different curtailment rate. With a model
based on an extreme learning machine (ELM) with logistic
regression a working day-ahead forecast for the probability
of an occurring curtailment is shown. A short-term forecast
should deliver even better results.
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