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Abstract. Based on a robustness concept adapted from mathe-
matical statistics, we investigate robust optimal investment strate-
gies for worst-case crash scenarios when the maximum crash height
is not known a priori. We specify an efficiency criterion in terms of
the certainty equivalents of optimal terminal wealth and explicitly
solve the investor’s portfolio problem for crra risk preferences.
We also study the behavior of the minimax crash height and the
efficiency of the associated strategies in the limiting case of infin-
itely many crashes.
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1. Introduction

Worst-Case Optimality in Portfolio Selection. Continuous-time port-
folio optimization is concerned with finding a trading strategy that
maximizes expected utility from terminal wealth and/or consumption
of an investor in a continuous-time financial market. The pioneering
work in this area was done by Merton (1969, 1971) using methods
from stochastic control theory, and recent years have seen significant
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2 ROBUST WORST-CASE OPTIMAL INVESTMENT

progress in the field; we refer the reader to, e.g., the monographs Pham
(2009) and Rogers (2013) for overviews of the subject.

In this paper, we focus on an important aspect that is neglected in the
pure Merton-type setting: the presence of so-called crash scenarios as
first introduced by Hua and Wilmott (1997). Their approach has been
adapted for use in continuous-time portfolio optimization in Korn and
Wilmott (2002). In addition, the traditional expected utility specifica-
tion is replaced by a worst-case criterion similar to minimax criteria in
game theory. More precisely, it is assumed that the total number and
the maximum sizes of crashes are known in advance. In this setting,
the investor maximizes expected utility from terminal wealth, assuming
that the market will choose the worst possible crash times and worst
sizes. Korn and Wilmott (2002) show existence and uniqueness of an
optimal strategy for logarithmic utility. This strategy is characterized
by the requirement that the investor is indifferent between the worst
crash happening immediately and no crash happening at all. General-
izations of these results have been given in Korn and Menkens (2005)
(more general utility functions), Korn and Steffensen (2007) (general
dynamic programming approach), and Seifried (2010) (martingale ap-
proach based on controller-vs-stopper games).

As the maximum size of possible crashes is a crucial parameter that
needs to be specified a priori in the worst-case portfolio optimization
approach, this paper focuses on a robust approach that helps to deal
with the uncertainty on the maximum crash height.

Robustness in Optimization, Statistics and Finance. The word robust
from Latin “robur, -is” originally means “of hard timber”, i.e., some-
thing that does not break easily. Mathematically, robustness is a sta-
bility notion and more specifically qualifies procedures as able to cope
with a certain level of uncertainty in input data without producing
uncontrollable output. Depending on the actual specification of input,
output, and uncertainty, this concept has found many different areas
of application within mathematics. A common theme in many of these
approaches is a passage to worst-case or minimax solutions, and in this
sense the worst-case approach outlined above is already inspired by the
notion of robustness.

Robustness is particularly important in the context of optimization,
or more specifically mathematical programming; see, e.g., the survey
article Beyer and Sendhoff (2007) for a comprehensive account of this
research. This paper is concerned with optimality in a robust context as
well, albeit less in a mathematical programming framework, but rather
in a stochastic control and finance setting. In addition, we focus on a
particular criterion function by adopting the efficiency based approach
to assess the uncertainty from a robust statistics context.
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In mathematical statistics, many methods that are known to be optimal
under ideal model conditions suffer from instabilities when confronted
with situations where data may contain outliers. To address these
issues, robust statistics has introduced distributional neighborhoods
about an ideal model and developed concepts to quantify the sensitivity
of procedures with respect to outliers; in addition, procedures that
seek an optimal compromise between stability and efficiency have been
provided.

In finance these ideas have been applied to capture uncertainty and
robustness of risk functionals in, among others, Cont (2006), Föllmer,
Schied, and Weber (2009), Cont, Deguest, and Scandolo (2010), Zähle
(2013) and Krätschmer, Schied, and Zähle (2012). In this line of re-
search, the desirable coherence property of risk functionals plays a cru-
cial role. Coherence, however, requires a certain dominance condition
of prior probability measures (compare eq. (4.4) in Föllmer, Schied, and
Weber (2009)) in contrast to the usual outlier neighborhoods from ro-
bust statistics, and, similarly, in the context of robust utilities (compare
eq. (4) in Schied (2005)). To be precise, their set Q of priors, which
corresponds to the neighborhoods of robust statistics, is required to
consist of measures dominated by a given reference probability and is
used to obtain worst-case behavior as an infimum taken over Q. By
contrast, in worst-case robust portfolio optimization no such domi-
nance condition is imposed. Finally, although both the crra utility
used in the worst-case portfolio approach and standard quadratic loss
used in robust statistics are unbounded, modified weak topologies as in
Krätschmer, Schied, and Zähle (2012) and Zähle (2013) are not needed
in the efficiency based robust approach. In addition, both robust statis-
tics and worst-case portfolio selection rely on a concept of “nearness”:
in the former by quantifying the radii of neighborhoods, in the latter
by specifying upper bounds for the number of crashes and the maximal
crash size.

Robust Optimality and the RMX Approach. The common use of a near-
ness concept shows that in several respects the notion of optimal-
ity in robust statistics (see, e.g., Section 2.4 in Hampel, Ronchetti,
Rousseeuw, and Stahel (1986) and Chapter 5 in Rieder (1994)) is
in close analogy to worst-case portfolio optimization: The classical
solutions—the maximum likelihood procedure (MLE) in statistics and
the Merton portfolio problem in finance—are overly risky under non-
idealized conditions such as crashes in portfolio optimization and out-
liers in statistics. In both cases, a robust approach makes it possible
to tackle this instability.

Clearly, in either approach it is necessary to quantify the “distance”
from the ideal situation, i.e., the maximal crash size and number of
crashes or the radius of the relevant neighborhood, respectively. This
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distance can be regarded as a nuisance parameter, and a classical
Bayesian approach would impose a prior distribution on this parame-
ter. This, however, would presume prior knowledge. In the cases at
hand, it is not clear how to specify an uninformative prior. In addition,
this modeling approach would imply that, with sufficiently many obser-
vations, the relevant distance could eventually be estimated from data
with arbitrary precision, which is not the case. Thus, in contrast to
the probabilistic Bayesian model, in our approach we suppose that the
parameters are subject to Knightian uncertainty in the sense of Knight
(1921) and consequently do not impose any distributional assumptions.

In statistics, Rieder, Kohl, and Ruckdeschel (2008) have successfully
addressed such issues using an additional layer of robustness that pro-
vides a rationale for selecting this distance when it is not known: The
basic idea is to measure relative performance of a procedure which
does not know the radius against the “oracle strategy” that does know
the true radius. This approach leads to the notion of asymptotic rela-
tive efficiency (ARE) in statistics: For each candidate procedure, one
determines its individual least favorable situation among all possible
admissible radii, and then selects the procedure that attains the best
worst-case behavior. This is defined as the rmx procedure (for radius
minimax ) RMXE. Denoting by S(r) the optimal procedure for radius
r and the neighborhood of radius r by nbd(r), this amounts to consid-
ering the efficiency quotient

(1.1) q(r′, r) = maxMSE(S(r′), nbd(r))
/
maxMSE(S(r), nbd(r))

and allows us to define the rmx procedure S(r∗) where r∗ is chosen
such that

inf
r
q(r∗, r) = sup

r′
inf
r
q(r′, r).

In fact, retrospectively, this approach could be seen as a local Savage
Minimax Regret approach, complementing the robustification provided
by Gilboa and Schmeidler (1989) by a local aspect—local, because the
“distance” to the ideal conditions is minimax-ed. The performance of
the rmx approach is illustrated in Appendix B.

Scope of the Efficiency Quotient Approach. The above formulation of
the efficiency quotient is tailored to address a specific statistical ques-
tion. However, the notion of efficiency is easily and naturally trans-
ferred to more general situations that involve a parameter that speci-
fies an unknown “distance” from ideal conditions. In this paper we will
use the efficiency quotient approach to find robustly optimal trading
strategies under the threat of a crash of unknown size.

Organization of the Paper. The remainder of this article is organized
as follows: In Section 2 we introduce the financial market model. To
motivate the use of the efficiency quotients in a financial context, we



ROBUST WORST-CASE OPTIMAL INVESTMENT 5

first detail a simple example with unknown excess returns and then
introduce the general robust optimality criterion in Section 3. In Sec-
tion 4 we identify the relevant worst-case scenarios for misspecified
crash sizes. Based on this analysis, we are able to determine robust
worst-case optimal strategies in Section 5. Section 6 generalizes our
results to settings with multiple crashes and investigates the behavior
of the optimal solutions for a growing number of crashes. While the
optimality results of Sections 5 and 6 establish optimality within the
class of worst-case strategies, Section 7 extends optimality to the wider
class of arbitrary admissible strategies. Section 8 concludes and points
towards possible extensions. The necessary mathematical results and
proofs are gathered in Appendix A, and Appendix B provides an illus-
tration of rmx procedures in robust statistics.

2. Financial Market and Non-Robust Portfolio
Optimization

Financial Market Model and Crash Scenarios. The financial market
consists of a riskless money market account and a risky stock with
dynamics

dP0(t) = P0(t) r dt

dP1(t) = P1(t) [(r + λ)dt+ σ dW (t)] , P1(0) = p1
(2.1)

where r, λ, σ are positive constants. In addition, there can be finitely
many (k, say) market crashes, modeled as stopping times τ (1), . . . , τ (k).
At each time t = τ (i) the stock may drop by up to a fraction ℓ ∈ [0, 1]
of its value. Thus in the crash scenario τ (i), ℓ we have

P1(τ
(i)) = (1− ℓ)P1(τ

(i)−).

Crucially, there are no distributional assumptions on the crash times
τ (i): The crash times are subject to Knightian uncertainty.

If the investor is able to specify the maximal number k of possible mar-
ket crashes and the size of the maximum crash height ℓ, the associated
worst-case optimal investment problem with constant relative risk aver-
sion (crra) utility has been analyzed by Korn and Steffensen (2007)
and Seifried (2010). By contrast, if the investor is unsure how many
crashes may occur and which sizes they may have—i.e., the maximal
number of crashes and their maximum sizes ℓ are themselves subject
to uncertainty—this literature offers no guidance.

Wealth Dynamics. The crash is unknown a priori, but can be observed
when it occurs. The investor’s strategy can thus be specified by pre-
dictable processes π = (π(0), . . . , π(k)) where π(i)(t) represents the frac-
tion of wealth invested into the risky asset at time t with i crashes
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outstanding (equivalently, when j = k + 1 − i have occurred). His
wealth dynamics are given by

dXπ(t) = Xπ(t)
[
(r + π(j)(t)λ) dt+ π(j)(t)σ dW (t)

]
on [τ (i−1), τ (i))

Xπ(τ (i)) = (1− π(j)(τ (i))ℓ)Xπ(τ (i−1)−), Xπ
0 = x

where i = 1, . . . , k + 1, τ (0) , 0, τ (k+1) , ∞. Note that the strategy
π(j) is valid from τ (i−1) up to and including τ (i). The portfolio strategy
π is said to be admissible if π(j)(t) ∈ [0, 1] for all t ≥ 0, and we denote
by A(k) the class of all admissible portfolio strategies.

As a consequence, the investor avoids bankruptcy in a crash for every

π ∈ A(k), because then ℓπ
(j)
t ≤ 1 for all t ≥ 0, ℓ ∈ [0, 1]. Here and in

the following, we write Xπ instead of Xπ,τ (1),...,τ (k) for ease of notation.

Investor Preferences towards Risk and Uncertainty. The investor’s at-
titudes towards risk are modeled by a classical crra utility function.
By contrast, as to the uncertainty implied by the presence of market
crashes, he takes a worst-case approach. Thus, if k and ℓ are known,
his goal is to maximize expected utility for the worst possible crash-
scenarios over all investment strategies, i.e.,

sup
π∈A(k)

inf
τ (1),...,τ (k)

E [u(Xπ(T ))]

where u(x) = x1−γ/(1−γ) and γ > 0, γ ̸= 1 is the investor’s relative risk
aversion. Equivalently, his goal is to maximize the worst-case certainty
equivalent of terminal wealth, i.e.,

(2.2) sup
π∈A(k)

inf
τ (1),...,τ (k)

CE(Xπ(T ))

where CE(X) , u−1(E[u(X)]). Note that while E[u(X)] is measured
on a utility scale, CE(X) is a monetary (say, dollar) value.

Remark 2.1. The case of unit risk aversion (i.e., u(x) = ln(x) and
CE(X) = exp{E[ln(X)]}) is obtained in the limit γ → 1. We do not
consider this specification separately since the analysis is analogous to
(but simpler than) that of the case γ ̸= 1. ⋄
In the situation without crashes, i.e., when no further crashes can oc-
cur, the corresponding optimal admissible strategy is just the Merton
strategy πM ,

πM(t) = λ/(γσ2).

We assume throughout this article that the market and risk aversion
parameters λ, σ and γ are such that λ ≤ γσ2, i.e., such that πM ∈ A(k).
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3. Robust Optimization in the Merton Model

In the following we investigate the optimal portfolio problem (2.2) when
the maximum crash heights ℓ are not known a priori. Before we provide
the general definition of the robust optimization criterion, we motivate
our approach by reconsidering a classical problem and augmenting it
with model uncertainty.

Uncertain Excess Return in the Merton Model. We consider the port-
folio optimization problem in the market model (2.1) in the absence
of crashes (formally, k = 0), but with the additional feature that the
stock excess return λ is an unknown constant in [0, λmax]. If the in-
vestor believes that λ = λ′, he will use the associated Merton strategy
πM = λ′/(γσ2). For a possibly time-dependent deterministic strategy
π, a straightforward calculation yields the expected utility

E[u(Xπ(T ))] = u(x) exp
{
(1− γ)

∫ T

0

[
r + π(t)λ− 1

2
γπ(t)2σ2

]
dt
}

and the corresponding certainty equivalent

(3.1) CE(Xπ(T )) = x exp
{∫ T

0

[
r + π(t)λ− 1

2
γπ(t)2σ2

]
dt
}
.

In particular, for a possibly misspecified excess return λ′ we obtain

(3.2) w(λ′, λ) , CE(XπM

(T )) = x exp
{[

r + λ′λ−(λ′)2/2
γσ2

]
T
}

where λ denotes the “true” value of the excess return. On the other
hand, the optimal dollar performance that would be attainable in an
ideal world without parameter uncertainty is given by w(λ, λ). Now de-
fine the efficiency q(λ′, λ) as the fraction of optimal dollar performance
attained with the misspecified model parameter λ = λ′, i.e.,

(3.3) q(λ′, λ) , w(λ′, λ)
/
w(λ, λ).

The investor’s aim is to maximize efficiency in the most adverse pa-
rameter set. Thus he seeks a robustly optimal strategy λ⋆ to

(3.4) maximize inf
λ∈[0,λmax]

q(λ′, λ) over all excess return estimates λ′.

Plugging (3.2) into the criterion (3.3), we obtain

q(λ′, λ) = exp
{
− T

2γσ2 (λ
′ − λ)2

}
.(3.5)

Hence for the simple Merton model the robustly optimal parameter
estimate in (3.4) is given by

λ⋆ = 1
2
λmax.

In Figure 1 we illustrate the efficiency criterion (3.5) as a function of
λ where we have set γ = 1, T = 10 and σ = 0.40. In the left display,
the unknown parameter λ varies in [0, 1], while in the right it varies
in [0, 0.5]. Note that in both cases the boundary values of q(λ′, λ)
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Figure 1. Efficiency q(λ′, λ) for λ ∈ [0, 1] with λ′ = 0.5 (LHS)
and for λ ∈ [0, 0.5] with λ′ = 0.25 (RHS).

coincide. We will show below that this is a general feature of robustly
optimal strategies.

Robust Optimality Criterion: General Definition. In the context of a
general stochastic control problem, suppose that using the parame-
ter specification θ′ the agent attains a monetary certainty equivalent
w(θ′, θ) in the model with “true” parameter θ. Let Θ denote the set of
all possible parameter values. Then, as above, the efficiency q(θ′, θ) is
defined via

(3.6) q(θ′, θ) , w(θ′, θ)
/
w(θ, θ).

Note that since both w(θ′, θ) and w(θ, θ) represent dollar values, this
is an economically meaningful concept: The efficiency represents the
fraction of the optimal dollar value that is attained with a particular
strategy. The general robust optimization problem is to

(P) maximize inf
θ∈Θ

q(θ′, θ) over all θ′ ∈ Θ.

Remark 3.1. The maximization in (P) extends over parameter speci-
fications, not over strategies. Instead of maximizing the worst-parameter
performance over all admissible strategies, it makes intuitive sense to
concentrate on strategies that are optimal for at least one parameter
specification. However, from a purely mathematical perspective it is
not clear at this stage whether by passing from the class of worst-
case optimal strategies to more general admissible strategies a superior
worst-case efficiency could be attained. We show rigorously in Sec-
tion 7 that, indeed, every admissible strategy is dominated by some
worst-case optimal strategy. Therefore the robustly optimal strategy
is optimal among all admissible strategies. ⋄
Remark 3.2. The definition of efficiency in (3.6) is based upon cer-
tainty equivalents, not utility values. Since utilities are unique only up
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to affine transformations, quotients of utilities are in general not a well-
defined concept. As an alternative to (3.6), it might also be interesting
to study the efficiency criterion

q̃(θ′, θ) , w(θ′, θ)− w(θ, θ).

Clearly, this specification appears particularly suitable for problems
with cara risk preferences, but may also yield valuable insights for
problems with crra utility. ⋄

4. Worst-Case Scenarios

In this article, we consider worst cases on two levels, i.e., as to crash
times and as to crash sizes. To distinguish these levels, in the following,
we use the term least favorable for the worst case with regard to the
crash sizes and worst-case for unknown crash-times.

In this section and the next we investigate optimal investment for worst-
case crash scenarios with an uncertain maximal crash size ℓ. We assume
that there can be at most one crash (k = 1); the case k > 1 is addressed
in Section 6. We identify the worst-case crash scenarios for alternative
candidate strategies and parameter specifications and determine the
associated performance.

Notation. In the following we fix ℓ, β ∈ [0, 1]. ℓ represents the “true”
maximal crash size, whereas β is the crash size assumed by the in-
vestor in a possibly misspecified model. With a slight abuse of notation
we denote by π(ℓ) = π(1,ℓ) the optimal pre-crash investment strategy
for worst-case crash scenarios of maximal size ℓ (obtained for ℓ to be
known). π(ℓ) is uniquely determined via an ordinary differential equa-
tion; see Korn and Steffensen (2007) or Seifried (2010). More precisely,
we have

(4.1)
dπ(ℓ)(t)

dt
=

(
1
ℓ
− π(ℓ)(t)

){
λπ(ℓ)(t)− 1

2

[
γσ2π(ℓ)(t)2 + λ2

γσ2

]}
subject to the boundary condition π(ℓ)(T ) = 0. As shown by Seifried
(2010), the worst-case optimal strategy π(ℓ) is characterized by an in-
difference property: If the investor implements the strategy π(ℓ), then
his utility is independent of the timing of a crash with maximal size ℓ.
In that sense, at the optimum the investor is indifferent concerning the
crash. This is referred to below as the indifference-optimality principle.

We now determine the performance w(β, ℓ) , w(ℓ)(x, π(β)) of the strat-
egy π(β) in the worst-case crash scenario with crash size ℓ.

Worst-Case Crash Scenario for ℓ < β. For ℓ < β the investor assumes
a larger maximal crash size than is possible in the true model. Thus
he errs on the side of caution, and the strategy π(β) is too conservative.
In fact, equation (4.1) implies that π(β)(t) < π(ℓ)(t) for all t ∈ [0, T ],
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as will be shown for the more general case of finitely many crashes in
Corollary A.2 below. This implies that the investor is overinsured and
that the strategy π(β) would only fare better in a crash. Hence the
worst case is the no-crash scenario. It follows from equation (3.1) that
the worst-case performance of π(β) is given by

(4.2) w(β, ℓ) = x exp
{∫ T

0

[
r + π(β)(t)λ− 1

2
γπ(β)(t)2σ2

]
dt
}
.

Worst-Case Crash Scenario for ℓ ≥ β. For ℓ ≥ β the actual crash size
is potentially larger than anticipated by the strategy π(β). Since with
β ≤ ℓ we have π(β)(t) ≥ π(ℓ)(t), and the strategy π(β) is too risk-prone.
Thus the investor is underinsured against a crash of size ℓ > β, and
the worst case is an immediate crash of maximal size ℓ. The associated
worst-case performance is

(4.3) w(β, ℓ) = x(1− π(β)(0)ℓ) exp
{
[r + 1

2
λ2

γσ2 ]T
}
.

Note that due to our assumptions we have that π(β)(0) ≤ πM < 1 and
thus the worst-case performance is well-defined.

5. Efficiency

This section provides a solution to the worst-case portfolio problem that
is robust with respect to uncertainty in the maximal possible crash size.

Efficiency Criterion. In view of the results of Section 4 we are in a posi-
tion to evaluate the efficiency criterion (3.6) for the worst-case portfolio
problem with uncertain crash size,

q(β, ℓ) , w(β, ℓ)
/
w(ℓ, ℓ).

For notational convenience, we rescale q in a monotone way via f(x) =

ln(x) + 1
2

λ2

γσ2T . Using (4.2) and (4.3) we then obtain

(5.1)

q(β, ℓ) =

{ ∫ T

0

[
π(β)(t)λ− 1

2
γπ(β)(t)2σ2

]
dt− ln(1− π(ℓ)(0)ℓ), ℓ < β

ln(1− π(β)(0)ℓ)− ln(1− π(ℓ)(0)ℓ) + 1
2

λ2

γσ2T, ℓ ≥ β.

Note that the initial wealth x > 0 cancels. The respective worst-case
efficiencies are illustrated in Figure 2.

Analysis of Local Minima. The next step is to investigate the function
ℓ 7→ q(β, ℓ) for a fixed value of β to identify the parameter values for ℓ
that produce the least favorable efficiency for a given strategy π(β). By
Lemma A.9 the minimum of ℓ 7→ q(β, ℓ) is attained either at ℓ = 0 or
at ℓ = 1. Hence it suffices to consider q(β, ℓ) for ℓ = 0, 1. In addition,
by Corollary A.7, the functions β 7→ q(β, ℓ), ℓ = 0, 1, are continuous.
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Figure 2. Efficiency q(β, ℓ) for β = 0.4 (LHS) and β = 0.6
(RHS) for fixed parameters µ = 0.20, r = 0.05, σ = 0.40, T = 10
and γ = 1.

We set

µ0(β) , q(β, 0) =
∫ T

0

[
π(β)(t)λ− 1

2
γπ(β)(t)2σ2

]
dt

µ1(β) , q(β, 1) = ln(1− π(β)(0))− ln(1− π(1)(0)) + 1
2

λ2

γσ2T.

Since π(β)(t) < π(ℓ)(t) for ℓ < β, it follows that

µ0 is decreasing in β,

µ0(0) =
1
2

λ2

γσ2T,(5.2)

µ0(1) =
∫ T

0

[
π(1)(t)λ− 1

2
γπ(1)(t)2σ2

]
dt

= 1
2

λ2

γσ2T − ln(1− π(1)(0))

where the last identity is due to the indifference-optimality principle.
Similarly, concerning the second local minimum we have

µ1 is increasing in β,

µ1(0) = ln(1− πM)− ln(1− π(1)(0)) + 1
2

λ2

γσ2T,(5.3)

µ1(1) =
1
2

λ2

γσ2T.

Robust Worst-Case Optimal Strategy. By (5.2), (5.3) and continuity
of µ0 and µ1 it follows that there exists a unique intersection point
β⋆ ∈ [0, 1] of µ0 and µ1,

µ0(β
⋆) = µ1(β

⋆).(5.4)

Thus β⋆ balances the performances in the two most adverse scenarios
ℓ = 0 and ℓ = 1. Figure 3 displays the intersection of the curves µ0

and µ1. Returning to the robust worst-case portfolio problem, as a
consequence of Corollary A.7 and Lemma A.9, we record the following
proposition.
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Figure 3. Left local minimum µ0(β) and right local minimum
µ1(β) of ℓ 7→ q(β, ℓ) for fixed market parameters µ = 0.20, σ =
0.40, r = 0.05, time horizon T = 10 and risk aversion γ = 1.
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Figure 4. Least favorable performance q(β, ℓ) as a function of
ℓ (market parameters: µ = 0.20, σ = 0.40, r = 0.05, T = 10) with
robustly optimal β⋆ = 0.458 for γ = 0.5 (LHS) and β⋆ = 0.504 for
γ = 1 (RHS).

Proposition 5.1 (Robust Worst-Case Solution for at Most One Crash).
The solution to the problem

maximize inf
ℓ∈[0,1]

q(β, ℓ) over all β ∈ [0, 1]

is given by the unique intersection point β⋆ from equation (5.4).
The corresponding strategy π(β⋆) solves the robust worst-case portfolio
problem (P).

Figure 4 illustrates the least favorable performance q(β, ℓ) as a function
of the true crash size ℓ.
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6. Multiple Crash Scenarios

In this section we extend the preceding analysis to financial markets
with a known number k ≥ 1 of crashes and an unknown crash size at
each crash.

Efficiency for Multiple Crashes . We assume that each crash has its
individual maximal size and there is no prior information about these
sizes. In particular, the investor cannot learn from past crashes, and
updating his crash size beliefs does not improve his performance. Thus
he fixes his assumption on the maximal crash sizes in advance. In this
setting, we define an efficiency criterion in analogy to (5.1).

We denote by π(k,ℓ) the worst-case optimal investment strategy in an
ideal model with a known number of at most k crashes of at most
crash size ℓ. π(k,ℓ) can be determined recursively via a series of ordinary
differential equations (compare Korn and Steffensen (2007) or Seifried
(2010)). Starting from π(0)(t) , πM = λ

γσ2 , t ∈ [0, T ] we have

dπ(k,ℓ)(t)

dt
=

1− π(k,ℓ)(t)ℓ

ℓ

{
λ
[
π(k,ℓ)(t)− π(k−1,ℓ)(t)

]
− 1

2
γσ2

[
π(k,ℓ)(t)2 − π(k−1,ℓ)(t)2

]}
, π(k,ℓ)(T ) = 0

(6.1)

for k ≥ 1. As in the case k = 1, the worst-case optimal strategy π(k,ℓ)

is an indifference strategy.

Next, we determine the efficiency of the strategy π(k,ℓ). We write
w(β, ℓ; k) , w(k,ℓ)(x, π(k,β)) for the performance, in dollar values, at-
tained by π(k,β) for the worst-case crash time scenario and least favor-
able crash size ℓ in a market with k possible crashes. As in Section 3
the associated efficiency is defined as the percentage of the optimal
dollar performance attained with misspecified model parameters,

q(β, ℓ; k) , w(β, ℓ; k)
/
w(ℓ, ℓ; k).

Abbreviating L0(β, ℓ; k) =
∑k

i=1 ln(1− π(i,β)(0)ℓ), similarly as in Sec-
tions 4 and 5, we find

q(β, ℓ; k) =

{ ∫ T

0

[
π(k,β)(t)λ− 1

2
γπ(k,β)(t)2σ2

]
dt− L0(ℓ, ℓ; k), ℓ < β

L0(β, ℓ; k)− L0(ℓ, ℓ; k) +
1
2

λ2

γσ2T, ℓ ≥ β.

(6.2)

Robust Worst-Case Optimal Strategy for k > 1. Arguing as in Sec-
tion 5, we can invoke Lemma A.9 to show that the minimum of the
function ℓ 7→ q(β, ℓ; k) is located at ℓ = 0 or at ℓ = 1, giving functions
µ0(β, k) and µ1(ℓ, k), respectively. The analysis of the two local min-
ima proceeds along the same lines. As in Section 5 there is a unique
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Figure 5. Least favorable performance q(β⋆, ℓ; k) as a function
of ℓ (market parameters: µ = 0.20, σ = 0.40, r = 0.05, T = 10) for
k = 1, 2, 4, 7, 10 and γ = 1. The associated robustly optimal β⋆(k)
is located at the maxima of the respective curves.

intersection point β⋆ ∈ [0, 1] such that

µ0(β
⋆, k) = µ1(β

⋆, k)(6.3)

where

µ0(β, k) =
∫ T

0

[
π(k,β)(t)λ− 1

2
γπ(k,β)(t)2σ2

]
dt

µ1(β, k) = L0(β, 1; k)− L0(1, 1; k) +
1
2

λ2

γσ2T.

Again, as a consequence of Corollary A.7 and Lemma A.9 we obtain

Proposition 6.1 (Robust Worst-Case Solution for Multiple Crashes).
The solution to the robust optimization problem

maximize inf
ℓ∈[0,1]

q(β, ℓ; k) over all β ∈ [0, 1]

is given by the unique intersection point β⋆(k) from equation (6.3).
The corresponding strategy π(k,β⋆(k)) solves the robust worst-case port-
folio problem (P).

Figure 5 illustrates the worst-case performance q(β⋆, ℓ; k) as a function
of the true maximal crash size ℓ with the corresponding robustly op-
timal β⋆(k) for k = 1, 2, 4, 7, 10. The value β⋆(k) ≈ 0.5 in this figure
is not representative; in general, β⋆(k) depends on the risk aversion γ,
compare Table 1. The figure also indicates that the robustly optimal
β⋆(k) increases with the number of maximal crashes k.

Large Number of Crashes. We now investigate the limiting case of a
large number of crashes. The behavior of β⋆(k) for large k large is
illustrated in Figure 6. For all risk aversion parameters considered,
β⋆(k) = β⋆

γ(k) stabilizes quickly at a non-trivial stationary value β̂γ.
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γ 0.25 0.50 0.75 1.00 2.00 3.00

β̂γ 0.86 0.64 0.58 0.55 0.52 0.50

Table 1. β⋆
γ = lim

k→∞
β⋆
γ(k) for alternative risk aversion parame-

ters γ.
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Figure 6. Robustly optimal β⋆(k) as a function of the maximal
number of crashes k.

The limiting values β̂γ, obtained by extrapolation, for alternative levels
of relative risk aversion are displayed in Table 1.

We next consider the optimal value of the maximin criterion, i.e., the
optimal efficiency

µ(β⋆(k)) , µ0(β
⋆(k), k) = µ1(β

⋆(k), k).

Figure 7 confirms that the criterion µ(β⋆(k)) is a decreasing function of
the maximum number of crashes k and tends to 0 as k → ∞. We may
gain deeper insights by passing to a logarithmic scale: In fact, after a
non-informative kick-in phase the average logarithmic contribution of
an additional crash to the total efficiency quickly approaches a linear
function. To examine this rigorously, for a maximal number of crashes
k ∈ {10, 11, . . . , 25} we have fitted a least squares regression line with

intercept ln(Â) and slope ln(b̂) to the log-linear model

(lnµ(β⋆(k))) /k = ln(A) + ln(b) ln(k) + noise.

Our results for alternative specifications of the risk aversion parameter
γ are summarized in Table 2. We obtain extraordinarily high values of
R2

adj, the fraction of variance explained by the model. These results im-

ply that the (k+1)th crash decreases the optimal efficiency by a factor
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γ 0.25 0.50 0.75 1.00 2.00 3.00

Â 1.599 1.622 1.568 1.505 1.330 1.230

b̂ 0.476 0.512 0.531 0.543 0.571 0.587
R2

adj 0.998 0.998 0.998 0.997 0.995 0.994

Table 2. Fitted least squares coefficients and adjusted R2 for
different levels of risk aversion γ.

γ 0.25 0.50 0.75 1.00 2.00 3.00

Âbln 5 0.485 0.553 0.566 0.563 0.539 0.522

Âbln 10 0.290 0.348 0.365 0.369 0.365 0.361

Âbln 50 0.088 0.119 0.132 0.138 0.148 0.153

Âbln 100 0.053 0.075 0.085 0.090 0.100 0.106

Table 3. Impact of an additional crash (total number of crashes
k = 5, 10, 50, 100) on optimal efficiency for different levels of risk
aversion γ.
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Figure 7. Optimal efficiency µ(β⋆(k)) as a function of the num-
ber of crashes k.

Abln(k). Considering ln(k) as (almost) constant for the relevant number
of crashes, this means that the impact of an additional crash also stabi-
lizes on a non-trivial level above 0. We report our results in Table 3 for
alternative specifications of k = 5, 10, 50, 100. The corresponding least
squares fits are illustrated in Figure 8: On an aggregated basis with
a logarithmic y-axis we display the optimal criterion values µ(β⋆(k))
together with the transformed fitted regression lines, confirming the
excellent quality of the least squares fit.
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Figure 8. Optimal efficiency µ(β⋆(k)) together with the trans-
formed fitted least squares lines (fitted for k ≥ 10) with a logarith-
mic y-axis.

7. Extension to Arbitrary Strategies

In this section we demonstrate that the robustly optimal worst-case
crash strategy π(k,β∗) is in fact robustly optimal in the class A(k) of
all admissible strategies. More precisely, we show that the efficiency
of any admissible strategy is dominated by that of a suitably chosen
worst-case crash strategy. Recall from (3.6) and (P) that, explicating
the θ– and θ′–optimal strategies π(θ), π(θ′), our efficiency criterion for
a guessed parameter θ′ is given by

(7.1) inf
θ∈Θ

w(π(θ′), θ)
/
w(π(θ), θ).

In Propositions 5.1 and 6.1 we have established parametric optimality
of πθ⋆ , where θ⋆ = (k, β⋆) denotes the maximizer in (7.1): πθ⋆ is optimal
among all worst-case crash strategies πθ where θ ∈ Θ. The set of those
strategies is denoted by

Π(k,[0,1]) , {π(k,β) : β ∈ [0, 1]}.

We now demonstrate global optimality of this strategy in A(k). Let

(7.2) q̄(k,ℓ)(π) , w(k,ℓ)(π)
/
w(k,ℓ)(π(k,ℓ))

with π ∈ A(k) an arbitrary strategy.

Theorem 7.1 (Completeness of Strategies). The set of strategies Π(k,[0,1])

is complete in the sense that for any strategy π ∈ A(k) there exists a
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strategy π(k,β) ∈ Π(k,[0,1]) (depending on π) such that

inf
ℓ
q̄(k,ℓ)(π) ≤ inf

ℓ
q̄(k,ℓ)(π(k,β)).

In particular, πθ⋆ is globally optimal for the robust worst-case portfolio
problem (P).

The proof of Theorem 7.1 is delegated to Appendix A.

8. Conclusion and Outlook

Two of the most critical parameters in real-world applications of the
worst-case approach to portfolio optimization are the total number of
possible crashes and the maximum crash size. Both parameters play a
crucial role in the determination of the worst-case optimal crash strat-
egy. However, none of them is easily determined in practice. To address
this, in this paper we have provided a robust formulation of the portfo-
lio problem for worst-case crash scenarios with uncertain parameters.
This formulation has led to very plausible, by no means overly pes-
simistic, robustly optimal crash sizes. Moreover, for a growing number
of crashes they quickly converge to a stable limit.

Some further aspects which could make the worst-case approach even
more realistic are left for future research. The most important one
undoubtedly concerns the number of crashes. Promising results for
growing number of crashes have been obtained in Section 6, indicating
that an analysis of the limiting case k → ∞ could be interesting. As
the minimax efficiency for fixed time horizon T decreases (by a slowly
increasing factor) for each new crash, an additional compensator needs
to be introduced to avoid degeneracy. One idea could be to study
a growing time horizon T (k), or, similarly, to consider average crash
frequencies k/T as an alternative parametrization of the problem.

Further extensions include the robustification with respect to other
parameters, such as the excess return (as in Section 3), the time hori-
zon, and post-crash market coefficients, as well as alternative utility
functions.
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Appendix A. Proofs

First, we study monotonicity of the worst-case optimal crash strategies with
respect to the maximum crash size. Let us recall the following result.

Lemma A.1. Let I ⊆ R be an interval and consider the parameterized
family of ODEs on [0, T ]

yβ(0) = 0, ẏβ(t) = f(t, yβ, β).

Suppose that for each β ∈ I there is a unique solution gβ on [0, T ] and
assume that f is differentiable with respect to (y, β) for each t ∈ [0, T ].
Moreover suppose that for each t ∈ [0, T ]

∂/∂β f(t, y, β) < 0.

Then for each t ∈ (0, T ] the function β 7→ gβ(t) is strictly increasing.

Proof. Let zβ(t) , ∂/∂β yβ. Then ∂/∂β gβ(t) is the unique solution to the
linear inhomogeneous ODE

zβ(0) = 0, żβ(t) = a(t) + b(t)zβ(t)

with a(t) , ∂/∂β f(t, y, β) and b(t) , ∂/∂y f(t, y, β). The unique solution
is given by

zβ(t) =
∫ t
0a(s) exp{

∫ t
s b(u) du} ds

where the integrand is strictly negative. �

We now establish the desired monotonicity property of worst-case optimal
strategies with the help of Lemma A.1.

Corollary A.2. For each t ∈ [0, T ] and k ≥ 1, the mapping β 7→ π(k,β)(t)
is strictly decreasing.

Proof. We have π0,β(t) = πM by Merton’s result, and, since π(k,β)(t) is more

conservative than π((k−1),β)(t),

(A.1) π((k−1),β)(t) > π(k,β)(t) for each t ∈ [0, T ].

By time-inversion and after rearranging terms, the ODE (6.1) for π(k) with

terminal condition π(k)(T ) = 0 becomes

ẏk(t) = fk(t, yk(t), β), yk(0) = 0

where

fk(t, y, β) , −( 1β − y) γσ2

2 hk(t, y, β) with(A.2)

hk(t, y, β) , (y − π((k−1),β)(t))[2πM − y − π((k−1),β)(t)].

It is clear that fk is differentiable with respect to (y, β), where β ∈ (0, 1]
and y ∈ R, for every t ∈ [0, T ]. Hence

(A.3) 2
γσ2

∂

∂β
fk(t, y, β) =

1
β2hk(t, y, β)− ( 1β − y)

∂

∂β
hk(t, y, β)

where
∂

∂β
hk(t, y, β) = −2

∂

∂β
π((k−1),β)(t))

{
πM − π((k−1),β)(t)

}
.
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According to our introductory remark and (A.1), the first summand of

∂/∂β fk(t, y, β) in (A.3) is always negative for y = π(k,β)(t), and so is

the second one: The factor 1/β − y is positive for y = π(k,β)(t), and for
∂/∂β hk(t, y, β), we argue by induction on the number of crashes. Let
k = 1. Then h1(t, y, β) is constant in β, so ∂/∂β f1(t, y, β) is negative,

and hence by Lemma A.1 so is ∂/∂β π(1,β)(t). Assume we have already

shown negativity of ∂/∂β π(i,β)(t) for i = 1, . . . , k − 1. Then by induc-
tion, ∂/∂β hk(t, y, β) ≥ 0, hence ∂/∂β fk(t, y, β) is negative, and, again by

Lemma A.1 so is ∂/∂β π(k,β)(t). �

From the monotonicity we can immediately deduce the following:

Corollary A.3. For each k > 0, the set of strategies Π(k,[0,1]) , {π(k,β) :
β ∈ [0, 1]} for t ∈ [0, T ] is bracketed by the constant strategies “Merton” and
“Strictly Bond”.

Proof. π ≥ 0 by definition and π(k,0) = πM ; the rest is a consequence of
Corollary A.2. �
Lemma A.4. Any admissible strategy π ∈ A(k) with π > πM on a time-set
of positive Lebesgue measure is dominated by the Merton strategy.

Proof. In the ideal world (ℓ = 0) Merton is optimal, hence you can improve
the strategy π setting it to Merton on π > πM . For any ℓ > 0, in case of a
crash, with π you will lose more than Merton, and afterwards, you cannot
beat Merton; see also Seifried (2010, Prop. 5.1). �
Lemma A.5. On (0, 1], the mapping β 7→ π(k,β)(t) is continuous in sup-
norm on [0, T ], i.e.,

F : (0, 1] → C([0, 1], sup), β 7→ F (β) = π(k,β)(t).

Moreover for each t ∈ [0, T ) we have limβ↓0 π
(k,β)(t) = π(k,0)(t) = πM .

Proof. By Corollary A.3, we can bracket the range {π(k,β)(t) : β ∈ [0, 1], t ∈
[0, T ]} by [0, πM ]. Fix any β0 > 0. Then on [β0, 1] × [0, πM ] the function
fk in (A.2) is Lipschitz continuous in the sup-norm of the range with a
finite global Lipschitz constant. Now use Gronwall’s Lemma to conclude
that this is also true for the solution of the ODE. Fix t ∈ [0, T ) and let

β ↓ 0 (strictly). By monotonicity shown in Corollary A.2, β 7→ π(k,β)(t) is
strictly decreasing and hence by bracketing converges for β → 0. But then
β 7→ ∂/∂β π(k,β)(t) must converge to 0, which according to Lemma A.1 can
only happen if ∂/∂β fk(t, y, β) converges to 0. Now to this end by (A.2) and

(A.3), necessarily π(k,β)(t) → πM . �
Lemma A.6. The function w(k,ℓ) given in (4.2), (4.3), and (5.1) (for k = 1)

and in (6.2) (for k ≥ 1), understood as a mapping π ∈ A(k) 7→ w(k,ℓ)(π), is
continuous in sup-norm.

Proof. Immediate from (4.2), (4.3), (5.1), and (6.2)—evaluation at a point
(i.e., t = 0) is continuous in sup-norm, and for the integral in (4.2) this
follows from dominated convergence. �
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Corollary A.7. For ℓ ∈ {0, 1}, the mapping β 7→ w(k,ℓ)(π(k,β)) is continu-

ous onto the range spanned by w(k,ℓ)(π(k,1)), w(k,ℓ)(π(k,0)). The same holds

for β 7→ q̄(k,ℓ)(π(k,β)) from (7.2).

Proof. Continuity is the composition of Lemmata A.5 and A.6, which also
implies that the image of [0, 1] under this map is an interval by the interme-

diate value theorem. Look at ℓ = 0. Here π(k,0) is optimal, while by Corol-
lary A.2, π(k,1) is the pointwise minimum of β 7→ π(k,β). Hence, it is point-
wise furthest away from Merton and thus w(k,0)(π(k,1)) = minβ w

(k,0)(π(k,β)).
The case ℓ = 1 is similar. In both cases the set

I
(k)
ℓ , {w(k,ℓ)(π(k,β)) : β ∈ [0, 1]}

is bracketed by {w(k,ℓ)(π(k,β)) : β ∈ {0, 1}}. For fixed ℓ, the assertion for

q̄(k,ℓ) is just a restandardization. �
Proposition A.8. For each β ∈ [0, 1], the worst-case optimal strategy π(k,β)

also solves the constrained optimization problem to

maximize w(k,0)(π) over π ∈ A(k) subject to w(k,1)(π) ≥ w(k,1)(π(k,β))

as well as the constrained optimization problem to

maximize w(k,1)(π) over π ∈ A(k) subject to w(k,0)(π) ≥ w(k,0)(π(k,β)).

The same also holds with w replaced by q̄.

Proof. Start with the first assertion on w. Suppose that the strategy π(k,β)

is suboptimal in the restricted problem. Then there is some π0 ∈ A(k)

with w(k,1)(π0) ≥ w(k,1)(π(k,β)) and w(k,0)(π0) > w(k,0)(π(k,β)), which is true

only if we are riskier than π(k,β). This means that the worst case for π0
is that “exactly k crashes happen”. But by worst-case optimality of π(k,β),
w(k,β)(π0) < w(k,β)(π(k,β)), or

(A.4) w(k,β,exactly k crashes happen)(π0) < ln(1− π(k,β)(0)β).

Now the strategy π0, after the kth crash has happened, cannot beat π(k,β),
which uses Merton afterwards. So assume without loss that π0 also uses
Merton afterwards. But (A.4) implies that at crash time t, π0(t) > π(k,β)(t),
and hence is even more affected when instead of β, the crash size is 1. Hence
w(k,1)(π0) < w(k,1)(π(k,β)), which is a contradiction.

For the second assertion suppose that there is some π1 ∈ A(k) with w(k,0)(π1) ≥
w(k,0)(π(k,β)) and w(k,1)(π1) > w(k,1)(π(k,β)), which is true only if π1 has

stronger crash protection than π(k,β). This means that the worst case for π1
is “no crash”. But by worst-case optimality of π(k,β), this gives the contra-
diction

w(k,0)(π1) = w(k,β)(π1) < w(k,β)(π(k,β)) = w(k,1)(π(k,β)).

As above, the assertion concerning q̄ is merely a restandardization. �
Lemma A.9. For each β ∈ (0, 1], the mapping ℓ 7→ q̄(k,ℓ)(π(k,β)) is decreas-
ing for ℓ > β, while it is increasing for ℓ < β. In particular,

inf
ℓ
q̄(k,ℓ)(π(k,β)) = min

(
q̄(k,0)(π(k,β)), q̄(k,1)(π(k,β))

)
.
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Proof. Look at (5.1) respectively (6.2) and set π
(k)
ℓ , π(k,ℓ)(0). For ℓ < β,

we have to consider ∂/∂ℓ
∑k

i=1{− ln(1 − π
(i)
ℓ ℓ)}. Now the optimal worst-

case strategy π(k,ℓ) is indifferent between one more or no more crash, hence
solves ODE (6.1), which after integration can be written as

2(ln(1− π
(i)
ℓ ℓ))/(σ2γ) =∫ T

0 [(π(i,ℓ)(s)− π(i−1,ℓ)(s))][2πM − π(i,ℓ)(s)− π(i−1,ℓ)(s)] ds.

Since the integrand is continuously differentiable on [0, T ], we may inter-
change integration and differentiation and get

(A.5) 1
σ2γ

∂

∂ℓ
ln(1− π

(i)
ℓ ℓ) =

∫ T
0 ρi(s)− ρi−1(s) ds

for ρi(s) = (πM −π(i,ℓ)(s)) ∂/∂ℓ π(i,ℓ)(s). Summing up over i, equation (A.5)
is telescoping,

∂

∂ℓ

k∑
i=1

{
− ln(1− π

(i)
ℓ ℓ)

}
= −σ2γ

∫ T
0 ρk(s) ds

and as ρk is negative, the assertion follows.

For ℓ > β, we have to consider

∂

∂ℓ

k∑
i=1

ln
1− π

(i)
β ℓ

1− π
(i)
ℓ ℓ

=

k∑
i=1

h(π
(i)
ℓ , ℓ)− h(π

(i)
β , ℓ) +

ℓ ∂
∂ℓπ

(i)
ℓ

1− π
(i)
ℓ ℓ

for h(x, a) = x/(1 − ax). Now, as h(x, a) for ax < 1 is increasing in x, the
sum of the first two summands in the outer sum is negative, while the last
summand by Corollary A.2 is negative anyway. �

With these preparations we can now give the

Proof of Theorem 7.1. Fix any π ∈ A(k). By Lemma A.4, we may assume
π ≤ πM . Because of Lemma A.9, it suffices to look at ℓ ∈ {0, 1} (the worst

case for π is at most smaller). Define qj = q̄(k,j)(π), j = 0, 1, where we may
exclude the case

q0 < q̄(k,0)(π(k,1))(< q̄(k,1)(π(k,1)) = 1).

Now for q̌ , min(q0, q1) consider the cases q̌ = q0 and q̌ = q1 separately.

Then after our exclusion of suboptimal π’s outside I
(k)
ℓ , in each case, q̌ = qj ,

j = 0, 1, Corollary A.7 gives us a βj , j = 0, 1 such that q̄(k,j)(π(k,βj)) = qj .
By Proposition A.8, in the opposite situation ℓ = 1 − j, the corresponding
strategy π(k,βj) is optimal on the whole set of strategies A(k) subject to
q̄(k,j)(π(k,βj)) ≥ qj . Hence q̄(k,1−j)(π(k,βj)) ≥ q̄(k,1−j)(π). �
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Appendix B. Illustration of the rmx Approach in Robust
Statistics

Generally, the rmx approach in robust statistics leads to very reasonable, by
no means overly pessimistic procedures. In particular it compares very well
with other approaches from robust statistics to select this radius. In the
two most prominent ones one either selects the radius maximal, just looking
at stability only, which gives the most bias robust estimator MBRE. Or, in
an approach due to Anscombe (1960), one fixes an insurance premium in
terms of ARE in the ideal model, which is paid for outlier protection—the
standard default in the community is 95% leading to the 95%-efficiency-
tuned optimally bias robust estimator OBRE95%.

We illustrate this in a set of parametric models, i.e., the Gaussian loca-
tion model N(µ, 1), µ ∈ R, the Gaussian scale model N(0, σ), σ > 0, the
Gaussian location-scale model N(µ, σ), θ = (µ, σ) ∈ R × R>0, the Poisson
model Pois(λ), λ > 0, at λ = 1, and the Generalized Pareto shape-scale
model GPD(0, ξ, β), θ = (ξ, β) ∈ R2

>0, at ξ = 0.7. These models are sur-
rounded by respective ε-contamination neighborhoods of unknown radius.
The respective least favorable AREs are summarized in Table 4, the en-
tries of which can easily be reproduced in R (see R Core Team (2013)) with
script AnscombeOrNot.R in CRAN-pkg ROptEst (see Kohl and Ruckdeschel
(2013)). Note that in this context, in the Gaussian location-scale model the
well-known robust estimator consisting in median and median of absolute
deviations only achieves a least favorable efficiency of 51% (compared to
76% of the RMXE). In addition, for the rmx procedure, we also list the
least favorable number of outliers #out in 100 observations in each situa-
tion, underlining that the least favorable situation is by no means overly
pessimistic.

model\estim. MLE OBRE95% MBRE RMXE; [#out]
N(µ, 1) 0% 60% 64% 85%; [6]
N(0, σ) 0% 19% 37% 67%; [5]
N(µ, σ) 0% 33% 57% 76%; [6]
Pois(λ) 0% 48% 82% 86%; [4]

GPD(0, ξ, β) 0% 14% 44% 68%; [5]
Table 4. Least favorable efficiency supr′ infr q(r

′, r) of different

procedures at different models (in the ε-contamination model).
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