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Abstract—In today’s surveillance systems, there is a need for
enhancing the situation awareness of an operator. Supporting
the situation assessment process can be done by extending the
system with a module for automatic interpretation of the observed
environment. In this article we introduce a consistent terminology
for the domain of intelligent surveillance systems. We clarify the
separation of the real world and the world model, which is used
for the internal representation in the system. For the definition
of an automatic situation assessment module, we make use of
an existing conceptual framework. We will further introduce a
concept for an internal representation of situations of interest and
show how the existence of such situations can be inferred from
sensor observations. Based on these considerations, an automatic
situation assessment module for a maritime surveillance system
was developed. The module was evaluated with a small user group
and the results show that such an automatic support reduces the
workload of the user and is highly accepted.

I. INTRODUCTION

During the operation of surveillance systems, acquiring and
interpreting information from the environment forms the basis
for the state of knowledge of a decision maker. This mental
state is often referred to as situation awareness, whereas the
process to achieve and maintain that state is referred to as
situation assessment [1]. In today’s surveillance systems, the
process of situation assessment is highly supported through the
various heterogeneous sensors and appropriate signal process-
ing methods for extracting as much information as possible
about the surveyed environment and its entities. The challenge
of advanced surveillance systems is now to further support
the decision maker in his situation assessment process by
reducing his workload. This can be achieved by an automatic
interpretation of the information. However, there is a need for
concepts and methods that are able to infer situations from
observed entities in the environment and to project their status
in the near future.

In this paper, we present a method for automatic situation
assessment in the maritime domain, which was developed
based on a conceptual framework for supporting situation
awareness in surveillance systems. The framework consists
of four parts, namely situation characterization, situation ab-
straction, situation recognition and situation projection. The
automatic situation assessment presented here, which is based
on a Bayesian network approach, addresses three of the four
parts, namely the situation characterization, abstraction and

recognition of the framework. The situation itself is defined
as a statement about the constellation of the entities in the
environment and modeled as a binary random variable with
values true or false. During the process of situation character-
ization, the focus was on developing a formal representation
of a situation in the maritime domain, based on the description
of some experts. The result is a Bayesian network in which the
structure and the parameters, i.e. the probabilities, are defined
by humans and not by training methods. This is due to the
fact that there is not enough training data, especially not for
critical situations.

In the situation abstraction process, it has to be defined, how
the observations have to be mapped to predefined situations.
As situations are defined as statements, they can’t be measured
directly. Moreover, they have to be inferred from quantitative
observations, and these dependencies have to be modeled in
advance. During the process of situation recognition, inference
methods for Bayesian networks propagate the evidences col-
lected by observations to the situations of interest, as defined
in the abstraction process. As a result, a degree of belief is
calculated, which can be interpreted as a probability for the
existence of the predefined situation. Based on this value, it
can be decided if the situation currently takes place or not.

The previously described automatic situation assessment
was implemented and evaluated with a small user group.
Complete ship traffic, i.e. every ship, their observed trajectories
and attributes, was visualized in a dynamic situation map.
The ship traffic was created by a simulation tool, as well
as the sensor configuration. Running the simulation, the tool
generates sensor observations from coastal radar and the
automatic identification system (AIS), which are often used
in real world maritime surveillance applications. The task for
the test person was to detect vessels with a high probability
to carry refugees on board. Before the test, the user was
introduced into the characteristics of such kind of boats (size,
speed, direction, etc.). The focus of the evaluation was on the
user acceptance of the suggested support. However also an
evaluation of the workload was done. The results show a first
direction, that such an automatic situation assessment is really
supporting the situation awareness of a decision maker and
that he trusts the automatic support.

The paper is organized as follows. In Section II, an overview



of related work is given. In Section III, we come up with a
definition of a consistent terminology for the domain of intel-
ligent surveillance systems. In Section IV, a concrete method
for situation assessment is determined based on the conceptual
framework from [2]. In Section V, the situation assessment is
applied for a situation of interest in the maritime domain and
in Section VI, the users workload and the acceptance of the
automatic situation assessment is evaluated with a small user
group.

II. RELATED WORK

Working with heterogeneous sensors, the theories of multi-
sensor data fusion [3] offer a powerful technique for support-
ing the situation assessment process. A lot of research has been
done in combining object observations coming from different
sensors [4], and also in the development of real-time methods
for tracking moving objects [5].

Regarding data fusion in surveillance systems, the object-
oriented world model (OOWM) is an approach to represent
relevant information extracted from sensor signals, fused into
a single comprehensive, dynamic model of the monitored area.
It was developed in [6] and is a data fusion architecture
based on the JDL (Joint Directors of Laboratories) data fusion
process model [7]. Detailed description of the architecture and
an example of an indoor surveillance application has been
published in [8]. The OOWM has also been applied for wide
area maritime surveillance [9].

In [2], a conceptual framework for automatic situation
assessment, which is used here, was developed and first ideas
of modeling situations in surveillance applications have been
presented. We will present here a more detailed definition of
a situation. For the situation assessment process, probabilistic
methods like hidden Markov models can be used [10], but
they are strongly dependent on training data. In [11], Markov
random fields are used to model contextual relationships and
maximum a posteriori labeling is used to infer intentions of
observed elements.

III. CONSISTENT TERMINOLOGY FOR INTELLIGENT
SURVEILLANCE SYSTEMS

In surveillance applications, a spatio-temporal section of the
real world, a so-called world of interest, is considered. The
general information flow inside such a system is visualized
in Fig. 1, wherein information aggregates are represented by
boxes, and processes are represented by circles. The informa-
tion flow for general intelligent surveillance systems will be
described in the following.

First of all, we say that the real world consists of entities. By
the term entity, we don’t necessarily mean physical objects, as
entities can also be non-physical elements in the real world like
relations. Also, entities don’t necessarily have to be directly
observable by sensors. Entities can also be unobservable
elements like the intention of a person.

The real world can be observed by sensors. Sensor systems
can be of extremely heterogeneous types, e.g., video cameras,
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Fig. 1. Information flow and terminology in a surveillance system represented
by information aggregates (boxes) and processes (circles).

infrared cameras, radar equipment, or RFID-chips. Even hu-
man beings can act like a sensor by observing entities of the
real world. Observing the world of interest with sensors results
in sensor data, for example a radar image or a video stream.
Sensor data is then analyzed by means of knowledge and the
resulting information is passed to the world model. Analyzing
sensor data includes for example the detection and localization
of persons that are moving inside a building in a video stream.
Knowledge contains all information that is necessary for
analyzing sensor data, for example specific signal-processing
methods and algorithms used for the detection, localization
and tracking of people in video streams.

The world model is a representation of entities in the world
of interest and therefore consists of representatives. Every
representative has a corresponding entity in the real world.
The mapping between entities in the world of interest and
representatives in the world model is structure-preserving and
can therefore be interpreted as a homomorphism. Specific
mappings are defined by concepts and are part of the knowl-
edge. Concepts are used for example in the analyzing process
by defining how an observed person is represented in the world
model. As the world of interest is highly dynamic and changes
over time, the history of the representatives is also stored in
the world model. However, as mentioned before, some entities
can’t be observed directly and therefore an inference process
is reasoning about unobservable (and also unobserved) entities
by means of knowledge. A simple inference is for example
to calculate an object’s velocity from the last and current
position. A more complex inference is for example, to estimate
if the intention of an observed person is benign or adversarial.



Doing this way, the world model is continuously updated and
supplemented with new information by the inference process.

The concept of an object is defined as a physical entity of
the real world. Regarding its spatial position, an object can be
mobile, e.g., a person, or stationary, e.g., a room. An object
has several attributes, which can be divided into properties and
states. Properties are time-invariant attributes, e.g., the height
or the name of a person. State values can change over time
and are therefore time-variant, e.g., the position or the velocity
of a person. As the representation in the world model also has
a memory, which means the past states of an object are stored,
the complete history of the observed object is always available.
Additionaly, the representation of an object in the world model
includes not only observed attributes, but also inferred ones.
For example, based on observed positions of a person, the
velocity can be inferred. Furthermore, attribute values can be
quantitative or qualitative. For example, the absolute position
and velocity of a person are quantitative attributes, and the
attribute value that a person is smiling is a qualitative one.

We will now define how objects, scenes and situations can
be represented in the world model. However, the world model
can easily be extended by defining new concepts, e.g., for
relations, activities or events.

By the concept of a scene, we define all observed and
inferred object information at a point in time. A scene can
therefore be interpreted as a time-slice, consisting of all objects
and their attributes. To include the time aspect, we also speak
of a sequence of scenes, when the scenes are considered at
several discrete points in time. However, a scene does not
include any type of relations in an explicit way. This means,
that it is for example not explicitly modeled that two persons
are close to each other. But implicitly, of course, this relation
can be inferred by the positions of the two persons.

We say that the configuration space of the real world
is defined by all possible types of objects, their maximum
number of occurrence, and their attributes. Then we can say
that a scene, which is represented in the world model, is
exactly one point in the configuration space of the real world.
A sequence of scenes can be interpreted as a trajectory through
the configuration space defined by a series of points in time.

The concept of a situation is defined as a statement about
a subset of the configuration space, which is either true or
false. We also say that a specific situation of interest exists, if
its statement was inferred to be true. Situations are therefore
characterized by qualitative attribute values and their truth is
inferred based on information provided by the world model.
This means that they have a higher level of abstraction and
the level of detail included in the quantitative attribute values
of objects and relations is getting lost. The simplest situation
is a statement about a qualitative attribute value of an object,
e.g., that a person is smiling. There are also situations that can
only be inferred by observing the real world over a period of
time, e.g., that a person is dancing or that two persons have a
conversation.

But although situations are characterized by information
collected over a time-period, the only exist at a special point in

time. Their existence at the next time-point has to be verified
again. However, there are a lot of dependencies between
different situations. First of all, situations can be inferred from
other situations, e.g., if some persons are dancing and some
persons are drinking beer, the inferred situation could be that
there is a party going on. Furthermore, situations can exist
in parallel or the existence of one situation can exclude the
existence of another situation.

Summing up, knowledge contains all information for an-
alyzing sensor data, updating the world model and supple-
menting it with new information. Concepts are used for
the representation of real-world entities in the world model.
Characteristics of the knowledge are of course extremely
dependent on the application domain. Additionally, knowledge
is not static. The content of the world model can be used for
acquiring new knowledge by a learning process, for example
structure or parameter learning in graphical models.

To close the loop of the information flow, the result of an
inference process could also include a plan, of how to act
further in the real world. This could be an action plan for an
agent, for example to call the police, or a sensor management
plan, for example a request for more detailed information from
a special sensor.

IV. FRAMEWORK FOR AUTOMATIC SITUATION
ASSESSMENT

The conceptual framework for automatic situation assess-
ment is depicted in Figure 2. As we do not cover here the
temporal evolution of a situation, this is a reduced version
of the framework where we left out the situation projection.
The reduced framework consists of three major process parts
(situation characterization, situation abstraction, and situation
recognition) and the associated results of the processes. The
three process parts and their connection is explained briefly in
the following.
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Fig. 2. Reduced version of the conceptual framework developed in [2].
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Fig. 3. Networks of situations, divided into directly and indirectly inferred situations.

A. Situation Characterization and Template Situations

The first process part of the situation assessment framework
is the characterization of relevant situations. As learning-based
methods for situation recognition are often not realizable due
to the lack of training data, this process has to be performed
by human experts. The experts provide descriptions of relevant
situations, including their salient features. Such situations of
interest determined by the experts are then tried to assess
during surveillance operation. However, the description has to
be transformed into a formalized representation, namely the
template situation.

Due to the definition of a situation above, we can model a
situation at a time t as a binary random variable St, such that

St(ω) =

{
1 if ω is true,
0 if ω is false,

(1)

and ω is the statement of the situation of interest. We are
interested in the probability that ω is true, and thus that the
situation St exists at time t. We write this existence probability
as P (St = 1), or P (St) in short.

For calculating this probability, the aforementioned depen-
dencies between other situations have to be modeled. We can
distinguish the following two cases:

• Direct inference: the existence probability P (St) can be
inferred directly from the information content of a scene
(or from other concepts like relations or groups);

• Indirect inference: the existence probability P (St) de-
pends on the existence probability of other situations.

This concept of a network of situations in every point in time
is visualized in Fig. 3. Please consider that we do not cover
temporal evolutions of situations here and therefore we don’t
have any crossing arcs between any points in time. However,
this concept can easily be extended to networks including
temporal dependencies.

Due to this modeling, the network of situations can be inter-
preted as a probabilistic graphical model, namely a Bayesian
network (BN). In a Bayesian network, the basic idea is to de-
compose the joint probability of various random variables into

a factorized form. A BN is defined as a directed acyclic graph,
where random variables are depicted as nodes and conditional
probabilities as directed edges. The joint probability can then
be factorized as

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|Pa(Xi)), (2)

where Pa(Xi) is the set of parents of the node Xi.
As we want to make use of the network in every time

step, we assume that the structure of the BN doesn’t change
over time. For the modeling of the situational network, we
divide the set of situations into the set of directly inferable
situations E and the set of indirectly observable situations S,
and interpret them as evidence variables and state variables,
respectively. Then, a prior distribution P (S) over all state
variables S and the observation model have to be defined in
advance. In the observation model, the dependencies P (E|S)
between the directly and indirectly inferable situations are
determined. This can be done by specifying a conditional
probability table (CPT). The joint probability can then be
calculated in every time step by

P (S,E) = P (E|S)P (S). (3)

In the process of situation characterization, the structure of
the network (nodes and arcs) and the CPT have to be defined.
The template situation has the form of the resulting Bayesian
network.

B. Situation Abstraction and Situation Representation

The second process part is the situational abstraction of
the observed objects. The aim of this process is to determine
the dependencies between object observations and situations,
namely the evidence variables. However, there is no general
approach for the definition of the situation abstraction as it
depends strongly on the semantics of the evidence situations.
In some cases, the abstraction process is straightforward. E.g.,
if the statement of the evidence situation is “two objects are
close to each other”, the abstraction process could simply be



defined by applying a threshold to their distance. A more
complex abstraction process is necessary if the statement “a
person is aggressive” has to be verified. This could be done by
a machine learning algorithm, being applied to various input
features.

During operation, the methods defined for the abstraction
process are applied and they result in the values of evidence
situations, namely the situation representation, in every time
step. We will give a more concrete example of the abstraction
process and its resulting representation in Section V-B.

C. Situation Recognition

The third process part of the framework is the situation
recognition, which deals with matching the situation represen-
tation to the situation template. As the situation recognition has
to deal with challenges like incomplete information, the result
of the situation recognition should not be a binary decision
whether the situation is recognized or not. The result should
be a degree of belief for each template situation, indicating
the existence of the underlying and ongoing situation.

By modeling the situations of interest as nodes in a Bayesian
network, we can use inference methods based on Bayes’ rule
(see for example [12]). We can thus calculate the probability
of situations S, given some evidence situations E as

P (S|E) =
P (E|S)P (S)

P (E)
, (4)

for each point in time.
A situation is represented in the world model, if the corre-

sponding existence probability is larger than an instantiation-
threshold. If the existence probability of the same situation
at the next time step is below a deletion-threshold, it is
assumed that the situation does not exist any longer and its
representation is removed from the world model. This way,
it is tried to keep an up-to-date representation of the existing
situations of the real world.

V. SITUATION ASSESSMENT IN THE MARITIME DOMAIN

For a representation of the world model, the OOWM system
as described in [9] was adapted to the maritime domain.
The graphical user interface of the OOWM is depicted in
Fig. 4. It shows observed vessels at the Mediterranean Sea
between the African coast and the island of Lampedusa.
Sensor observations are simulated in the system, but they are
assumed to be generated by coastal radar systems or signals
from the automatic identification system (AIS). In Fig. 4, an
observed vessel is selected and it’s observed attributes is shown
on the left side. These are exactly the attributes that are stored
in the world model, and which are used for inferring situations
of interest.

A. Situation Characterization and Template Situation

In the maritime domain, one situation of interest is the
detection of vessels that carry refugees on board. Based on
various statements by maritime experts, these vessels have
the following (observable) characteristics: They are heading

Fig. 4. The OOWM system applied to the maritime domain

towards Lampedusa, they take a direct course, they don’t send
any AIS-Signal for identification, and they are either wooden
boats or motor-boats, where the wooden boats are slower and
smaller than the motor-boats.

Based on these descriptions, the structure of the Bayesian
network can be defined. As the arcs in a Bayesian network
model the causality, arcs are drawn from cause to effect. The
resulting structure of the network is shown in Fig. 5. The
evidence situations are colored in blue and the situation of
interest is colored in red.

Fig. 5. Bayesian Network the situation of interest colored in red.

The prior probability of the situation of interest has been
set to P (is refugee vessel) = 0.3. In the next step, the CPT
of the network has to be defined. It has been tried to set the
conditional probabilities in a realistic way. The complete CPT
is shown in Table I.

So far we have fully defined the template situation, namely
the Bayesian network with its CPT. The challenges of model-
ing the situational network during the situation characteriza-
tion are firstly to model the structure of the network. Secondly,



TABLE I
CPT FOR BAYESIAN NETWORK IN FIG. 5.

Is Refugee Vessel
True False

Sends AIS True 0.1 0.4
False 0.9 0.6

Is Slow True 0.7 0.5
False 0.3 0.5

Is Short True 0.6 0.4
False 0.4 0.6

Straight Course True 0.7 0.5
False 0.3 0.5

Towards
Lampedusa

True 0.9 0.5
False 0.1 0.5

the parameters of the network, namely the conditional proba-
bilities have to be determined.

B. Situation Abstraction and Situation Representation

During the abstraction process, methods have to be defined
and established of how to get information for the evidence
nodes. In our previously determined network, we identified
five evidence nodes, namely

• SA = “sends AIS”,
• SB = “is slow”,
• SC = “is short”,
• SD = “is heading towards Lampedusa”,
• SE = “is taking a straight course”,

and one situation of interest, namely SF , which is the situation
that the observed vessel is carrying refugees on board. In our
example, the abstraction processes have been defined in the
following way:

• SA = 1, if the vessel’s Maritime Mobile Identity (MMI)-
Number is available. This number is only available if the
vessel is sending its data actively by AIS.

• SB = 1, if the vessel is slower than 10kn.
• SC = 1, if the vessel is shorter than 20m
• SD = 1, if the distance to Lampedusa is decreasing with

respect to the previous and the current point in time.
• SE = 1, if the vessels heading didn’t vary more than 5

degrees over the last 10 time steps.
These methods are the result of the pre-operational abstrac-

tion process. During operation, the methods are executed for
each observed vessel seperately. Note that this is due to the
semantic of the situation of interest, as the situation of interest
demands for a probability for each vessel to carry refugees
on board. However, this approach can easily be extended to
situations that involve several objects. Thus, the result of the
abstraction process is a situation representation in the time
point t, which has the following form:

Rt = (SA = sa, S
B = sb, S

C = sc, S
D = sd, S

E = se)t,

with sa,b,c,d,e ∈ {0, 1, ∅}. The empty set is very important
here, because it could happen that we don’t have information

about every feature of the vessel in every time step. How-
ever, this doesn’t mean that we cannot execute the situation
recognition process, as we will see in the next section.

C. Situation Recognition

During the situation recognition process, we want to estab-
lish the degree of belief of the situation of interest P (SF ).
This is done by inserting the values of the evidence variables,
namely the vector Rt, into the Bayesian network. This is
repeated in every time step. By several well-established in-
ference methods for Bayesian networks (see e.g. [12]), the
probability of the situation of interest can be calculated.

The most challenging part of the situation recognition
process is the interpretation of the resulting probabilities. This
can be seen by having a look at some results listed in Table
II. In the first row, all evidences values should lead to a high
probability, because all features described by the experts are
fulfilled. However, the resulting probability is about 77%. This
is due to the fact that although all evidence is supporting the
existence of the situation of interest, it is still possible that it
can be a boat without refugees on board with a probability
of 23%. The second row shows that omitting the information
about the length of the boat reduces the probability to 69%.
In row three, the vessel is sending the AIS-signal and the
probability is 36%. A probability of 20% is reached if the
vessel sends AIS and it is too long (row four). The same
probability is calculated, if the vessel does not send any AIS-
signal, but is not heading towards Lampedusa. In the sixth row,
all feature values argue against the situation of interest, and
the resulting probability is only about 1%. This is due to the
fact that there is still a possibility that the vessel is carrying
refugees on board.

TABLE II
RESULTING PROBABILITIES FOR THE SITUATION OF INTEREST

Row SA SB SC SD SE P (SF )

1 0 1 1 1 1 0.77

2 0 1 ∅ 1 1 0.69

3 1 1 1 1 1 0.36

4 1 1 0 1 1 0.20

5 0 1 ∅ 0 1 0.20

6 1 0 0 0 0 0.01

Therefore, all possible values of P (SF ) range from 1% to
77%, and not as one would intuitively think from 0% to 100%.
The interpretation of all the resulting probabilities is often not
straightforward and strongly dependent on the values of in the
CPT. Changing the conditional probabilities in the CPT can
lead to very different ranges for P (SF ). The interpretation of
the resulting probabilities can be used for the specification of
the instantiation- and the deletion-threshold as mentioned in
IV-C.



VI. EVALUATION OF ACCEPTANCE

In this section we describe how the situation assessment has
been evaluated to determine the workload and acceptance and
present the results.

The user interface used for the evaluation is shown in Fig.
4. The task was explained in the following way:

“Assume you are a decision maker in a maritime control
station, where the current vessel traffic is displayed in a
dynamic map. You have to make a decision based on the
information about the observed vessels. Based on observed
attribute values, you have to identify three vessels that are
most likely to carry refugees on board. Which ones would you
choose?”

The test persons have been introduced in the characteristics
of such kind of boats before the evaluation. They were able
to select vessels in the displayed dynamic map and to have
a look at their attributes (velocity, AIS-information, etc.). If
the ship symbol is colored (and not grey), then there is AIS-
information available and the ship is assigned to a specific
type (passenger, cargo, tanker, etc.). The test persons had as
much time as they wanted to solve the task.

For the experiment, the eight test persons have been divided
into four groups. All of them had to execute the experiment
twice, once without a situation assessment support, and once
with support. Therefore, two scenarios have been defined. In
both scenarios, three vessels with the aforementioned features
have to be detected. Mixing up the two scenarios in order and
enabling/disabling the support respectively is resulting in four
different evaluation groups.

When working with the situation assessment support, the
test persons had additional information about a vessel. This
was indicated by a blinking box around a vessel, where the
color coding is as follows:

• Red box: Probability of the situation of interest is between
40% and 100%.

• Yellow box: Probability of the situation of interest is
between 20% and 40%.

• Green box: Probability of the situation of interest is
between 10% and 20%.

• There is no box: Probability of the situation of interest is
below 10%.

The exact probability was written in the lower-left info-box
of the user interface.

For the evaluation of the workload, a modification of the
NASA Task Load Index [13] has been chosen. Five questions
have been asked, namely

• Mental Demand: How mentally demanding was the task?
• Temporal Demand: How temporally demanding was the

task?
• Performance: How successful were you in accomplishing

what you were asked to do?
• Effort: How hard did you have to work to accomplish

your level of performance?
• Frustration: How insecure, discouraged, irritated,

stressed, and annoyed were you?

The results of these questions are shown in Fig. 6, where
the values have been scaled to the range of 0 to 100, and lower
values can be interpreted as better results.

Fig. 6. NasaTLX results (lower values indicate better results).

Interpreting the results, one can see that in four out of
five questions, working with the situation assessment support
yields better results than working without it. Only the estimate
of the own performance is lower when using the support.
However, when looking at the true results, all test persons
performed better or equal when working with support. The
overall rate of detection was about 71% without support, and
79% with support. However, the performance was not in the
focus of this evaluation.

Now calculating the workload by building the average of
the five question results leads to the values depicted in Fig. 7.
Looking at the different values, we can conclude that working
with the proposed situation assessment support for this specific
application, the workload of a decision maker is lower than
the workload of decision makers working without the support.

Fig. 7. Average Workload of test persons.

Regarding the acceptance of the automatic situation assess-
ment, the following questions have been asked:

• How long was the familiarization time with the system?
• How easy was the system to use?
• How useful was the color coding regarding the situation

of interest?
• How useful was the actual probability in the lower left

info-box?



• How useful was the support function in general?
The results for this question are shown in Fig. 8, where the

values range from 0 to 100, and higher values indicate better
results. Except the usefulness of displaying the real probability,
all questions got a quite high score, especially the color coding
of the situation of interest. The reason for the low value of the
probability display is due to the design of the user interface.
Users have to guide their focus of attention to the lower left
corner of the interface in order to read the probabilities. But
often they didn’t even look at these values and kept their focus
of attention on the dynamic map.

Fig. 8. Acceptance of automatic situation assessment (higher values indicate
better results).

The test persons also have been asked if they would prefer
the automatic situation support, and 100% of them answered
the question with “yes”. Thus, the proposed automatic situa-
tion assessment is well accepted by users, even though they
don’t know exactly how the probabilities are calculated.

VII. CONCLUSION AND FUTURE WORK

In this article, we presented a definition of a consistent
terminology for intelligent surveillance systems. We gave a
description of an already existing framework for automatic
situation assessment and extended it by defining concrete
methods. We further introduced a concept for the definition
an internal representation of situations of interest and showed
how the existence of such situations can be inferred from
sensor observations. Following this proposition, we developed
an automatic situation assessment module for a maritime
surveillance system. The module was evaluated with a small
user group and the results show that such an automatic support
reduces the workload of the user and is highly accepted.

As the results of the situation recognition are strongly
dependent on the conditional probabilities of the network,
further work will regard the sensitivity of the network with
respect to the conditional probabilities and the interpretation
of the resulting probabilities. The aim is that the expert
does not necessarily have to be familiar with the underlying
probabilistic method and that the probabilities of the Bayesian
network can be set automatically.

Also, the focus of this evaluation was on the user acceptance
of the module and not on the reliability of the probabilistic

method. Therefore, the influence of the conditional probabili-
ties on the results of the situation recognition has to be further
investigated. Further work will also be done on exploring
the capabilities of dynamic Bayesian networks. Using them,
dependencies in time can be included and also the projection
part of the framework, which was omitted here, can be
covered.

For a general conclusion about the workload and the ac-
ceptance of the module, the method should be evaluated for
different scenarios and with a lot more test persons. Also, an
evaluation with experts in the domain of maritime surveil-
lance could yield to different results. Additionally, the results
strongly depend on the visualization of the user interface.
Therefore, the module should also be evaluated by using
different visualization techniques of the recognized situations.
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