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TEAM AND ORGANIZATION
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LIQUID METAL EMBRITTLEMENT

What is Liquid Metal Embrittlement (LME)?

▪ Infiltration of liquefied zinc coating into 
grain boundaries

▪ Causing cracking during resistance spot 
welding (RSW)

Focus of research project

▪ Identification of process related 
influence factors

▪ Combination of experimental and 
simulative approach

→ Develop and experimentally validate
avoidance strategies
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INFLUENCE FACTORS
OVERVIEW

Combining of steel grades to wide variety of material-thickness-combinations (MTC)

▪ Welding process according to ISO 18278-2

▪ Without process deviations no cracking was observed

▪ Process deviations as influence factors on LME formation

▪ Majority of process deviations caused light cracking

→ Confirmed LME as cracking mechanism by SEM/EDS analysis and de-zincing of sheets
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INFLUENCE FACTORS
EXPERIMENTAL ANALYSIS TECHNIQUES

▪ Dye-penetrant testing (DPT) may lead to incorrect results (false crack detections)

▪ Local removal of zinc after welding enables uncovering of zinc covered cracks

▪ Basis for quantification of cracking intensity

▪ Local removal of zinc before welding allows for complete LME avoidance

▪ Creation of crack free reference specimen
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INFLUENCE FACTORS
CRACK INTENSITIES

Wide range of crack intensities investigated…

▪ Thinner MTCs: crack free welds even on extreme weld setups (e.g. 4x weld time)

▪ Thicker MTCs: Light cracking for most process deviations

→ Medium to intense cracking only as consequence of elongated weld time

▪ Reproducible crack formation at highly deformed spot weld areas

→ Identified LME influence factors: Sheet thickness and energy input

6



INFLUENCE FACTORS
SETUP OF SIMULATION MODEL - VALIDATION

▪ 3-D electro-thermo-mechanical simulation model 

▪ Temperature dependent material properties scaled from literature

▪ Validation via surface temperature measurements and cross-sections
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INFLUENCE FACTORS
SETUP OF SIMULATION MODEL – TEMPERATURE DEVELOPMENT

▪ Simulation results match experimental temperature flow and nugget size

▪ Small deviations are acceptable because of…

▪ Experimental scatter, simulation simplifications and assumptions

→ Predictive use of the simulation possible
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INFLUENCE FACTORS
SHEET THICKNESS

Cracking is more likely to occur when welding thick sheets at Imax

▪ 1.34 mm DP1200 onto 1.00 mm mild steel → No cracking

▪ 1.34 mm DP1200 onto 2.00 mm mild steel → Reproducible cracking

→ Different welding parameters and nugget dimensions
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INFLUENCE FACTORS
SHEET THICKNESS

For thick mild steel case…

▪ Energy input ~60% higher due to 
welding parameters

▪ Significant duration in ductility trough 
(700°C - 900°C)

→ Thick case stays ~4.5 times longer at 
critical zinc temperatures

→ MTCs requiring more energy-input 
have an increased LME-susceptibility

→ Thicker MTCs require longer time for 
heat dissipation (increased cracking 
risk)

10



INFLUENCE FACTORS
HIGH ENERGY INPUT

For extension of weld time…

▪ Observed cracking intensity increases

▪ Indentation and sheet separation intensify

▪ Nugget is flattened – no significant increase in nugget volume

→ Enforcement of high intensity LME cracks for destructive testing:

Extreme heat-input by prolonging of weld time on thicker MTCs
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→ Elongated weld times increase

exposure to critical temperatures



MECHANICAL STRENGTH IMPACTS OF LME

CT-Scan supported testing of 3 crack intensities…

▪ Intense cracks (> 50 % sheet thickness) → significant impact on mechanical joint strength

▪ Medium cracks (20 – 50 % sheet thickness) → impact depending on load type and MTC

▪ Small cracks (< 20 % sheet thickness) → no impact on mechanical joint strength
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Impact of medium cracks:

surface cracks, shear-tensile crash load, DH1200 with MS1400

No impact of medium cracks:

interface cracks, shear-tensile quasi-static load, DH1200 with mild steel



MECHANICAL STRENGTH IMPACTS OF LME

CT-Scan supported testing of 3 crack intensities…

▪ Intense cracks (> 50 % sheet thickness)

→ No significant impact on fatigue life
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Comparison of fracture pattern during quasi-

static destructive testing of LME-afflicted and 

LME-free spot welds

No impact of intense cracks:

Surface / interface cracks, shear-tensile cyclic load, 

DH1200 to mild steel



CONTROL AND PREVENT LME
ADAPTION OF ELECTRODE GEOMETRY

Experimental setup

▪ ISO5821-caps: F1-5.5, F1-8.0, A0-R100 

▪ Similar nugget diameter: current +5% for F1-8.0 and +10% for A0-R100
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CONTROL AND PREVENT LME
ADAPTION OF ELECTRODE GEOMETRY

FE-Analysis of temperature development

▪ The simulated molten zinc time is similar for all electrode caps at edge of nugget

▪ The temperature exposure cannot explain differing LME susceptibility

→ Next step: Consideration of plastic strain at the indentation
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CONTROL AND PREVENT LME
ADAPTION OF ELECTRODE GEOMETRY

FE-Analysis of plastic strain development

▪ Significantly increased plastic strain for 5.5 mm electrode cap

▪ The strain remains constant for F1-8.0 and A0-R100 electrode

→ Electrode caps with large working planes reduce LME susceptibility significantly
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CONTROL AND PREVENT LME
ADAPTION OF HOLD TIME – EXPERIMENT

Comparison of two high heat input welding processes

▪ Combination of 1.58 mm DH1200 with 1x and 3x layer of 2.00 mm mild steel

▪ Welding with cap type A0 (flat) at 4x weld time and Imax

▪ Hold times varied between 10 ms, 200 ms, 800 ms

▪ Focus on behavior after electrode lift-off

→ Prevention of LME cracks by adaption (extension) of hold time?
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200 ms hold time → Cracked spot weld 800 ms hold time → Crack free spot weld

Shifting of images due

to current switch-on/off

Shifting of images due

to current switch-on/off

Crack path

No LMELME

2.00 mm 2.00 mm



CONTROL AND PREVENT LME
ADAPTION OF HOLD TIME – FE-ANALYSIS

▪ Rapid re-heating of surface after electrode lift-off

▪ Re-heating drastically intensified for shorter hold time (200 ms)

▪ Parallel formation of tensile stresses predicted by simulation

→ Similar behavior observed for multiple MTCs

→ Correct adaption of hold time crucial to prevent LME cracks!
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CONTROL AND PREVENT LME
VALIDATION OF OPTIMIZED WELDING PROCESS

▪ Testing on hat profiles with gaps - targeted weld nugget diameter (5√𝑡)

▪ Reference process with 5.5 mm tip: spatter and crack-afflicted

▪ Process optimization by tip-dressing to larger electrode tip diameter
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→ Optimized process with 8.0 mm tip: spatter and LME free welding process

→ Successful transfer onto multiple LME-susceptible materials from AHSS-Portfolio



SUMMARY

Experiments and numerical simulation used to investigate LME during RSW

▪ Influence factors on LME formation identified and analyzed

▪ Mechanical impact of LME on joint strength investigated

▪ Methods for LME avoidance developed and validated
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Adjust hold time according to energy
input and sheet thickness

Larger diameter electrode
tips reduce LME susceptibility significantly



OUTLOOK
LME PROJECT EXTENSION: INDUSTRIAL COMPONENT TESTING

Where does LME occur in an industrial component?

▪ Experimental investigation of crack occurrence and 
magnitude in relation to clamping, process 
conditions and part tolerances

Why does it occur?

▪ Simulative analysis of stresses, strains and critical 
temperatures for the whole part

Does it matter?

▪ Correlation of crack sizes and locations with 
results of material tests to judge crack impact on 
whole-part performance

→ Develop integrated guidelines to avoid LME in the
planning stage
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