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Why Do We Need EM Modelling? 

EM Field Predictions: 

  Cheap and fast planning tools (e.g. for aircraft design, radar systems) 

  Influence of different configurations 

   (geometry, materials, loads) 

  Databases (e.g. for identification purposes) 

  Visualisation and understanding of 

   propagation phenomena 

  Prediction of Installed Antenna Performance 

  ... 
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Outline 

  Introduction and Motivation 

      The Need for EM Modelling  

      Different Methods for EM Modelling 

  EM Simulation Tools at Fraunhofer FHR 

  Simulation Examples 

  Current and Recent Projects 

  NATO SET-200: “Electromagnetic scattering prediction of 

      small complex aerial platforms for NCTI purposes“ 
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Numerical Modelling of 
Electromagnetic Fields 
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EM Simulation Tools at Fraunhofer FHR 

Available Tools  for S imulation of Installed Antenna Performance: 

 Commercial Software Tools 

 Special simulation tools developed for scenarios which are too large or too complex 

for standard treatment: 

 Full wave tools (Boundary Integral Finite Element Method) - FEBI 

   - Maximum problem size up to now: RCS of fighter aircraft at 10 GHz  

   - For larger problems (e.g. antennas on ships or vehicles in an environment) 

      simulations only at lower frequencies or: 

 High-frequency tools (Shooting-and-Bouncing SBR, Uniform Theory of Diffraction 

UTD, Physical Optics PO, Physical Theory of Diffraction PTD) - FARAD 

   - Most commonly used for RCS predictions of arbitrary large targets 

   - Drawbacks: Assumption of a point source; neglect of the influence of the 

      surrounding environment on the source’s radiation 

   - Method restricted to far field antenna problems 
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The Hybrid FEBI-MLFMM-UTD Method 

FEBI object 

FEBI-MLFMM-UTD: 

closed 
surface  

PEC 

Surface A1 

Surface A2 

PEC 

Dielectric 

A. Tzoulis, T.F. Eibert, “A Hybrid FEBI-MLFMM-UTD Method for Numerical 
Solutions of Electromagnetic Problems Including Arbitrarily Shaped and 
Electrically Large Objects”, IEEE Trans. Antennas Propagat., vol 53, no. 10, 
pp. 3358-3366, October 2005.  
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FEBI-MLFMM: 

Mutual coupling between all objects through 
hybrid field formulations 

GO/UTD at MLFMM level 

Finite Element Boundary Integral (FEBI) 
Technique 

 Efficient modeling of arbitrarily shaped and 
complex metallic/dielectric structures 

Multilevel Fast Multipole Method (MLFMM) 

 Acceleration of matrix-vector products of  
BI part 

Uniform Geometrical Theory of Diffraction 
(UTD) 

 Efficient modeling of electrically very large 
objects with relatively simple shape in the 
same environment  

Mutual coupling between all objects through 
hybrid field formulations 
 

Fast Near Field Computations 

Current Work: 

 Development of a pure Surface Integral 
Equation (SIE) formulation for simulating 
composite metallic-dielectric objects 
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FEBI: Extension of UTD Formulation to NURBS Objects 

 Extension to reflections and diffractions from large curved surfaces 
described by Non-Uniform Rational B-splines (NURBS). 

 Efficient calculation of reflection points 

 Accurate tracing of creeping rays on 
NURBS curved surfaces 
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 Possible implementation using 
multithreaded parallel libraries or GPU 
acceleration 



© Fraunhofer FHR  

FEBI Example: Surface Currents on Aircraft 

   f = 2.024 GHz  

   Nose-on incidence 

   V-Polarisation  

   3 million unknowns  
   ~ 8 GB RAM 

Magnitude of surface 
currents 
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FEBI Example: Antenna on Platform (Installed 
Performance of UAV Antenna) 

  Patch antenna on UAV 

  f = 4,7 GHz 

  Far field calculated from CAD model 

  Antenna integrated into wing tip 
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FARAD - EM Fields Calculation with SBR Ray Tracing 

 

 

 

Ray Tracing Method: 

(Geometrical Calculation of Propagation Paths) 

Shooting-and-Bouncing Rays (SBR), number of reflections practically unlimited 

Discrete rays as representatives of ray tubes 

Ray-Density Normalisation (RDN) states the “distance” between rays 

 

Calculation of Field Strength Contributions to Receiver: 

(each time a ray hits the object) 

Physical Optics (PO) + Physical Theory of Diffraction (PTD) 

Transmitter 

Object 

Receiver 
Stochastic 
ray launching 
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FARAD - Combination of GO/UTD-PO/PTD 

Receiver 

PO 

PO PTD 

GO 

GO 

UTD 

GO 

incident rays 

Calculation of field contributions: 

(each time a ray hits the object) PO, PTD 

Geometrical calculation of 

propagation paths: GO, UTD 

GO and PO also implemented 
for dielectric objects 

Geometric Objects: 
- Analytic definition 
- Surface Mesh 
 
+ EM properties (PEC, 
   e, m, roughness) 

Area illuminated 
by incident ray 
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FARAD - Enhancements for Improved Accuracy 

  Curvature Interpolation for facetted surfaces 

       Interpolation of normal vector 

       Deformation of reflected wave front 

      Required for multiple reflections on curved surfaces 

      (e.g. inside cavities, such as jet engines) 

  Reflection Factors from External Files 

      Efficient modelling of multi-layer or coated surfaces 

  Antenna Diagrams 

      Coverage predictions for antennas in larger environment 

  Stochastic Scattering Model for Rough Surfaces 

      Needed for higher frequencies 

  NURBS for Curved Surfaces 
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Simulation Examples 

RCS 

Analys is  of 
scattering centers  

Relative 
RCS in dB 

length approx. 1 m 

Triangular mesh 

with 44,000 facets 

(f = 6-10 GHz) 

(f = 12 GHz) 
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Cavity with Dielectric Material 

Relative 

RCS in dB 

Empty Cavity 

Scattering center analys is  (20-40 GHz) 
(from calculated data) 

Cavity filled 
with PVC Cube 
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FARAD Example: „Boeing 767 like“ 1:100 scaled Model 

vertical polarisation horizontal polarisation 

f = 0°-360° 

Engines show significant contribution to scattering behaviour of the target 

Analys is  of Scattering Centers 
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„Boeing 767 like“ Aircraft: HRRPs in the Ku-Band 

vertical polarisation cross  polarisation 

Significant contributions from nose, wings, and tail fin 

Main peak corresponds to engine, also large cross polar contributions from engine 

 Accurate CAD model required for accurate results  
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Workshop EM ISAE “Radar Signatures” (Toulouse) 

http://websites.isae.fr/workshop-em-

isae-2014 

 “Initiated by DGA and Industrials 

Societies in 1990, the Workshop is 

reserved to Industrials, Defence 

organizations, Public and Private 

Laboratories involved in the design of 

Radar and Targets.” 

 “The themes are Defence and Civilian 

topics: RCS, Targets and antennas designs, 

EMC …” 

 “The idea is to highlight predictive and 

validated computational tools to compare 

and federate current works on reference 

problems.” 

 FHR participates in the workshop since 

2006 
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20 km
20 km

Transmitter Focus
Receiver Array (h = 420m)

10 km
10 km

Transmitter (h = 280m)

EM Simulation of Three-Dimensional Propagation 
Scenarios  

 Example: Radiation of an antenna system over terrain possibly containing various 

obstacles, such as buildings, wind turbines, etc. 

 Obstacles might significantly influence the functionality of the antenna system 

 Effects might become crucial, e.g., for air traffic radar systems or air surveillance 

systems because a significant risk might arise from malfunctioning of such systems 

 Use of ray tracing approaches (size of scenario) 

Relative electric field 
distribution in dB 
(LOS to all points 
of observation) 
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Einfluss von Windenergieanlagen (WEAs) auf 
Radaranlagen des Einsatzführungsdienstes der Luftwaffe 

Background: 

 Operation of air surveillance 

radars may be degraded by 

wind turbines / wind parks 

(e.g. shadowing, reduction of 

operating distance) 

 

Project (09/2012-02/2015): 

 Study of attenuation of fields 

by wind turbines 

 Simulation environment for 

studying selected radar 

positions 

 Take into account site specific 

properties (terrain etc.) 
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Typical Wind Farm Simulation Scenario 

Radar System 

Wind Farm 

Terrain 
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RCS/Signature Suppression of Satellites 

Work Programme of Current Project with WTD 52, Oberjettenberg: 

 Definition of generic CAD models 

 Simulation of frequency/angle dependence of scattering properties 

 Effect of cone signature suppression 

 Variation of cone geometry 

 Fabrication of scaled model 

 RCS measurements on scaled model 

 Comparison with simulations 

 Development of alternative antenna concepts 

 

Project Duration: Mar-Dec 2015 
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NATO SET-200: “Electromagnetic scattering prediction of 

small complex aerial platforms for NCTI purposes“ 

Overview of Work Programme: 

1. Optimization of the already existing mathematical methods and/or development of new ones 

2. Study of cavities effects 

3. Definition of a small set of UAVs 

4. Accurate prediction of full metallic UAVs 

5. Accurate prediction of full UAVs with metallic, non-metallic and/or RAM/RAS parts 

6. Simulation of HRRPs and/or ISAR images 

7. Parametric studies 

8. Close cooperation with SET-180 

 

Duration: 

2013-2015 (probably extended until 2016) 

 

Participating Nations : 

ESP, FRA, NLD, ITA, SWE, DEU 
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EM Scattering Analysis of Jet Engines 
(NATO SET-200 Group, formerly SET-138) 

q 

30 cm 0.5 cm 

30 cm 

Magnitude of equivalent surface 
current density at 12 GHz 
 
BI-MLFMM solution 
h-polarized plane wave incidence 

Simplified Inlet Model 
with Straight Blades  
 
f = 12 GHz (l = 2.5 cm) 
BI-MLFMM as reference solution 
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Numerical Modelling of Antennas and Scattered Fields 

Summary: 

 FHR develops both full-wave and high-frequency simulation tools 

 Metallic and dielectric materials, arbitrary shapes and sizes 

 Modelling of time-variant scenarios, e.g. rotating wind turbine blades, rotating 

jet engine blades, objects moving along a straight trajectory 

Applications: 

 Signature prediction of airborne targets 

(HRRP, distribution of scattering centers) 

 Radar imaging / target classification  

 Low observability (LO) 

 Modelling of wind turbine scenarios 

(propagation over terrain) 

 Installed Antenna Performance 

(antennas on platforms) 


