

Model-Based Security Testing Results from Industrial Case Studies

Ina Schieferdecker, Axel Rennoch Fraunhofer FOKUS

Our testing background

Automated test execution:

TTCN-3 – Testing and Test Control Notation

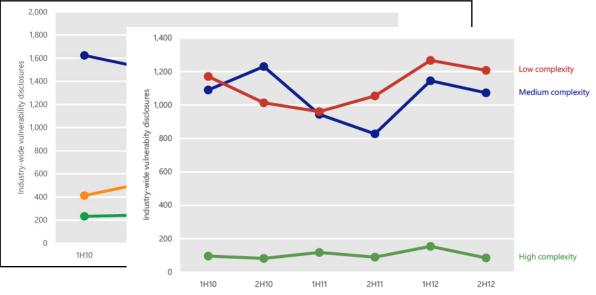
standardization at ETSI since 1998

- Automated test design:
 - **UTP UML Testing Profile**

standardization at OMG since 2001

- Test tools development at FOKUS and Testing Technologies
- Test suites development and testing with numerous industrial partners
- Test automation, TTCN-3 and MBT syllabi and certificates with GTB

Outline

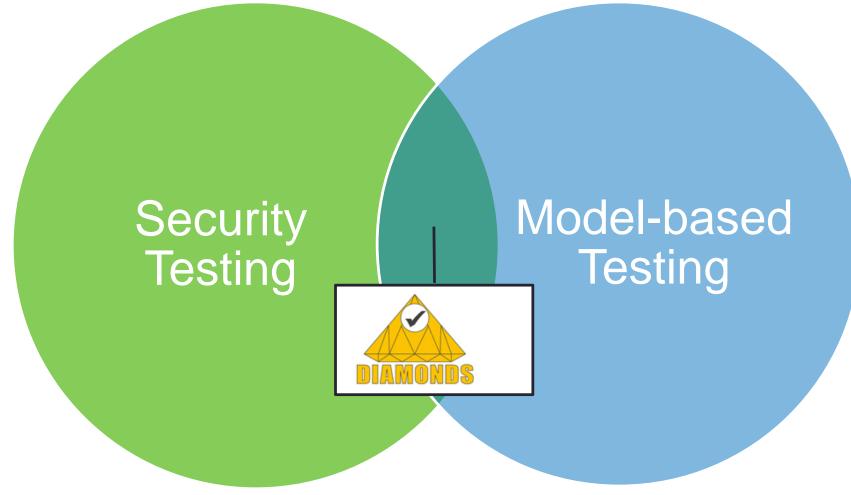

- Introduction and Overview
- Security Testing Improvement Profiles and Industrial Case Studies
- Details of Giesecke & Devrient Case Study
- Security Testing Approach and Traceing
- Summary

Introduction & Relevance Vulnerabilities & software faults

- Most software vulnerabilities arise from common causes and the top 10 cause account for about 75% of all software vulnerabilities
- More than 90% of the vulnerabilities are caused by known causes
- The number of vulnerabilities being discovered in applications is far greater than the number of vulnerabilities discovered in operating systems
- Due to SEI and to McAfee, majority of security breaches is due to software faults

Source : Microsoft Security Intelligence Report Volume 14 - July through Dec, 2012

Introduction & Relevance Challenges



- Security engineering is increasingly challenged by the **openness**, **dynamics**, and **distribution** of networked systems
- Most verification and validation techniques for security have been developed in the framework of static or known configurations, with full or well-defined control of each component of the system
- This is not sufficient in networked systems, where control and observation of remote (sub) systems are dynamically invoked over the network
- DIAMONDS Development and Industrial Application of Multi-Domain Security Testing Technologies – challenges the:
 - → Combination of active and passive security testing
 - → Usage of fuzz tests (for unknown issues) and functional tests (for security measures)
 - → Combination of risk analysis and test generation
 - → Integration of automated test generation, test execution and monitoring

Introduction & Relevance Combination of approaches

© DIAMONDS Consortium 2010-2013

Introduction & Relevance

Efficient and automated security testing

DIAMONDS will enable <u>efficient and automated security testing methods</u> of industrial relevance for highly secure systems in multiple domains.

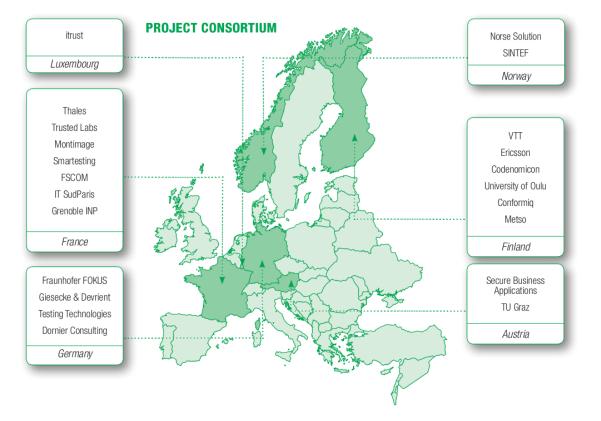
Overall Objectives:

- Model-based security test methods and test patterns
- Automatic monitoring techniques
- Open source platform for security test tool integration

Business Impact:

- Experience reports from different industrial case studies
- Novel integration of testing, security and risk analysis
- Pre-standardization work

DIAMONDS Project


In six countries

Project Duration: October 2010 – June 2013

Project Partner:

- Large companies (6)
- Small companies (10)
- Universities (3)
- Research institutes (4)

DIAMONDS Achievements Valuable results in fast track

- Successful fast exploitation (3 new commercial products, 3 open source products, 10 product updates)
- Adaptation of techniques in the productive environment by Metso, G&D, Thales etc.
- DIAMONDS contributed to the standardization initiatives at ETSI and ISO
- 8 case study experience reports and 11 innovation sheets
- 4 book chapters, 4 journal papers, 102 scientific or industrial papers or presentations, etc.
- DIAMONDS won the ITEA Exhibition award two times
- DIAMONDS tutorial with 7 DIAMONDS talks at the ICST 2013 with appr. 70 participants

DIAMONDS Innovative Results

... and their application to case studies

- Risk Based Testing (Banking, Automotive):
 - Test-based risk assessment (SINTEF)
 - Risk-based security testing with security test pattern (FOKUS)
- Advanced Fuzz Testing (Banking, Radio Protocols, Automotive, Telecom):
 - Model-based behavioural fuzzing (FOKUS)
 - Model inference assisted evolutionary fuzzing (INPG)
- Active Testing Techniques (Banking, Radio Protocols)
 - Model-based security testing from behavioral models and test purposes (SMARTESTING)
 - Integration of model-based test generation and monitoring (MONTIMAGE, SMARTESTING, FSCOM)
- Autonomous Testing Techniques (Radio Protocols, Industrial Automation):
 - Passive symbolic monitoring + distributed intrusion detection (IT)
 - Static binary code analysis for vulnerability detection (INPG)
 - Model-based security monitoring for both testing and operation DevOpsSec* (MONTIMAGE)
- Open Source Tools for Security Testing (Banking, Automotive, Radio Protocols):
 - Tracebility platform for risk-based security testing (FOKUS)
 - Malwasm (iTrust), MMT_Security (MONTIMAGE)

(*) DevOpsSec: term introduced by Gartner Research (« Hype Cycle for Application Security », July 2012)

Outline

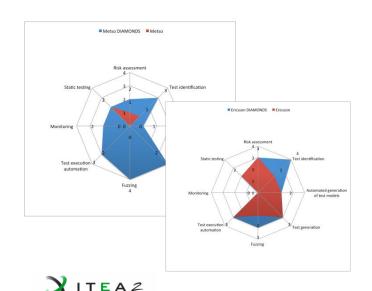
- Introduction and Overview
- Security Testing Improvement Profiles and Industrial Case Studies
- Details of Giesecke & Devrient Case Study
- Security Testing Approach and Traceing
- Summary



Case Studies Six industrial domains

Security testing solutions for six industrial domains in 8 case studies

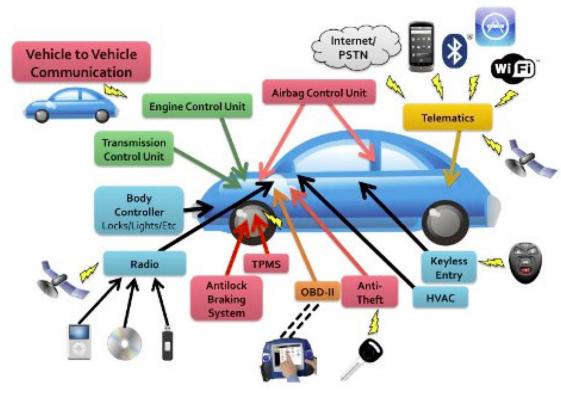
- Banking
- Automotive
- Radio protocols
- Smart cards
- Telecommunication
- Industrial automation


Industrial Impact 8 successful case studies and STIP evaluations

DIAMONDS

- Collection of the experiences and results for all case studies
 - Case study experience sheets
 - Available at DIAMONDS web site
- STIP Evaluation

INFORMATION TECHNOLOGY FOR EUROPEAN ADVANCEMENT

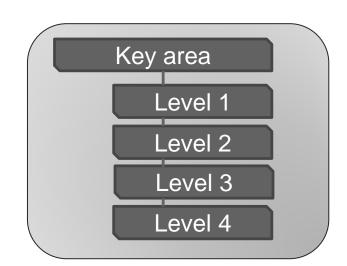

Shows progress in all case studies

Dornier Consulting Case Study I in Germany

 As Information and Communication Technology (ICT) systems become more and more part of our daily lives, current and future vehicles are more and more integrated into ICT networks.

Testing Techniques

- Risk analysis with CORAS
- Fuzzing
- Symbolic execution and Parametric Trace Slicing
- Security monitoring


Evaluation of the DIAMONDS Case Studies

Security Testing Improvement Profiles (STIP)

Security Testing Improvement Profiles (STIP) enables an objective, detailed analysis and evaluation of your testing process

- Provide an objective, detailed analysis and evaluation of our research & development
- Show how out tools & techniques fit together
- Provide recommendations for other on how to pragmatically integrate our results to improve security testing processes on hand.
- Structure the order and target of the optimization steps
- Analysis with respect of the key areas
- Levels are used to assign a degree of progress to each key area
- Each higher level is better than its prior level in terms of time (faster), money (cheaper) and/or quality (better).

Evaluation of the DIAMONDS Case Studies STIP key areas

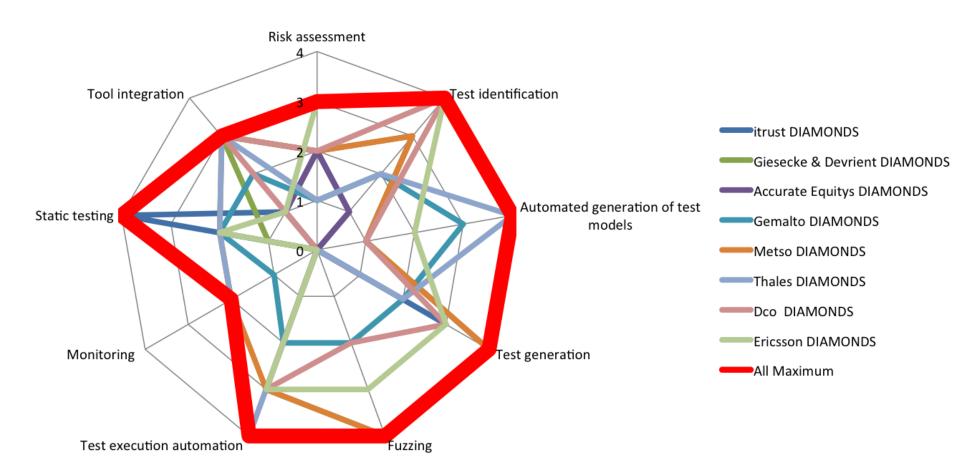
Key area	Description
Security risk assessment	Security risk assessment is a process for identifying security risks.
Security test identification	Test identification is the process of identifying test purposes and appropriate security testing methods, techniques and tools.
Automated generation of test models	For model-based security testing (e.g. fuzzing, mutation based testing) various kinds of models are required, which can be either created manually or generated automatically.
Security test generation	Security test generation is about the automation of security test design.
Fuzzing	Fuzzing is about injecting invalid or random inputs in order to reveal unexpected behave or to identify errors and expose potential vulnerabilities.
Security test execution automation	The automation of security test execution conducts the automatic application of malicious data to the SUT, the automatic assessment of the SUT's state and output to clearly identify a security flaw, and the automatic control of the test execution with respect to different kind of caverages.
Security passive testing/ security monitoring	Security monitoring based on passive testing consists of detecting errors, vulnerabilities and security flaws in a system under test (SUT) or in operation by observing its behavior (input/output) without interfering with its normal operations.
Static security testing	Static security testing involves analysing application without executing it. One of the main components is code analysis.
Security test tool integration	Tool integration is the ability of tools to cooperate with respect to data interchange

Evaluation of the DIAMONDS Case Studies STIP level definition

Key area: Risk Assessment

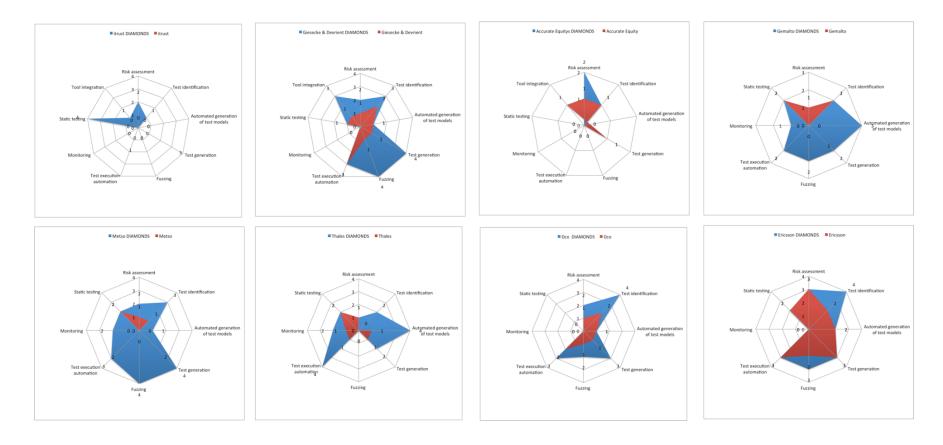
#	Name	Description
L1	Informal security risk assessment	At this level, the security risk assessment is conducted in an unstructured manner without a specific notation/language for document risk assessment results or a clearly defined process for conducting the security risk assessment.
L2	Model-based security risk assessment	At this level, the security risk assessment is conducted in an unstructured manner without a specific notation/language for document risk assessment results or a clearly defined process for conducting the security risk assessment.
L3	Model and test- based security risk assessment	At this level, the security risk assessment is conducted with a language for documenting assessment results and a clearly defined process for conduct- ing the assessment.
L4	Automated model and test-based secu- rity risk assessment	At this level, the model-based security risk assessment is uses testing for verifying the correctness of the risk assessment results.

Evaluation of the DIAMONDS Case Studies STIP results for the international case studies



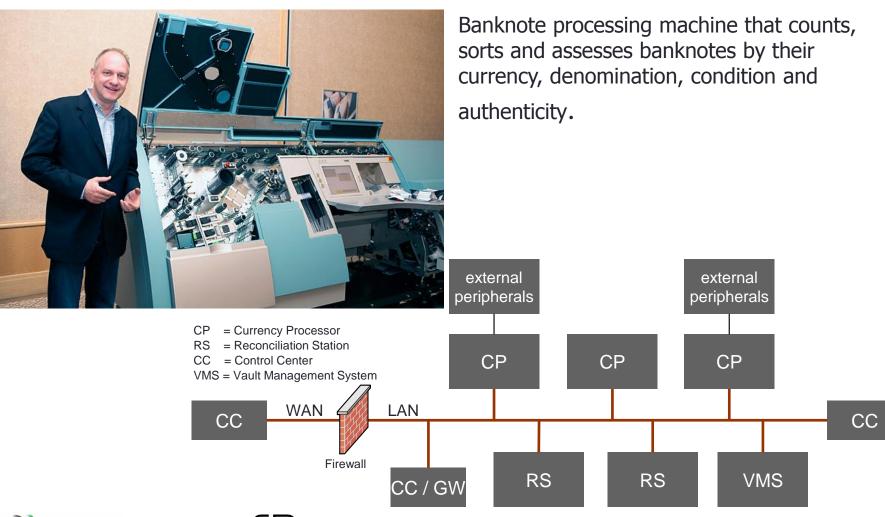
Case Study	Risk assessment	Test identificar.	Automated Sec.	Test Beneration of	Future of the second	Test execution	noitenome ginoinom	Static testing	Tool integration	
itrust	0	0	0	0	0	0	0	0	0	
itrust DIAMONDS	2	1	0	3	0	1	0	4	1	
Giesecke & Devrient	1	2	1	1	1	3	0	1	1	
Giesecke & Devrient DIAMONDS	2	3	1	4	4	3	0	1	3	
Accurate Equity	1	1	0	1	0	0	0	0	1	
Accurate Equitys DIAMONDS	2	1	0	1	0	0	0	0	1	
Gemalto	1	2	0	1	0	2	0	2	1	
Gemalto DIAMONDS	1	2	3	2	2	2	1	2	2	
Metso	1	1	0	2	0	2	0	2	1	
Metso DIAMONDS	2	3	1	4	4	3	2	2	3	
Thales	1	0	1	1	0	1	1	2	1	
Thales DIAMONDS	1	2	4	2	0	4	2	2	3	
Dco	1	2	1	1	1	2	0	0	2	
Dco DIAMONDS	2	4	1	3	2	3	0	0	3	
Ericsson	3	2	2	3	2	3	0	2	1	
Ericsson DIAMONDS	3	4	2	3	3	3	0	2	1	
All Maximum	3	4	4	4	4	4	2	4	3	

Evaluation of the DIAMONDS Case Studies Progress in all case studies



Evaluation of the DIAMONDS Case Studies Progress in all case studies

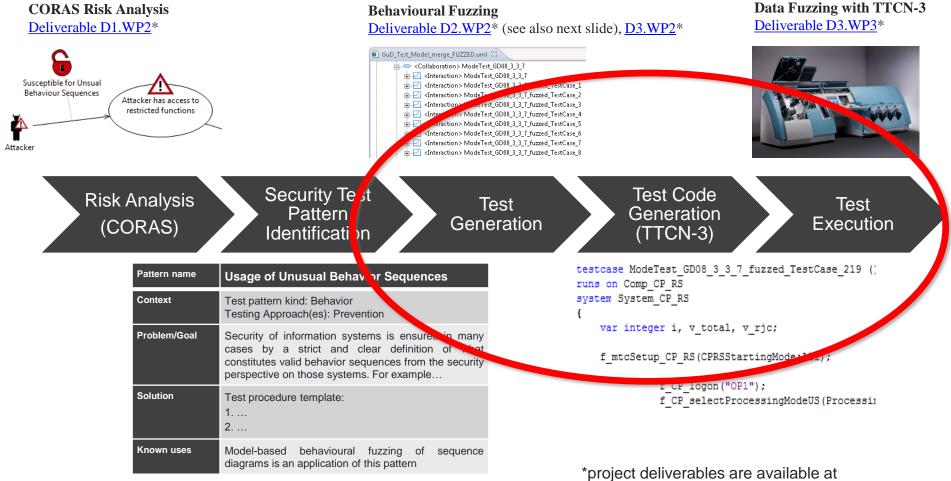
Outline



- Introduction and Overview
- Security Testing Improvement Profiles and Industrial Case Studies
- Details of Giesecke & Devrient Case Study
- Security Testing Approach and Traceing
- Summary

 Giesecke & Devrient

© DIAMONDS Consortium 2010-2013



- Security challenges
 - **Restricted access to functions:** The access to functions is restricted to authorized users.
 - Operation system access restriction: The access to the operation system, i.e. file system, or process monitor is restricted to authorized users.
 - **Prevent Admin Hijacking:** Hijacking an administrator account is used to get the privileges of an administrator account as a user that is not assigned to the administrator group.
 - **Prevent infiltration/manipulation of software:** Software manipulation can be used to fake data or to provoke errors on the currency processor application.
 - **Prevent manipulation of application configuration:** Manipulation could possibly change the classification of banknotes.

Security Test Pattern Catalogue Deliverable D3.WP4.T1*

www.itea2-diamonds.org "publications"

Focus on risks related to

- unauthorized access
- machine/configuration modification

Until now, no weaknesses were found

confidence in the security of the system is strengthened

Metrics

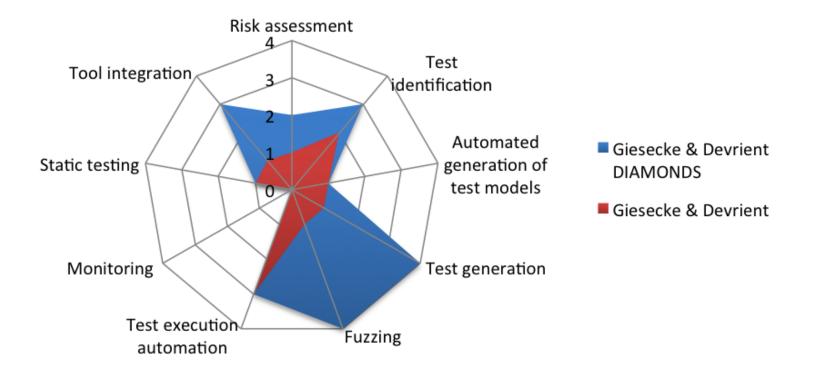
- different security levels depending on the covered risks/vulnerabilities by
 - number of test cases (one or more) per risk/vulnerability unauthorized access, configuration modification: more
 - number of test methods to generate these test cases data fuzzing and behavioural fuzzing: 2 test methods

CORAS method for risk analysis has been proved of value

- graphical modelling
- specification of assets to be protected

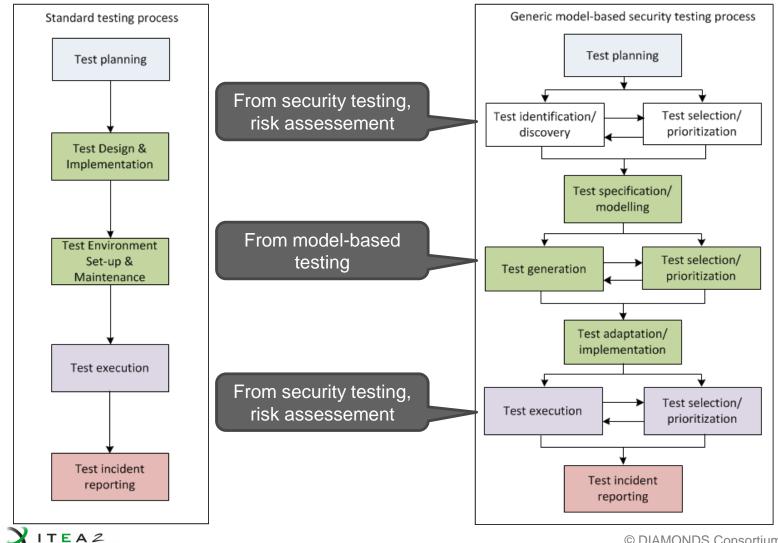
Saved resources due to

- reuse of functional test cases and
- reuse of test execution environment for non-functional security testing
- integration of data fuzzing in the TTCN-3 execution environment
 - keeps the behavioural model clean and concise
 - allows easy combination of data and behavioural fuzzing


Standardization of DIAMONDS results provides certification options for products with security requirements

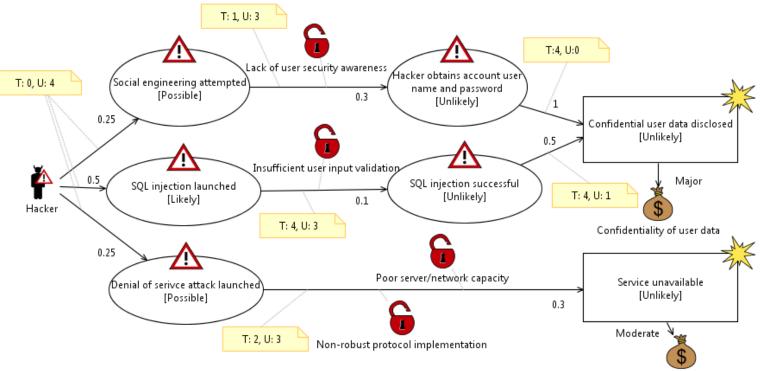
Improvement gains according to our STIP:

Outline


- Introduction and Overview
- Security Testing Improvement Profiles and Industrial Case Studies
- Details of Giesecke & Devrient Case Study
- Security Testing Approach and Traceing
- Summary

The DIAMONDS Process for Model-Based Security Testing

INFORMATION TECHNOLOGY FOR EUROPEAN ADVANCEMENT



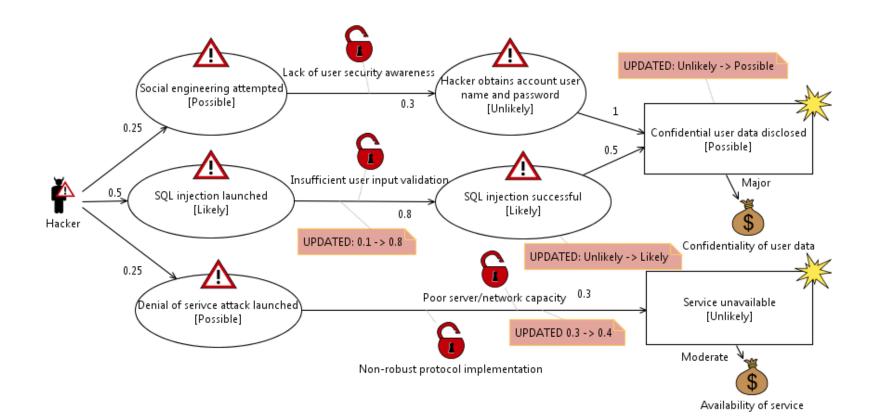
© DIAMONDS Consortium 2010-2013

Test Prioritization Exemplified

Availability of service

Prioritization is based on

- Testability (T)
- Uncertainty (U)
- Severity (S)


Test Prioritization Exemplified (cont.)

ld	Test scenario	S	т	U	Priority
TS5	SQL injection launched leads to SQL injection successful with conditional likelihood 0.1, due to Insufficient user input validation.	3	4	3	36
TS6	Denial of service attack launched leads Service unavailable with conditional likelihood 0.3, due to Poor server/network capacity and Non-robust protocol implementation.	3.2	2	3	19.2
TS4	Social engineering attempted leads to Hacker obtains account user name and password with conditional likelihood 0.3, due to Lack of user security awareness.	1.5	1	3	4.5
TS1	Hacker initiates Social engineering attempted with likelihood 0.25.	2.5	0	4	0
TS2	Hacker initiates SQL injection launched with likelihood 0.5.	2.5	0	4	0
TS3	Hacker initiates Denial of service attack launched with likelihood 0.25.	2.5	0	4	0
TS7	Hacker obtains account user name and password leads to Confidential user data disclosed with conditional likelihood 1.	1	4	0	0
TS8	SQL injection successful leads to Confidential user data disclosed with conditional likelihood 0.5.	2	4 • DIAWK	0	0 แนกา 2010-2013

Risk Validation and Treatment Exemplified

Traceability Platform for RBST

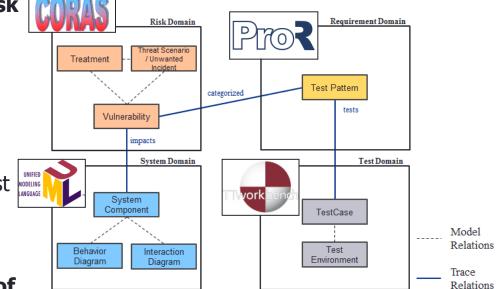
Description

Dedicated traceability support for risk based security testing.

Enables traceability between security testing artefacts.

- Risk model elements (threats, vulnerabilities, unwanted incidents)
- UML model elements
- Security test cases, test pattern and test results
- Security requirements

ITEA2


INFORMATION TECHNOLOGY FOR EUROPEAN ADVANCEMEN

Allows for interaction/combination of different security engineering and testing tools

- Follow traces from security threats, vulnerabilities and their associated risks to testing artefacts
- basis to determine coverage/completeness metrics (e.g. risks coverage)

Fully integrated in **Eclipse** Based on **open source tool CREMA**

Traceability Platform for RBST Demo: CORAS, Papyrus, ProR and TTworkbench

INFORMATION TECHNOLOGY FOR EUROPEAN ADVANCEMENT

Outline

- Introduction and Overview
- Security Testing Improvement Profiles and Industrial Case Studies
- Details of Giesecke & Devrient Case Study
- Security Testing Approach and Traceing
- Summary

Techniques Overview

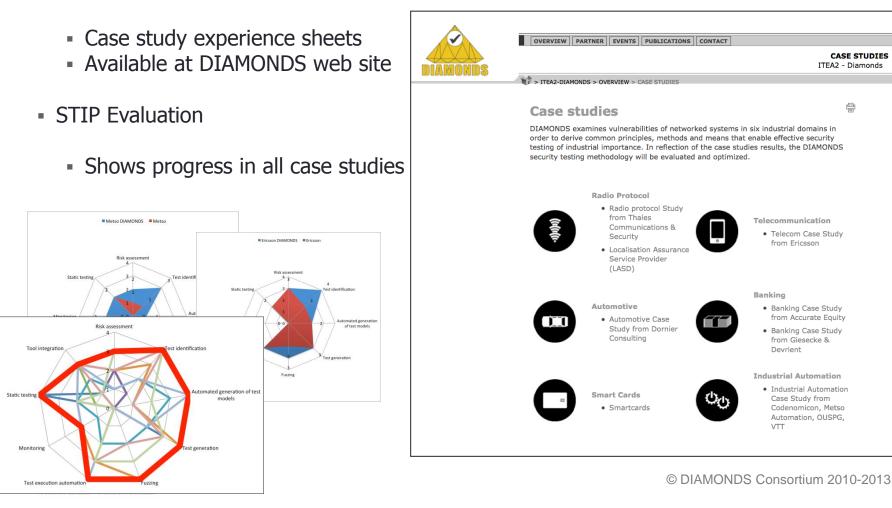
- 17 different techniques developed
- Techniques cover all phases of a security testing process (test identification, test specification/modeling, test generation, test execution, test assessment)
- Techniques cover all security properties (confidentiality, availability, integrity)
- Techniques cover all kinds of vulnerability classes (input validation, API abuse, security features, time and state error, error handling)

M	zthods			Testing Ac		,				Properties			Errors/Vu	Inerabiliti	es		
									<u> </u>								
_			Test	Test	Test	Test	Test	Test	Confidenti		Availabilit		API Abuse		Time and	Error	⊢
	Name of Approaches	in available	Identificat	Specificati on/Model ling	Selection	Generatio	Execution	Assessme nt/Verific ation	aity	Integrity	Y	Input Validation and Represent	ATABUSE	le) Security Features	State Errors	Handling	ľ
4	Model-based security testing from	1- The test purpose language is novel and	i	1	1	<u> </u>	1	<u> </u>				ative .					t
	behavioral models and test purposes	has been designed to formalize security test patterns															L
		2- The global proposed MBST proposed renew the modeling part, mixing		X	X	l x		l x	х		x	X	x				L
		renew the modeling part, mixing environmemental aspects (modeling of attacks for example) and behavioral aspects		· · ·		I		I		I .		· · ·		I		I	L
		attacks for example) and behavioral aspects															L
	Model Inference Assisted Evolutionary	Imodeline of intended behavior of the SUTI - State-aware crawler for model inference						-									t
	Fuzzing	(web application). - Precise detection of cross-site scripting				X											L
-	Static Binary Code Analysis for	vulnerability using evolutionary furting. - Light-weight scalable static analysis of the	—	-		-						-		<u> </u>		<u> </u>	t
	Vulnerability Detection	binary code to detect vulnerable functions. Static taintflow to analyze the binary for															L
		 Static faintflow to analyze the binary for vulnerability detection. Also serves as 								I .				I		I	L
		assisting tool for security auditing.								I .				I		I	L
a	Events-based passive testing	"-" Model based security properties	—					<u> </u>		<u> </u>		_		<u> </u>		<u> </u>	⊢
	(manitoring)	language is novel and allows specifying both								I .				I		I	L
		expected and abnormal behaviour. Properties allow combining temporal								I .				I			L
		different analysis results (e.g., machine								I .				I		I	L
		learning, statistics, key performance indicators) and mitigation actions in a very							х	X	x	I X		I		X	L
		innovative way to describe high level												I			L
		security concerns. "-" The data used by the properties is								I .				I		I	L
		obtained from different sources including a		1	1	1	1	1		1			1	1	1	1	L
_		DPI engine, logs, message exchanges, i.e, any	<u> </u>	L	<u> </u>	L	L	L		L		L			L		∔
0	Various fuzz test suites and monitoring tools	 Fuzzing is the best way to discover unknown vulnerabilities. It is a form of attack simulation, in which vulnerabilities 							х	x	х		х	x	x		L
	Data Fuzzing	Ibrary for integration in existing test tools that provides well-established fuzzing				x			х	x	х	x	х	x			t
_	Model-based behavioural fuzzing	- behavioural fuzzing operators for UML	<u> </u>			^		<u> </u>	^	^	^	<u> </u>	^	^			₽
	NUMEROUS DESCRIPTION OF A STATE	sequence diagrams															L
		 behavioural fuzzing for certain security aspects 		х	X	X			х	X	х	х	х	X			L
	Model-based data fuzzing			х		X	х		х		Х		х	X			
	Risk-based test generation			X	Х	X			х	X	х		х				Г
	Anomaly detection with	Using macine learning to anomaly detection	—					<u> </u>				-		<u> </u>			⊢
	Machine Learning	In industrial automation system networks.		х				X	х	x	х	х					L
	GCC Compiler plagins	Extracting information of program structure and execution during compiling.			X												Г
	Fuzz testing, various suites and own development	Generic fuzzer framework for testing interfaces where other fuzzing tools are not				x	х										t
_	TTCN-3 Fuzz Testing	renerically available TTCN-3 based fuzz testing	I	x		<u> </u>	x	-	x	x	x	x	x	x	x	x	┢
es	Active intrusion Testing	TTCN-3 application to security related tests	<u> </u>	^			^	<u> </u>		-			^		^	^	╀
		for Ad-hoc radio network and smart card financial environment							х	X	х	X		X			L
	Risk-based test identification	- CORAS template library using ETSI security															г
		indicators and security functional requirements from the Common Oritoria								I .				I		I	L
		- security test pattern approach focussed							~	. L	~	•		. v		I	L
		rather on testing than on the addressed security problem	X						х	X	х	х		X		I	L
		- linking between risk analysis and security								I .				I		I	L
		testing and security test pattern through security functional requirements								I .				I		I	L
	Risk-based test identification and	security functional requirements A method and technique for risk-based test															t
	prioritization	identification and prioritization. The main stems of the method are (1) Perform a risk		1	1	1	1	1		1			1	1	1	1	L
		assessment of the target of analysis and		1	1	1	1	1		1			1	1	1	1	L
		document the results using the CORAS risk modelling language. (2) Prioritize threat		1	l 🗸	1	1	1	~	L م	~		1		1	1	L
		scenarions and vulnerabilities in the CORAS	I X		X				х	X	х			X		I	L
		risk model. (3) Select those threat scenarios and vulnerabilities that have the highest								I .				I		I	L
		priority and specify test for these. The main								I .				I			L
		technical innovation is an algorithm that the		1	1	1	1	1		1			1	1	1	1	L
-	Test-based risk assessment	prioritization that is performed in step 2 A method for test-based risk assessment	—	-	-	-	-	-		-		-	-		-		t
		that adds a step (4) to the method for risk-		1	1	1	1	1		1			1	1	1	1	L
	1	based test identification and prioritization where the risk assessment is		1	1	1	1	1		1			1	1	1	1	L
	1	updated/verified based on the testing		1	1	1	1	I X	х	I X	х	X	х	X	X	X	L
		results. The main technical innovation is an extension of the CORAS language that makes		1	1	1	1										L
		it possible to calculate how test results		1	1	1	1	1		1			1	1	1	1	L
_	Andreis Andre Kontes	related to vulnerabilities will affect the risk	—	-	-	<u> </u>	-	—		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	╇
	Symbolic Passive Testing	Passive testing using 1) the integration of symbolic execution of IOSTS and Slicing		1	1	1	1	1		1			1	1	1	1	L
		technique was a completely new idea. 2)			1	1	1										L
	1	dealing with symbolic values eliminates the necessity of enumeration of all data values.		X	1	1	1	X	х	X	х		1	X	1	1	L
		3) the approach enables testing functional		1	1	1	1	1		1			1	1	1	1	L
		and vulnerability/ attack patterns by passive testine.		1	1	1	1	1		1			1	1	1	1	L
-	OWASP-based web security testing	Custom test based on OWASP methodology	x	1	X	X	х						1		I		t

Innovation Sheets

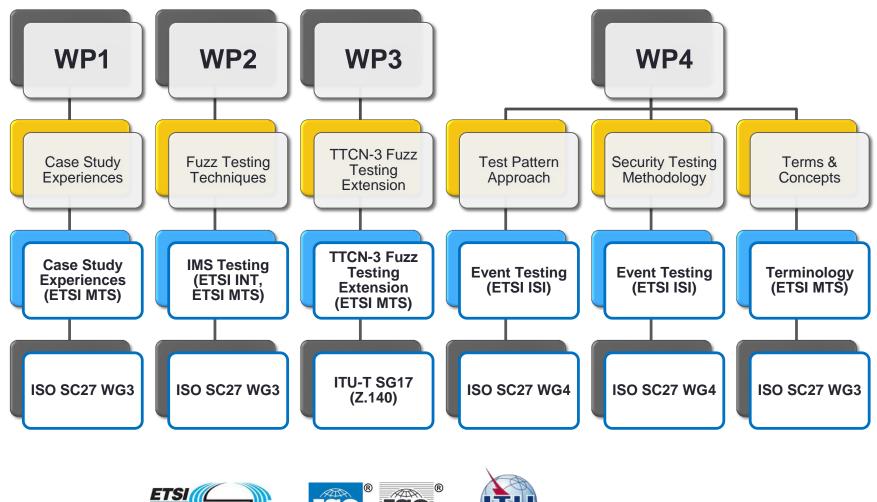
- Collection of the innovative DIAMONDS techniques
- Common structure
 - Technique description
 - State of the art
 - Advances beyond the state of the art
 - Exploitation and application to case studies
- Available at DIAMONDS web site

	RES ITEA2 - Diamo
> ITEA2-DIAMONDS > OVERVIEW > RESULTS	
Results	ē
DIAMONDS innovative results - Techniques and their application:	
Risk Based Testing (Banking, Automotive)	
Test-based risk assessment (SINTEF)	
Risk-based security testing with security test pattern (FOKUS)	
Advanced Fuzz Testing (Banking, Radio Protocols, Automotive, Te	lecommunication)
 Model-based behavioural fuzzing (FOKUS) 	
• Model inference assisted evolutionary fuzzing (INPG)	
Active Testing Techniques (Banking, Radio Protocols)	
 Model-based security testing from behavioral models and test purpo 	ses (SMARTESTING)
• Integration of model-based test generation and monitoring (Montime	age)
Autonomous Testing Techniques (Radio Protocols, Industrial Auto	omation)
 Passive symbolic monitoring (IT) 	
• Static binary code analysis for vulnerability detection (INPG)	
Open Source Tools for Security Testing (Banking, Automotive)	
 Tracebility platform for risk-based security testing (FOKUS) 	
• Malwasm (iTrust)	
←back 介 top	



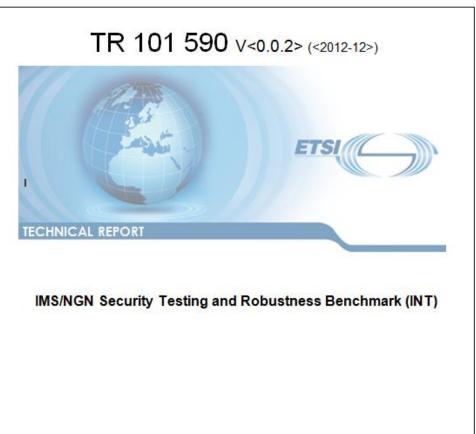
© DIAMONDS Consortium 2010-2013

Case Study Experiences



- Collection of the experiences and results for all case studies

Results in Standardization



ETSI INT

- Technical Committee INT: Draft on Robustness testing in IMS (incl. Modelbased and Mutation-based fuzzing)
- Final draft Document has been approved as:

TR 101 590 IMS/NGN Security Testing and Robustness Benchmark

Summary

- Industry relevant subject
- Innovative approaches & methodology
- Effective tool solutions in industrial products
- Integration strategies for methods and tools
- Cross-country and cross-case study cooperation
- Experience reports on the case studies
- Standardization work

>DIAMONDS puts ground to make differences in security testing for the European industry!

DIAMONDS ... in the sun

© DIAMONDS Consortium 2010-2013

Thank you for your attention ! Questions ?

Prof. Dr.-Ing. Ina Schieferdecker +49 (30) 3463-7241 ina.schieferdecker@fokus.fraunhofer.de

Axel Rennoch +49 (30) 3463-7344 axel.rennoch@fokus.fraunhofer.de

FOKUS

Fraunhofer Institute for Open Communication Systems FOKUS Kaiserin-Augusta-Allee 31 10589 Berlin, Germany

- Tel: +49 (30) 34 63 7000
- Fax: +49 (30) 34 63 8000
- Web: www.fokus.fraunhofer.de www.itea2-diamonds.org

