
TOWARDS A HIGH EFFICIENT 360° VIDEO PROCESSING AND STREAMING SOLUTION
IN A MULTISCREEN ENVIRONMENT

Louay Bassbouss, Stephan Steglich, Sascha Braun

Fraunhofer FOKUS
Berlin, Germany

{firstname}.{lastname}@fokus.fraunhofer.de

ABSTRACT
Immersive video has been around for some time but only
recently the technology became more popular since
affordable cameras with sufficient resolution as well as
stitching software with reasonable quality became available
to allow professionals and interested amateurs to create 360°
movies. Networks became fast enough to allow end-users to
stream 360° video content to their devices. Hardware on TVs,
smartphones and tablets is sufficiently powerful to handle the
content and react on view changes without noticeable delay.
Most efforts in this area, however, have been aimed at the
technical challenges creating and viewing of 360° content. As
360° video is starting to reach a wider audience, the need
arises to pay attention to the use of such content in a realistic
commercial environment. For this, two issues need to be
addressed. The efficient distribution of 360° content and the
added-value that it can bring content providers. We will
address in this paper two main challenges a) the efficient
streaming of high quality 360° video content using existing
content delivery networks (CDNs) and without the need for
additional bandwidth comparing to traditional video
streaming and b) the playback of 360° content even on
devices with limited processing resources and programmatic
capabilities.

Index Terms — 360° Video, Streaming, Immersive
Media, Multiscreen

1. INTRODUCTION
Most public presentations of 360° innovations are based

on immersive experiences and the use of VR headsets. While
providing the most engaging experience, the use of such
devices, more than any other content consumption device,
isolates the user. Some solutions have been tested for VR
environments (such as including other viewers as avatars in
the scene), but most of them are specific to online use. At the
moment scenarios with multiple users that are physically at
the same site (such like a family or a group of friends
watching a TV program together) are largely unexplored. The
solution presented in this paper will address these kind of
devices especially TV and streaming devices like HbbTV,
Chromecast or Android TV.

Almost all current solutions stream the full 360° content
to the end-user device, where only about 10% is actually
presented to the viewer, while the other 90% are disregarded,

causing a huge waste of bandwidth. All these solutions render
the 360° video on the end-user device which requires much
more computation and graphical processing capabilities
comparing to classical video rendering especially when
dealing with high quality content like UHD (4K, 8K, 16K).
In this paper we will provide a new solution that streams only
the visible field of view (FOV) to the end-user device which
reduces the bandwidth requirement to the same level as for
classical videos. Another advantage of the solution is that it
pre-renders all relevant FOVs in advance and prepare them
for streaming over existing CDNs. The client needs only to
play a FOV video without performing any geometric
transformation locally.

2. STATE OF THE ART
There are investigations in research and standardization as
depicted in the subsections below to reduce the bandwidth
and processing requirements but all of the existing solutions
have limitations. We will compare these state of the art
solutions according the following requirements (an ideal 360°
video playout fulfills all these requirements).

• R1: Stream only the visible field-of-view to the end-
user device

• R2: Adaptive bitrate streaming applicable on a
single FOV

• R3: Playback of 360° videos without additional
processing on end-user device comparing to
classical video

• R4: Streaming of 360° videos without additional
processing on server comparing to classical video

• R5: Usage of content delivery networks (CDNs)
• R6: No distortion in the visible FOV
• R7: Photon-to-Motion latency under 20ms (it is the

time needed for a user movement to be fully
reflected on a display screen)

• R8: No Additional Storage comparing to source
360° video content	

2.1. Current solutions
Fraunhofer FOKUS Cloud-based 360° Video Playout for
HbbTV [1]: Fraunhofer FOKUS provides a solution that
renders 360° videos in the cloud and streams only the
requested FOV to the client (HbbTV Application). It is the
first solution that provides a 360° video playback in HbbTV

but it is not scalable since a new rendering instance on the
server is required for each client.

Transcoding and streaming-as-a-service for improved video
quality on the web [2]: Bitmovin introduces a 360° video
player for HTML5 browser based on MPEG-DASH. It
basically applies adaptive streaming on the entire source 360°
video and preforms the geometric transformation on the
target device. Playing a FOV in good quality still needs to
stream large amount of video data for the unseen FOVs.

HEVC Tiles [3]: HEVC provides improved compression
rates for video in comparison with H.264/MPEG-4 AVC. It
also allows easier access to sub-regions of the video frame,
suitable for streaming only tiles that contain elements visible
to the user. HEVC coding can only partly address the
technical requirements for more efficient 360° video
streaming. As 360° content is currently mostly represented as
a distortion-mapped Equirectangular format, a view of the
‘polar regions’ of the virtual image spherical view can still
require the transmission of a significant version of the source
video, if only rectangular areas can be selected. The format
also requires individual processes on the server for every
active viewer of the content, reducing scalability.

MPEG-DASH SRD [4]: The Spatial Relationship
Description (SRD) feature of the MPEG-DASH standard
allows a video player to request spatial subparts of a
particular video stream, which might be available in multiple
resolutions. The feature extends the Media Presentation
Description (MPD) specified in part 1 of MPEG DASH by
describing spatial relationships between associated pieces of
video content. The spatial relationship is represented by the
relative position of the top-left corner and the size of the
spatial object. Therefore, SRD is more suitable to describe
region of interests (ROI) in panoramic videos but not for full-
spherical immersive videos.

D'Acunto et al. use MPEG DASH SRD for zoomable and
navigable video [5]: They present a video streaming client
implementation that makes use of the Spatial Relationship
Description (SRD) feature of the MPEG-DASH standard, to
provide a zoomable and navigable video to the end-user. The
video streaming client is implemented in JavaScript and
extends dash.js, an MPEG DASH reference client
implementation.

2.2. Comparison of 360° solutions
Current solutions that use spatial video content to transmit
part of the video to reduce required bandwidth are not
applicable to full-spherical video without streaming
additional content in order to render the requested FOV.
Furthermore, the client needs to process the received content
on the end-user device. This may have implications on battery
lifetime on mobile devices and performance issues on
constrained devices. The current solutions that don’t require

processing on the client are applicable only to panoramic
videos and support zoom to specific content. Below is a
classification of existing solutions and an evaluation based on
the eight requirements addressed in the begin of this section:

• S1: stream the entire video to the client and preform
processing on the client. Example: Bitmovin 360°
player.

• S2: stream parts of the video to the client and render
requested FOV without additional processing.
Example: HEVC tiles for panorama videos.

• S3: stream parts of the video to the client and render
requested FOV by processing the received content
on the client. Examples: HEVC tiles for full-
spherical videos with equirectangular projection.

• S4: process the video on the server and send only the
visible FOV to the client which needs to play it
without any processing in same player as for
traditional videos. Example: Fraunhofer FOKUS
360° Cloud Renderer.

• S5 (solution of this paper): pre-render and store
different FOVs of a 360° video. During streaming
only pre-rendered FOVs stored on the server are
transmitted to the client. Therefore, no processing is
needed either on the server or on the client. There is
also no need for additional bandwidth since only the
requested FOV is transmitted to the client.

Table	1 shows a comparison of existing solutions according
the requirements addressed above:

 S1 S2 S3 S4 S5
R1 -- + - ++ ++
R2 - + - ++ ++
R3 -- + + ++ ++
R4 ++ + + -- ++
R5 ++ ++ ++ -- ++
R6 ++ -- ++ ++ ++
R7 ++ - - - --
R8 ++ + + ++ --

Table 1 Comparison of existing solutions (--very weak, -
weak, +good, ++very good)

3. 360° VIDEO PRE-RENDERING SOLUTION
As we can see from the comparison of the different solutions,
we are focusing in our solution on the following aspects:

• Support of best quality for a single FOV. For
example, FOV in HD or UHD resolution.

• Use existing streaming infrastructures as for
traditional videos and without additional bandwidth.
In other words, the required bandwidth for
transmitting a FOV is the same as for a classical
video with same quality.

• Support of constrained devices or any device that
can play a classical video without the need for
additional processing on the client.

• Solution that scales without the need for additional
processing on the server during streaming
comparing to classical videos.

On the other hand, our solution brings some disadvantages
regarding usability and the requirement for additional storage
on the server. Storage is nowadays not that big issue
comparing to the benefits it brings to save bandwidth and
processing. The concept of storing pre-processed content is
not new and is used in other domains for example adaptive
streaming (like HLS or MPEG-DASH) which is supported
nearly in any modern streaming infrastructure. In case of
adaptive streaming, the same video content is available in
different qualities. In our case as we will see later, we will
pre-render and store FOVs with some overlap. The overlap-
factor has impact on the required additional storage and level
of granularity to navigate in the video. The usability aspect is
the more important aspect we need to consider. The most
relevant parameter that has direct impact on the usability is
how fast the system reacts to a user movement to be fully
reflected on the display screen. It is also known as motion-to-
photon latency and is very important to consider in case of
head-mounted displays which has a limit of 20ms. In case the
entire 360° video is available on the client, the processing
must be finished within this limit. This depends from the
processing resources available on the client and the quality of
the source video and single FOV. In our solution we are not
addressing head mounted displays and we are focusing on
devices with large screens which means automatically
requirement for better quality for a single FOV. More
investigation and improvement of the current solution to
support head-mounted displays may be addressed in the
future. For navigation, we are more focusing on input devices
like TV remote control, keyboard or touch screen. Bringing
360° video experience to large screens is what many content
providers and especially broadcasters are currently looking
for. We already started pilots with some broadcasters using
our solution on smart TVs. End-users can use the direction
control keys (left, right, up and down) on the remote control
to navigate in the video. The content provider can also offer
a set of most relevant FOVs for selection which allows the
end-user to jump directly to the FOV of interest. The result of
the pilots shows that a motion-to-photon delay between up to
500ms is very acceptable when remote control is used as
input device and navigation is done in large steps to certain
hot spots. Lower motion-to-photon latency is preferred with
small steps between neighbor FOVs.

3.1. Architecture
The architecture of our solution as depicted in Figure 1
comprises the four steps “Pre-processing”, “Storage”,
“Streaming”, and “Playback”. During pre-processing step, a
source 360° video will be pre-rendered with different FOV
combination and the output FOVs will be stored somewhere
in local storage. In next step, the created FOVs will be
analyzed and a manifest file will be created. After the pre-
processing is completed, all FOVs and the manifest file will

to be made available on a storage server that is accessible by
a CDN provider. For streaming the content to the client, the
CDN infrastructure of the provider will be used. In the last
step “playback”, the player reads and parses the manifest file
to get information about available FOVs and how to access
them. The player starts playback with the default FOV and
listens to requests from input device to navigate to another
FOV. Main components of the system are explained below in
more details.

Figure 1 overall architecture

3.1.1. Pre-processing
The pre-renderer operates on the source 360° video and
calculates the different FOVs depending from the
configuration that is also passed as input. A FOV is defined
using the four parameters (f, q, Ah, Av):

• f	is	the	centre	of	the	horizontal	angle	of	view.	0		£	
f	£	(360°	-	Ah).	

• q	is	the	centre	of	the	vertical	angle	of	view.	(-90°	+	
Av/2)	£	q	£	(90°	-	Av/2).	

• Ah	is	the	width	of	the	horizontal	angle	of	view.		
• Av	is	the	height	of	the	vertical	angle	of	view.	

Ah and Av remain constant during pre-rendering of the same
zoom level. In this explanation we will consider a fix zoom
level and keep Ah and Av constant. Experience gained from
our experiments shows that (Ah, Av) = (106.7°, 60°) is good
default configuration for displays with 16/9 aspect ratio
(106.7° = 60°x16/9). Therefore, we will use in the rest of this
paper (f, q) instead of (f, q, Ah, Av) just for simplicity.
The horizontal angle between two neighbor FOVs f1 and f2
is defined as Df and the vertical angle between two neighbor
FOVs q1 and q2 is defined as Dq. In other words, all neighbor
FOVs of (f, q) along one direction (horizontal or vertical) are:
(f-Df, q), (f+Df, q), (f, q-Dq) and (f, q+Dq).
The number of FOVs when q remain constant and the
horizontal angle of view f changes is Nh =

360°

Df
 and The

number of FOVs when f remain constants and the vertical
angle of view q changes is Nv =

360°

Dq
− 1. The total number of

FOVs is N = Nh x Nv.
The example depicted in Figure 2 has the following values:

• Ah = 106,7°, Av = 60°.

• 0 £ f £ 345°, -60° £ q £ 60°.
• Df = 15°, Dq = 30°.
• Nh = 24, Nv = 5, N = 120.

								 	
Figure 2: FOVs by changing horizontal angle of

view f and vertical angle of view q

This configuration as shown in the example was used in most
of our pre-rendered videos. In many videos where the main
spectacle happens for vertical angle of view q = 0°, Dq = 60°
(with no vertical overlap) can be used instead of Dq = 30°
(vertical overlap = 50%) with no implications on usability.
This will reduce total number of FOVs from 120 to 72. The
FOVs for q ¹ 0°can be also skipped if the main spectacle
happens only for q = 0°. In this case the total number of FOVs
can be reduced to 24. This was also the case for many 360°
videos we got from broadcaster.
After pre-rendering all FOVs, they will be stored on the local
system and each FOV will be parsed in next step. FOVs are
video streams that can be played in any video player that
supports the used container format and media codec.
Examples for container formats are fragmented MP4 or
MPEG-TS (MPEG Transport Stream) and for media codec
H264. A FOV consists of a series of video segments or group
of pictures (GOPs) that can be played independently from
each other. If the player starts playing a GOP and the user
requests to switch to another FOV, the player must first finish
the current GOP and then switch to the next GOP of the target
FOV. This is required because a GOP starts with a main/key
frame that contains a fully specified picture and all following
frames hold only the changes in the image from the previous
frame. This means that the duration of a GOP has impact on
the motion-to-photon latency. In average the motion-to-
photon latency is increased by

𝐺𝑂𝑃	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

2
. A suitable value

for number of frames in a GOP is 10. This means a GOPduration
= 333.333ms for frame rate of 30fps and GOPduration = 400ms
for a frame rate of 25fps. The number of frames in a GOP has
impact on the compression ratio of the used media codec.
During parsing step, the offset in bytes from the beginning of
the corresponding FOV will be calculated for each GOP. All
offsets will be stored in a manifest file in the same location as
for FOV videos. In the player section we will explain in more
details how the information from the manifest are used.
The pre-processing algorithm for pre-rendering and
analyzing all FOVs is described below. The function render

takes a 360° source video and angle of view as input and
returns the video stream of the corresponding FOV as output.
The save function saves a FOV or manifest file. The parse
function takes the video stream of a FOV as input and returns
the GOP offsets as output.

preprocess(V, Ah, Av, Df, Dq)
 fmin := 0;
 fmax := 360 - Ah;

qmin := -90 + Av/2;
 qmax := 90 - Av/2;
 f := fmin;
 manifest := Angle x Angle x GOPindex à GOPoffset;
 i := 1;
 while f £ fmax do
 q := qmin;

while q £ qmax do
 FOVi := render(V, f, q, Ah, Av);
 save(FOVi);
 manifest[f,q] := parse(FOVi);
 i := i+1;
 q := q + Dq;
end
f := f + Df;

 end
 save(manifest);
end	

3.1.2. Storage and Streaming
The output FOVs and manifest of pre-processing step need to
be available on a streaming server that is accessible from the
CDN provider. In general, it is a static http server with range
support. It is supported by most storage providers. In our
experiments we used Amazon S3 as a storage service. Range
requests are important in our case to access specific GOPs of
a FOV instead of downloading the whole FOV. The HTTP
header Range needs to be set and contains the from and to
offsets in bytes. As alternative for Range requests each GOP
can be stored in a separate file. After all FOVs and the
manifest are available on a storage server, a CDN provider
can be used for streaming. We used in our experiment
Amazon CloudFront as a CDN. CloudFront can be easily
configured to operate on Amazon S3.
To support adaptive bitrates, the generated FOVs can be
converted to different qualities with different bitrates using
the same tools that are used for traditional videos.

3.1.3. Player
The player constructs the final video stream to display from
the FOV videos. There is no need to process the received
video content before playback. The client platform needs
only to provide an API that allows applications to send video
segments (in our case are the GOPs) to the video decoder. In
our implementation, we focused on web technologies and
used the W3C Media Source Extension API (MSE) [6]. MSE
API allows application to control the source buffer of a

HTML5 video object by appending, removing or replacing
segments. There are three modules in the player:

• Manifest parser: The URL of the manifest file is
the only input required in the player. As described
above, the manifest contains all metadata of the
video as well as all information of the available
FOVs and the GOP offsets for each FOV. We use
currently our own simple JSON format for the
manifest but in the future it could be replaced by an
extension of existing formats like Media
Presentation Description (MPD) of MPEG-DASH.
The Spatial Relationship Description (SRD) of
MPEG-DASH is one of the candidates if it is
extended in the future to also support spherical
coordinates. A Web player can request the manifest
file using a simple HTTP GET request.

• Player and Buffer Control: After the manifest is
parsed, the player will be initialized with the default
angle of view (f0, q0). Initial GOPindex = 1 if the user
starts playback form beginning. GOPindex holds the
index of the current GOP being played. In each step,
the player requests a GOP from the server using a
HTTP range request. From the GOPindex, the player
can read the from and to offset of the next GOPs of
the current FOV from the manifest. To reduce the
number of HTTP requests, the player may request
multiple GOPs at same time. All GOPs will be
added to the source buffer. Different caching
algorithms can be applied and the user interaction
behaviour can be considered. Until this step and
before any user interaction, the player logic is the
same as for classical videos.

• User Input Control: This module is responsible for
navigating in the video. It receives a request from
the input device for example TV remote control or
keyboard and changes the FOV. The player updates
its internal state with the coordinates of the new
FOV and sends immediately a new HTTP request to
get the next GOPs of the new FOV. Once the new
GOPs are received, the GOPs for the old FOV will
be automatically replaced.

Figure 3 shows an example with n FOVs each of them with
m GOPs and with 4 user interactions.

Figure 3: Example with n FOVs with m GOPs

4. EVALUATION
We evaluated our solution (cloud pre-rendering) together
with “cloud live rendering” and “client rendering” (e.g.
YouTube and Facebook players) solutions according
bandwidth, total costs, battery consumption and motion-to-
photon latency.
Bandwidth: Figure 4 shows the required bandwidth for 8
different videos. The blue chart shows the bandwidth for
steaming 4k source 360° video which applies to “client
rendering” solutions and the orange chart shows the
bandwidth required to stream a single FOV in HD quality for
calculated from the corresponding video.

Figure 4 Bandwidth comparison

The required bandwidth is the same for cloud live-rendering
and cloud pre-rendering since in both solutions stream only
the requested FOV and not the whole 360° source video. With
our solution we can deliver 360° video in the same quality by
saving 10x bandwidth.
Total costs: Figure 5 shows a comparison of the three
solution regarding total costs which include costs for storage,
rendering and streaming. We considered in this evaluation the
AWS prices (S3 for storage, EC2 for rendering and
CloudFront as CDN).

Figure 5 total costs

The costs are in USD per 1h video for different price levels.
The blue chart shows the total costs for client rendering which
are mainly the costs for streaming 4k content. The green chart
shows the costs for cloud live-rendering. Most of the costs are
for rendering the FOV in the cloud since for each client a new

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8

Bitrate	[Kbit/s]

bitrate	of	source	video	[Kbits/s] Avg.	bitrate	of	FOV		[Kbits/s]

0
0,2
0,4
0,6
0,8
1

1,2
1,4
1,6
1,8
2

10TB 50TB 150TB 500TB 1024TB 5024TB 9020TB

Total	costs	for	1h	video	 [$]

client	rendering live-rendering pre-rendering

rendering instance with GPU is needed. The orange line
shows the costs for our solution cloud pre-rendering. It
includes the costs for pre-rendering the video which are one-
time costs per video, the storage costs of all FOVs which is
higher than the storage costs of the source 360° video but
these are fix costs per month independent of the number of
client and the streaming costs which are much lower than the
costs for streaming the source 4k videos.
Battery lifetime: We will again compare the three solutions
client rendering, cloud live-rendering and cloud pre-
rendering. Since both cloud live-rendering and pre-rendering
use the same client we will compare these two solutions to
client rendering. The target device is a Samsung Galaxy Tab
S2 Tablet, running Android version 6.0.1 and with battery
capacity of 5870 mAh. As depicted in Figure 6 we can see
that using our solution the battery level dropped from 100%
to 85% after 1h10m37s and under the same conditions with
client rendering it was 42m18s. This means with our solution
the battery lifetime is about 39% than for client rendering.

Figure 6 Battery lifetime a) cloud pre-rendering b) client
rendering

Motion-to-Photon Latency: There are many factors that
influence the motion to photon latency. In case of client
rendering the motion to photon latency can be calculated
from the decoding time of a single video frame, the time
needed to capture user inputs (motions), the time needed to
process a frame and calculate the projection and the time to
switch the pixels on the display. We will consider a latency
under 20ms as given for client rendering. For cloud live-
rendering the network latency needs to be considered in
addition to the motion to photon latency of client rendering.
For pre-rendering solution the duration of a GOP needs to be
also considered. For a GOP size of 10 frames and 30fps video,
the GOP duration is 333,33ms. This means, in average the
additional latency of pre-rendering solution is 166,67ms
comparing to cloud live-rendering.

5. CONCLUSION
We presented in this paper a new solution for 360° videos
based on pre-processing and streaming of individual FOVs.
Our target devices are large displays where users expect best
quality for a single FOV. The proposed solution in this paper
was evaluated in context of different pilots together with
broadcasters and content providers. The current
implementation of the pre-processing part is available as

Node.js program which generates the FOVs and the manifest
and uploads all data to Amazon S3. A player implementation
is also available using pure web technologies. Browser
support of W3C MSE API is required. The web player was
tested on following platforms: Chromecast (1st and 2nd
generations), desktop browsers Chrome, Safari, Firefox and
Edge, Chrome browser for Android, Amazon Fire TV and
Android TV (in WebView), new series of LG and Samsung
TVs that support MSE. We will continue working on
improving the solution especially for reducing the motion-to-
photon latency and to make smooth transition between the
FOVs.

5. REFERENCES
[1] Fraunhofer FOKUS Cloud-based 360° Video Playout for

HbbTV. Retrieved March 30, 2017 from
https://www.fokus.fraunhofer.de/go/360

[2] Christian Timmerer, Daniel Weinberger, Martin Smole,
Reinhard Grandl, Christopher Müller, and Stefan
Lederer. 2016. Transcoding and streaming-as-a-service
for improved video quality on the web. In Proceedings
of the 7th International Conference on Multimedia
Systems (MMSys '16). ACM, New York, NY, USA, ,
Article 37 , 3 pages. DOI:
http://dx.doi.org/10.1145/2910017.2910637

[3] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth and
M. Zhou, "An Overview of Tiles in HEVC," in IEEE
Journal of Selected Topics in Signal Processing, vol. 7,
no. 6, pp. 969-977, Dec. 2013.

[4] Niamut, Omar A., et al. "MPEG DASH SRD: spatial
relationship description." Proceedings of the 7th
International Conference on Multimedia Systems. ACM,
2016.

[5] Lucia D'Acunto, Jorrit van den Berg, Emmanuel
Thomas, and Omar Niamut. 2016. Using MPEG DASH
SRD for zoomable and navigable video. In Proceedings
of the 7th International Conference on Multimedia
Systems (MMSys '16). ACM, New York, NY, USA, ,
Article 34 , 4 pages.

[6] “W3C Media Source Extensions”, Retrieved 10
November 2016, from https://www.w3.org/TR/media-
source/.

