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ABSTRACT 
Immersive video has been around for some time but only 
recently the technology became more popular since 
affordable cameras with sufficient resolution as well as 
stitching software with reasonable quality became available 
to allow professionals and interested amateurs to create 360° 
movies. Networks became fast enough to allow end-users to 
stream 360° video content to their devices. Hardware on TVs, 
smartphones and tablets is sufficiently powerful to handle the 
content and react on view changes without noticeable delay. 
Most efforts in this area, however, have been aimed at the 
technical challenges creating and viewing of 360° content. As 
360° video is starting to reach a wider audience, the need 
arises to pay attention to the use of such content in a realistic 
commercial environment. For this, two issues need to be 
addressed. The efficient distribution of 360° content and the 
added-value that it can bring content providers. We will 
address in this paper two main challenges a) the efficient 
streaming of high quality 360° video content using existing 
content delivery networks (CDNs) and without the need for 
additional bandwidth comparing to traditional video 
streaming and b) the playback of 360° content even on 
devices with limited processing resources and programmatic 
capabilities. 

Index Terms — 360° Video, Streaming, Immersive 
Media, Multiscreen 
 

1. INTRODUCTION 
Most public presentations of 360° innovations are based 

on immersive experiences and the use of VR headsets. While 
providing the most engaging experience, the use of such 
devices, more than any other content consumption device, 
isolates the user. Some solutions have been tested for VR 
environments (such as including other viewers as avatars in 
the scene), but most of them are specific to online use. At the 
moment scenarios with multiple users that are physically at 
the same site (such like a family or a group of friends 
watching a TV program together) are largely unexplored. The 
solution presented in this paper will address these kind of 
devices especially TV and streaming devices like HbbTV, 
Chromecast or Android TV. 

Almost all current solutions stream the full 360° content 
to the end-user device, where only about 10% is actually 
presented to the viewer, while the other 90% are disregarded, 

causing a huge waste of bandwidth. All these solutions render 
the 360° video on the end-user device which requires much 
more computation and graphical processing capabilities 
comparing to classical video rendering especially when 
dealing with high quality content like UHD (4K, 8K, 16K). 
In this paper we will provide a new solution that streams only 
the visible field of view (FOV) to the end-user device which 
reduces the bandwidth requirement to the same level as for 
classical videos. Another advantage of the solution is that it 
pre-renders all relevant FOVs in advance and prepare them 
for streaming over existing CDNs. The client needs only to 
play a FOV video without performing any geometric 
transformation locally. 
 

2. STATE OF THE ART 
There are investigations in research and standardization as 
depicted in the subsections below to reduce the bandwidth 
and processing requirements but all of the existing solutions 
have limitations. We will compare these state of the art 
solutions according the following requirements (an ideal 360° 
video playout fulfills all these requirements).  

• R1: Stream only the visible field-of-view to the end-
user device  

• R2: Adaptive bitrate streaming applicable on a 
single FOV  

• R3: Playback of 360° videos without additional 
processing on end-user device comparing to 
classical video  

• R4: Streaming of 360° videos without additional 
processing on server comparing to classical video  

• R5: Usage of content delivery networks (CDNs) 
• R6: No distortion in the visible FOV  
• R7: Photon-to-Motion latency under 20ms (it is the 

time needed for a user movement to be fully 
reflected on a display screen) 

• R8: No Additional Storage comparing to source 
360° video content	

 
2.1. Current solutions 
Fraunhofer FOKUS Cloud-based 360° Video Playout for 
HbbTV [1]: Fraunhofer FOKUS provides a solution that 
renders 360° videos in the cloud and streams only the 
requested FOV to the client (HbbTV Application). It is the 
first solution that provides a 360° video playback in HbbTV 



but it is not scalable since a new rendering instance on the 
server is required for each client.  
 
Transcoding and streaming-as-a-service for improved video 
quality on the web [2]: Bitmovin introduces a 360° video 
player for HTML5 browser based on MPEG-DASH. It 
basically applies adaptive streaming on the entire source 360° 
video and preforms the geometric transformation on the 
target device. Playing a FOV in good quality still needs to 
stream large amount of video data for the unseen FOVs. 
 
HEVC Tiles [3]: HEVC provides improved compression 
rates for video in comparison with H.264/MPEG-4 AVC. It 
also allows easier access to sub-regions of the video frame, 
suitable for streaming only tiles that contain elements visible 
to the user. HEVC coding can only partly address the 
technical requirements for more efficient 360° video 
streaming. As 360° content is currently mostly represented as 
a distortion-mapped Equirectangular format, a view of the 
‘polar regions’ of the virtual image spherical view can still 
require the transmission of a significant version of the source 
video, if only rectangular areas can be selected. The format 
also requires individual processes on the server for every 
active viewer of the content, reducing scalability.  
 
MPEG-DASH SRD [4]: The Spatial Relationship 
Description (SRD) feature of the MPEG-DASH standard 
allows a video player to request spatial subparts of a 
particular video stream, which might be available in multiple 
resolutions. The feature extends the Media Presentation 
Description (MPD) specified in part 1 of MPEG DASH by 
describing spatial relationships between associated pieces of 
video content. The spatial relationship is represented by the 
relative position of the top-left corner and the size of the 
spatial object. Therefore, SRD is more suitable to describe 
region of interests (ROI) in panoramic videos but not for full-
spherical immersive videos.  
 
D'Acunto et al. use MPEG DASH SRD for zoomable and 
navigable video [5]: They present a video streaming client 
implementation that makes use of the Spatial Relationship 
Description (SRD) feature of the MPEG-DASH standard, to 
provide a zoomable and navigable video to the end-user. The 
video streaming client is implemented in JavaScript and 
extends dash.js, an MPEG DASH reference client 
implementation. 
  
2.2. Comparison of 360° solutions 
Current solutions that use spatial video content to transmit 
part of the video to reduce required bandwidth are not 
applicable to full-spherical video without streaming 
additional content in order to render the requested FOV. 
Furthermore, the client needs to process the received content 
on the end-user device. This may have implications on battery 
lifetime on mobile devices and performance issues on 
constrained devices. The current solutions that don’t require 

processing on the client are applicable only to panoramic 
videos and support zoom to specific content. Below is a 
classification of existing solutions and an evaluation based on 
the eight requirements addressed in the begin of this section: 

• S1: stream the entire video to the client and preform 
processing on the client. Example:  Bitmovin 360° 
player. 

• S2: stream parts of the video to the client and render 
requested FOV without additional processing. 
Example: HEVC tiles for panorama videos. 

• S3: stream parts of the video to the client and render 
requested FOV by processing the received content 
on the client. Examples: HEVC tiles for full-
spherical videos with equirectangular projection.  

• S4: process the video on the server and send only the 
visible FOV to the client which needs to play it 
without any processing in same player as for 
traditional videos. Example: Fraunhofer FOKUS 
360° Cloud Renderer.   

• S5 (solution of this paper): pre-render and store 
different FOVs of a 360° video. During streaming 
only pre-rendered FOVs stored on the server are 
transmitted to the client. Therefore, no processing is 
needed either on the server or on the client. There is 
also no need for additional bandwidth since only the 
requested FOV is transmitted to the client. 

Table	1 shows a comparison of existing solutions according 
the requirements addressed above:  
 

 S1 S2 S3 S4 S5 
R1 -- + - ++ ++ 
R2 - + - ++ ++ 
R3 -- + + ++ ++ 
R4 ++ + + -- ++ 
R5 ++ ++ ++ -- ++ 
R6 ++ -- ++ ++ ++ 
R7 ++ - - - -- 
R8 ++ + + ++ -- 

Table 1 Comparison of existing solutions (--very weak, -
weak, +good, ++very good) 

3. 360° VIDEO PRE-RENDERING SOLUTION 
As we can see from the comparison of the different solutions, 
we are focusing in our solution on the following aspects: 

• Support of best quality for a single FOV. For 
example, FOV in HD or UHD resolution. 

• Use existing streaming infrastructures as for 
traditional videos and without additional bandwidth. 
In other words, the required bandwidth for 
transmitting a FOV is the same as for a classical 
video with same quality. 

• Support of constrained devices or any device that 
can play a classical video without the need for 
additional processing on the client. 



• Solution that scales without the need for additional 
processing on the server during streaming 
comparing to classical videos. 

On the other hand, our solution brings some disadvantages 
regarding usability and the requirement for additional storage 
on the server. Storage is nowadays not that big issue 
comparing to the benefits it brings to save bandwidth and 
processing. The concept of storing pre-processed content is 
not new and is used in other domains for example adaptive 
streaming (like HLS or MPEG-DASH) which is supported 
nearly in any modern streaming infrastructure. In case of 
adaptive streaming, the same video content is available in 
different qualities. In our case as we will see later, we will 
pre-render and store FOVs with some overlap. The overlap-
factor has impact on the required additional storage and level 
of granularity to navigate in the video. The usability aspect is 
the more important aspect we need to consider. The most 
relevant parameter that has direct impact on the usability is 
how fast the system reacts to a user movement to be fully 
reflected on the display screen. It is also known as motion-to-
photon latency and is very important to consider in case of 
head-mounted displays which has a limit of 20ms. In case the 
entire 360° video is available on the client, the processing 
must be finished within this limit. This depends from the 
processing resources available on the client and the quality of 
the source video and single FOV. In our solution we are not 
addressing head mounted displays and we are focusing on 
devices with large screens which means automatically 
requirement for better quality for a single FOV. More 
investigation and improvement of the current solution to 
support head-mounted displays may be addressed in the 
future. For navigation, we are more focusing on input devices 
like TV remote control, keyboard or touch screen. Bringing 
360° video experience to large screens is what many content 
providers and especially broadcasters are currently looking 
for. We already started pilots with some broadcasters using 
our solution on smart TVs. End-users can use the direction 
control keys (left, right, up and down) on the remote control 
to navigate in the video. The content provider can also offer 
a set of most relevant FOVs for selection which allows the 
end-user to jump directly to the FOV of interest. The result of 
the pilots shows that a motion-to-photon delay between up to 
500ms is very acceptable when remote control is used as 
input device and navigation is done in large steps to certain 
hot spots. Lower motion-to-photon latency is preferred with 
small steps between neighbor FOVs. 
 
3.1. Architecture 
The architecture of our solution as depicted in Figure 1 
comprises the four steps “Pre-processing”, “Storage”, 
“Streaming”, and “Playback”. During pre-processing step, a 
source 360° video will be pre-rendered with different FOV 
combination and the output FOVs will be stored somewhere 
in local storage. In next step, the created FOVs will be 
analyzed and a manifest file will be created. After the pre-
processing is completed, all FOVs and the manifest file will 

to be made available on a storage server that is accessible by 
a CDN provider. For streaming the content to the client, the 
CDN infrastructure of the provider will be used. In the last 
step “playback”, the player reads and parses the manifest file 
to get information about available FOVs and how to access 
them. The player starts playback with the default FOV and 
listens to requests from input device to navigate to another 
FOV. Main components of the system are explained below in 
more details. 

 
Figure 1 overall architecture 

3.1.1. Pre-processing 
The pre-renderer operates on the source 360° video and 
calculates the different FOVs depending from the 
configuration that is also passed as input. A FOV is defined 
using the four parameters (f, q, Ah, Av): 

• f	is	the	centre	of	the	horizontal	angle	of	view.	0		£	
f	£	(360°	-	Ah).	

• q	is	the	centre	of	the	vertical	angle	of	view.	(-90°	+	
Av/2)	£	q	£	(90°	-	Av/2).	

• Ah	is	the	width	of	the	horizontal	angle	of	view.		
• Av	is	the	height	of	the	vertical	angle	of	view.	

Ah and Av remain constant during pre-rendering of the same 
zoom level. In this explanation we will consider a fix zoom 
level and keep Ah and Av constant. Experience gained from 
our experiments shows that (Ah, Av) = (106.7°, 60°) is good 
default configuration for displays with 16/9 aspect ratio 
(106.7° = 60°x16/9). Therefore, we will use in the rest of this 
paper (f, q) instead of (f, q, Ah, Av) just for simplicity. 
The horizontal angle between two neighbor FOVs f1 and f2 
is defined as Df and the vertical angle between two neighbor 
FOVs q1 and q2 is defined as Dq. In other words, all neighbor 
FOVs of (f, q) along one direction (horizontal or vertical) are: 
(f-Df, q), (f+Df, q), (f, q-Dq) and (f, q+Dq).  
The number of FOVs when q remain constant and the 
horizontal angle of view f changes is Nh = 

360°

Df
 and The 

number of FOVs when f remain constants and the vertical 
angle of view q changes is Nv = 

360°

Dq
− 1. The total number of 

FOVs is N = Nh x Nv. 
The example depicted in Figure 2 has the following values: 

• Ah = 106,7°, Av = 60°. 



• 0  £ f £ 345°, -60° £ q £ 60°. 
• Df = 15°, Dq = 30°. 
• Nh = 24, Nv = 5, N = 120. 

 

								 	
Figure 2: FOVs by changing horizontal angle of 

view f and vertical angle of view q  

This configuration as shown in the example was used in most 
of our pre-rendered videos. In many videos where the main 
spectacle happens for vertical angle of view q = 0°, Dq = 60° 
(with no vertical overlap) can be used instead of Dq = 30° 
(vertical overlap = 50%) with no implications on usability. 
This will reduce total number of FOVs from 120 to 72. The 
FOVs for q ¹ 0°can be also skipped if the main spectacle 
happens only for q = 0°. In this case the total number of FOVs 
can be reduced to 24. This was also the case for many 360° 
videos we got from broadcaster.  
After pre-rendering all FOVs, they will be stored on the local 
system and each FOV will be parsed in next step. FOVs are 
video streams that can be played in any video player that 
supports the used container format and media codec. 
Examples for container formats are fragmented MP4 or 
MPEG-TS (MPEG Transport Stream) and for media codec 
H264. A FOV consists of a series of video segments or group 
of pictures (GOPs) that can be played independently from 
each other. If the player starts playing a GOP and the user 
requests to switch to another FOV, the player must first finish 
the current GOP and then switch to the next GOP of the target 
FOV. This is required because a GOP starts with a main/key 
frame that contains a fully specified picture and all following 
frames hold only the changes in the image from the previous 
frame. This means that the duration of a GOP has impact on 
the motion-to-photon latency. In average the motion-to-
photon latency is increased by 

𝐺𝑂𝑃	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

2
. A suitable value 

for number of frames in a GOP is 10. This means a GOPduration 
= 333.333ms for frame rate of 30fps and GOPduration = 400ms 
for a frame rate of 25fps. The number of frames in a GOP has 
impact on the compression ratio of the used media codec.  
During parsing step, the offset in bytes from the beginning of 
the corresponding FOV will be calculated for each GOP. All 
offsets will be stored in a manifest file in the same location as 
for FOV videos. In the player section we will explain in more 
details how the information from the manifest are used.  
The pre-processing algorithm for pre-rendering and 
analyzing all FOVs is described below. The function render 

takes a 360° source video and angle of view as input and 
returns the video stream of the corresponding FOV as output. 
The save function saves a FOV or manifest file. The parse 
function takes the video stream of a FOV as input and returns 
the GOP offsets as output.  
 

preprocess(V, Ah, Av, Df, Dq) 
 fmin   := 0; 
 fmax   := 360 - Ah; 

qmin   := -90 + Av/2; 
 qmax   :=  90 - Av/2; 
 f  := fmin; 
 manifest := Angle x Angle x GOPindex à GOPoffset; 
 i := 1; 
 while f  £ fmax do 
  q  := qmin; 

while q  £ qmax do 
 FOVi := render(V, f, q, Ah, Av); 
 save(FOVi); 
 manifest[f,q] := parse(FOVi); 
 i := i+1; 
 q := q + Dq; 
end 
f := f + Df; 

 end 
 save(manifest); 
end	

  
3.1.2. Storage and Streaming 
The output FOVs and manifest of pre-processing step need to 
be available on a streaming server that is accessible from the 
CDN provider. In general, it is a static http server with range 
support. It is supported by most storage providers. In our 
experiments we used Amazon S3 as a storage service. Range 
requests are important in our case to access specific GOPs of 
a FOV instead of downloading the whole FOV. The HTTP 
header Range needs to be set and contains the from and to 
offsets in bytes. As alternative for Range requests each GOP 
can be stored in a separate file. After all FOVs and the 
manifest are available on a storage server, a CDN provider 
can be used for streaming. We used in our experiment 
Amazon CloudFront as a CDN. CloudFront can be easily 
configured to operate on Amazon S3.  
To support adaptive bitrates, the generated FOVs can be 
converted to different qualities with different bitrates using 
the same tools that are used for traditional videos.  
 
3.1.3. Player 
The player constructs the final video stream to display from 
the FOV videos. There is no need to process the received 
video content before playback. The client platform needs 
only to provide an API that allows applications to send video 
segments (in our case are the GOPs) to the video decoder. In 
our implementation, we focused on web technologies and 
used the W3C Media Source Extension API (MSE) [6]. MSE 
API allows application to control the source buffer of a 



HTML5 video object by appending, removing or replacing 
segments. There are three modules in the player:  

• Manifest parser: The URL of the manifest file is 
the only input required in the player. As described 
above, the manifest contains all metadata of the 
video as well as all information of the available 
FOVs and the GOP offsets for each FOV. We use 
currently our own simple JSON format for the 
manifest but in the future it could be replaced by an 
extension of existing formats like Media 
Presentation Description (MPD) of MPEG-DASH. 
The Spatial Relationship Description (SRD) of 
MPEG-DASH is one of the candidates if it is 
extended in the future to also support spherical 
coordinates. A Web player can request the manifest 
file using a simple HTTP GET request. 

• Player and Buffer Control: After the manifest is 
parsed, the player will be initialized with the default 
angle of view (f0, q0). Initial GOPindex = 1 if the user 
starts playback form beginning. GOPindex holds the 
index of the current GOP being played. In each step, 
the player requests a GOP from the server using a 
HTTP range request.  From the GOPindex, the player 
can read the from and to offset of the next GOPs of 
the current FOV from the manifest. To reduce the 
number of HTTP requests, the player may request 
multiple GOPs at same time. All GOPs will be 
added to the source buffer. Different caching 
algorithms can be applied and the user interaction 
behaviour can be considered. Until this step and 
before any user interaction, the player logic is the 
same as for classical videos.  

• User Input Control: This module is responsible for 
navigating in the video. It receives a request from 
the input device for example TV remote control or 
keyboard and changes the FOV. The player updates 
its internal state with the coordinates of the new 
FOV and sends immediately a new HTTP request to 
get the next GOPs of the new FOV. Once the new 
GOPs are received, the GOPs for the old FOV will 
be automatically replaced.  

Figure 3 shows an example with n FOVs each of them with 
m GOPs and with 4 user interactions.  

 
Figure 3: Example with n FOVs with m GOPs 

4. EVALUATION 
We evaluated our solution (cloud pre-rendering) together 
with “cloud live rendering” and “client rendering” (e.g. 
YouTube and Facebook players) solutions according 
bandwidth, total costs, battery consumption and motion-to-
photon latency.  
Bandwidth: Figure 4 shows the required bandwidth for 8 
different videos. The blue chart shows the bandwidth for 
steaming 4k source 360° video which applies to “client 
rendering” solutions and the orange chart shows the 
bandwidth required to stream a single FOV in HD quality for 
calculated from the corresponding video.  

 
Figure 4 Bandwidth comparison 

The required bandwidth is the same for cloud live-rendering 
and cloud pre-rendering since in both solutions stream only 
the requested FOV and not the whole 360° source video. With 
our solution we can deliver 360° video in the same quality by 
saving 10x bandwidth.  
Total costs: Figure 5 shows a comparison of the three 
solution regarding total costs which include costs for storage,  
rendering and streaming. We considered in this evaluation the 
AWS prices (S3 for storage, EC2 for rendering and 
CloudFront as CDN).  

 
Figure 5 total costs 

The costs are in USD per 1h video for different price levels. 
The blue chart shows the total costs for client rendering which 
are mainly the costs for streaming 4k content. The green chart 
shows the costs for cloud live-rendering. Most of the costs are 
for rendering the FOV in the cloud since for each client a new 
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rendering instance with GPU is needed.  The orange line 
shows the costs for our solution cloud pre-rendering. It 
includes the costs for pre-rendering the video which are one-
time costs per video, the storage costs of all FOVs which is 
higher than the storage costs of the source 360° video but 
these are fix costs per month independent of the number of 
client and the streaming costs which are much lower than the 
costs for streaming the source 4k videos.  
Battery lifetime: We will again compare the three solutions 
client rendering, cloud live-rendering and cloud pre-
rendering. Since both cloud live-rendering and pre-rendering 
use the same client we will compare these two solutions to 
client rendering. The target device is a Samsung Galaxy Tab 
S2 Tablet, running Android version 6.0.1 and with battery 
capacity of 5870 mAh. As depicted in Figure 6 we can see 
that using our solution the battery level dropped from 100% 
to 85% after 1h10m37s and under the same conditions with 
client rendering it was 42m18s. This means with our solution 
the battery lifetime is about 39% than for client rendering. 

          
Figure 6 Battery lifetime a) cloud pre-rendering b) client 
rendering 

Motion-to-Photon Latency: There are many factors that 
influence the motion to photon latency. In case of client 
rendering the motion to photon latency can be calculated 
from the decoding time of a single video frame, the time 
needed to capture user inputs (motions), the time needed to 
process a frame and calculate the projection and the time to 
switch the pixels on the display. We will consider a latency 
under 20ms as given for client rendering. For cloud live-
rendering the network latency needs to be considered in 
addition to the motion to photon latency of client rendering. 
For pre-rendering solution the duration of a GOP needs to be 
also considered. For a GOP size of 10 frames and 30fps video, 
the GOP duration is 333,33ms. This means, in average the 
additional latency of pre-rendering solution is 166,67ms 
comparing to cloud live-rendering. 
 

5. CONCLUSION 
We presented in this paper a new solution for 360° videos 
based on pre-processing and streaming of individual FOVs. 
Our target devices are large displays where users expect best 
quality for a single FOV. The proposed solution in this paper 
was evaluated in context of different pilots together with 
broadcasters and content providers. The current 
implementation of the pre-processing part is available as 

Node.js program which generates the FOVs and the manifest 
and uploads all data to Amazon S3. A player implementation 
is also available using pure web technologies. Browser 
support of W3C MSE API is required. The web player was 
tested on following platforms: Chromecast (1st and 2nd 
generations), desktop browsers Chrome, Safari, Firefox and 
Edge, Chrome browser for Android, Amazon Fire TV and 
Android TV (in WebView), new series of LG and Samsung 
TVs that support MSE. We will continue working on 
improving the solution especially for reducing the motion-to-
photon latency and to make smooth transition between the 
FOVs. 
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