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Abstract: Leaching outdoor tests (LOT) are commonly used to assess the leaching of substances 

from construction materials. In this context, the amount of stormwater in contact with the surface 

material is of special interest for analyzing the runoff loads of substances from building façades. A 

numerical model was developed in MATLAB on the basis of previous analytical models to calculate 

the collected stormwater runoff volumes from the vertical test panels (VTP) during LOT. In the 

model, wind-driven rain (WDR) is considered to be the main mechanism for determining the 

amount of water impinging on the VTP, so it is a crucial factor in the modeling for the façade runoff. 

The new model makes it possible to simulate the runoff volumes from VTP that are covered with a 

wide variety of plaster and mortar. Using the new model, it was possible to relate the VTP runoff 

volumes obtained during an 18-month sampling period for LOTs performed at the Fraunhofer 

Institute for Building Physics in Valley, Germany. When comparing the simulation results with the 

field test accumulated runoffs, the model exhibited a difference of no more than 3.5% for each of the 

analyzed materials. The simulation results are satisfying, and the paper demonstrates the feasibility 

of the modelling approach for the runoff assessment of VTP covered with a variety of plaster and 

mortar. 
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1. Introduction 

In the European Community, the evaluation of the environmental properties of building 

materials has been a high priority for some years. The Construction Products Regulation (CPR) 

addresses seven basic requirements for buildings [1]. The third requirement covers the area of 

hygiene, health and environmental protection. According to the latter, construction projects must be 

designed in such a way that, throughout their entire life cycle, they will not have an exceedingly high 

environmental impact. Plaster and mortar are mostly used as part of façade external thermal 

insulation composite systems (ETICS). During the exposure of these products to precipitation and 

ambient air, the stormwater runoff from the façades dissolves some ingredients from the plaster and 

mortar. The leached substances can be released into the environment in this way. Since not every 

substance has an environmentally hazardous potential, the release of substances from construction 
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products in contact with stormwater does not necessarily imply a negative impact on the 

environment. 

Vertical test panels (VTP) (see Figure 1) have been widely used to investigate the leaching of 

ingredients of building materials, e.g., façade coatings, ETICS, mortars or plasters [2–8]. These panels 

are commonly used to gain information on the leaching of substances from building products in real 

weather conditions. However, the evaluation of the leaching behavior of plaster and mortar in the 

case of a façade in contact with stormwater by using models is not yet possible, as there is no transfer 

model for reaching conclusions, from the results of leaching tests, on the actual impact of a building 

product on soil and groundwater. 

 

Figure 1. Vertical test panels used during leaching outdoor tests in Valley, Germany. 

During rain events, building ETICS façades become moist due to wind-driven rain (WDR), a 

horizontal velocity component of the wind that is driven against the windward façade of buildings. 

WDR is the most important contributor to the moisture load on building façades [2,4,9–13]. Burkhardt 

[4] first postulated that weather conditions (precipitation, rain intensity, wind speed, wind direction, 

temperature), façade geometry (height, weight), site characteristics (latitude, altitude) and façade 

exposure (orientation) are the main influencing factors of the leaching process. 

Many studies in recent decades have focused on the prediction of impinging WDR on building 

façades. These models have focused on predicting the amount of WDR that affects a façade by using 

semi-empirical formulas [14] and numerical simulations with Computational Fluid Dynamics (CFD). 

A summary of these methods can be found in Blocken et al. [10]. To approach WDR in a façade, there 

exist two different methods according to Abuku [15]: (1) The average moisture flux of a façade is 

supplied by the total mass of all raindrops impinging on the material surface during a defined time 

interval established by the meteorological input data and (2) the WDR is the sum of individual 

raindrops impinging on the façade in a spatially and temporally discrete modus. In the CFD model, 

the airflow patterns were studied using computational fluid dynamics. By using this method, the 

catch ratios can be calculated by simulating the raindrop trajectories based on the airflow patterns. 

The raindrop catch ratios are then used to construct distributions for different zones, as a function of 

the rain intensity and the wind speed. Heat-Air-Moisture (HAM) models have been assessed to take 

into account the absorption as well as the moisture response of the façade caused by impinging WDR, 

including drop bouncing and runoff along the surface [16–20]. Liquid film flow models have been 

largely studied in the past for other disciplines [21–24], but very few investigations have been done 

coupling them with vertical surfaces and the hygrothermal behaviors of façades [11]. Blocken et al. 

[9,10] numerically studied the coupling between façade liquid film flows in combination with 

simplified absorption models like that of Hall and Hoff [25,26]. Simulations typically overestimate 

the measured moisture content in facades. This may be caused partly by two errors: (1) errors in the 

difference in absorption and evaporation between an averaged WDR flux and a flux composed of 

randomly impinging drops, and (2) errors concerning the behavior of the raindrops, as splashing and 
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bouncing may be processes that decrease the availability of water for absorption and laminar flow 

[20]. 

The surface runoff that occurs following water saturation of the façade material is of special 

interest because leaching is controlled by the availability of water in the surface as well as the 

transport processes within the materials [27]. To model the runoff of the VTP, it is necessary to 

combine a variety of processes, e.g., WDR impingement in the vertical plane, material absorption, 

and surface runoff. In this study, the runoff caused by WDR on VTP coated with three different types 

of plaster and mortar will be simulated. Based on previously developed models, methods and 

assumptions, the calculation of impinged raindrops in the VTP, as well as the amount of absorbed 

water and the surface runoff will be assessed. In order to compare the results between the model and 

the runoff volumes obtained during the field tests, real weather parameters as well as the physical 

properties of the materials will be used as input parameters. 

Over a period of 10 years, the Fraunhofer Institute for Building Physics IBP has carried out 

systematic and extensive investigations on a large number of formulations of plaster and mortar. A 

series of field scale tests using vertical test panels comprising various plaster and mortar coatings has 

been carried out in order to analyze the leaching behavior during real weather conditions as well as 

in constant physical conditions. The data were used as a basis in the development process of a three-

stage model to assess the environmental properties of common plaster and mortar: 

• Level 1: Façade runoff model 

• Level 2: Model for leaching processes and material transport on façades 

• Level 3: Evaluation of the environmental impact by using the leachate forecast for groundwater 

risk assessment 

This study will focus on the “Level 1: Façade runoff model”, in which a runoff numerical 

simulation model for VTP in MATLAB was developed. The model calculates the water volume that 

sorbs during the rain event, bounces off the façade, and runs off it or remains on it as a film. The 

method in this simulation is based on stated assumptions found in previous research papers and 

existing WDR, absorption, and surface water flow models. 

2. Materials and Methods 

2.1.  Model Parameters 

2.1.1. Assumptions and Boundary Conditions 

To simulate the amount of stormwater that impinges the VTP, absorbs within the material, and 

then runs off, a grid was used as the model surface. VTP 0.5 m × 1.0 m in size were therefore divided 

into elements with sizes of 10 mm × 10 mm. Once the WDR exceeded the absorption rate of the 

material, water started to accumulate in the form of a film on the studied surface. Water volumes 

caused by the drops first adhered to the surface and therefore led to more incorporation of drops, 

rivulets and, finally, a flow film formation. When the water film reached a certain thickness, the 

gravity forces exceeded the tension forces produced between the impinged water and the material 

surface. This process allowed the water film to flow down, producing runoff. In order to simulate the 

runoff in the VTP, each of the elements of the grid consisted of three main layers. The first layer was 

the (1) cumulative water film thickness (CWFT) (Section “Cumulative Water Film Thickness (CWFT)”). 

This layer defined the point when the cumulated water started to flow downward. If the water film 

on an element was larger than the CWFT, the water volume that exceeds this film thickness started 

to flow downward, leaving behind a (2) trace film thickness (Section “Trace Film Thickness”). The trace 

film thickness left behind a trace volume which was equal to the trace water volume multiplied by 

the size of the grid element. This trace volume then accumulated in the particular element in which 

the trace volume passed over. The cumulative water film increased depending on the impinging rain 

amount. The increase in the CWFT was limited by (3) the maximum water thickness (Section 

“Maximum Water Thickness”). This film thickness limited the amount of water that could accumulate 



Water 2020, 12, 2593 4 of 18 

 

in one grid element. If the cumulative element water reached the maximum water thickness, the 

excess water volume flowed down. 

Water rivulets form after water volumes start to run off. Rivulets flow down straight or meander, 

depending on the flow speed of the rivulet, which is dependent of the flow rate (Section “Flow Speed, 

Flow Rate and Flow Types”). To simulate individual rivulets in the VTP, the size of the rivulet was 

proportional to the width of the grid element. The flow path on a grid element was determined by 

the flow rate and a randomly distributed roughness distribution (Section “Roughness”) that was given 

to the VTP grid. The approximation of the different flow rates used for selecting whether the rivulet 

flowed straight or meandered was based on the research of Le Grand-Piteira [28]. 

The raindrop size distribution was defined by the horizontal rainfall intensity presented by the 

weather data. This distribution created random raindrops with random diameters in accordance with 

the mean size presented in the studied area. The random drop impinged a random grid element in 

every calculation loop defined by a specific time step. Every time a raindrop impinged the VTP, a 

part thereof splashed off. The remaining volume was partly absorbed, and the rest created a film in 

the correspondent grid element. If a specific thickness condition was reached, the water flowed down 

or remained in the grid element as a film waiting for more water to cumulate. The water volume that 

flowed down was then transported to the grid element beneath. The flow selected the grid element 

with the lower roughness given by the random roughness distribution. After the volume flowed 

downward, a part of it left behind a trace volume. If the grid element to which the runoff volume 

flowed already complied with the condition of the CWFT, the runoff volume continued its way 

downward, leaving a trace volume in each of the grid elements. The runoff volume stopped in a grid 

element which had not yet reached the condition of the CWFT and was absorbed or stayed there, 

depending on the condition of the grid element, until more water cumulated and had the possibility 

to flow down. In the end, the runoff volume was defined as the runoff volume that flowed all the 

way down to the bottom of the grid and left the plane. The program ran through every single grid 

element within each calculation loop and verified the presented conditions. After the program 

verified the conditions of each of the single grid elements, a new time step defined by the time 

between each impinging raindrop was created. 

2.1.2. Raindrop Size Distribution 

The raindrop size distribution used in this study was based on the work described by Best [29]. 

The model creates a raindrop diameter distribution with a minimum drop diameter (d0min) in mm 

of 0.2 and a maximum drop diameter (d0max) in mm of 5.0. A total of 50 raindrop diameter classes 

(NF) were generated in accordance with the minimum and maximum drop diameter. The class length 

(CL) was defined by the next equation: 

𝐶𝐿 =  
𝑑0𝑚𝑎𝑥 − 𝑑0𝑚𝑖𝑛

𝑁𝐹
 (1) 

Every class has an average raindrop diameter (𝑑𝑎𝑣𝑔) in mm: 

𝑑𝑎𝑣𝑔,𝑖 =
(𝑑0𝑚𝑖𝑛,𝑖 + 𝐶𝐿)

2
 (2) 

The class raindrop volumes (𝑑𝑣𝑜𝑙,𝑖) in mm are created with respect to the average diameters: 

𝑑𝑣𝑜𝑙,𝑖 = 
4

3
∙  𝜋 ∙ (

𝑑𝑎𝑣𝑔,𝑖

2
)

3

 (3) 

After obtaining the class raindrop volumes, the Best [29] raindrop distribution is formed. This 

distribution gives the fraction of the water volume (𝐹𝑑) in mm³ present in air with diameters equal to 

𝑑𝑣𝑜𝑙,𝑖 of a rain event with a specific intensity (𝑅𝑛) in mm: 

𝐹𝑑,𝑖 = 1 − exp (−(
𝑑𝑎𝑣𝑔,𝑖

1.3 ∙ 𝑅𝑛
0.232)

2.25

) (4) 



Water 2020, 12, 2593 5 of 18 

 

A raindrop diameter distribution can be constructed by generating a specific quantity of average 

raindrop diameters for every class. The specific quantity of diameters (𝑁𝑈𝑀_𝐹𝑑,𝑖) and the fraction of 

liquid water per unit volume of air (fra_air) in mm are calculated with the next equations: 

𝑁𝑈𝑀_𝐹𝑑,𝑖 =
𝐹𝑑,𝑖  ∙  10 ∙  𝑓𝑟𝑎_𝑎𝑖𝑟

𝑑𝑣𝑜𝑙,𝑖
 (5) 

𝑓𝑟𝑎_𝑎𝑖𝑟 = 67𝑅𝑛
0.846 (6) 

To determine the amount of drops that have to be generated in order to represent a specific event 

of vertical rain with an intensity equal to 𝑅𝑛, it was necessary to calculate the total water volume of 

the drops (𝑉𝑑𝑖𝑠𝑡𝑟_𝑡𝑜𝑡𝑎𝑙) in mm³ being generated in that specific rain event with the volume 𝑑𝑣𝑜𝑙,𝑖: 

𝑉𝑑𝑖𝑠𝑡𝑟_𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑈𝑀_𝐹𝑑,𝑖  ∙  𝑑𝑣𝑜𝑙,𝑖 (7) 

Following the determination of the total water volume of the drops present in a specific rain 

event, it was necessary to determine how this volume would be distributed on the surface of the grid 

during the rain event duration (h): 

𝑉𝑖𝑛_𝑡𝑜𝑡𝑎𝑙 =
𝑅𝑛
3600

 ∙ ℎ ∙ 𝑟𝑜𝑤 ∙ 𝑐𝑜𝑙 ∙ 𝐷𝐻𝑆 ∙  𝐷𝐿𝑆 (8) 

where DHS and DLS are the width and height (mm) of the VTP elements, respectively, and row and 

col are the number of rows and columns in which the surface was divided. 

Lastly, the number of drops that impinge on the surface during a specific rain event 

(𝑅𝑎𝑖𝑛𝑑𝑟𝑜𝑝𝑛𝑢𝑚_𝑝𝑟𝑜𝑠𝑢𝑟𝑓𝑎𝑐𝑒) with intensity 𝑅𝑛 can be calculated with the next equation: 

𝑅𝑎𝑖𝑛𝑑𝑟𝑜𝑝𝑛𝑢𝑚_𝑝𝑟𝑜𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = (
𝑉𝑖𝑛_𝑡𝑜𝑡𝑎𝑙
𝑉𝑑𝑖𝑠𝑡𝑟_𝑡𝑜𝑡𝑎𝑙

) ∙ 𝑁𝑈𝑀_𝐹𝑑,𝑖 (9) 

The incidence time between each raindrop in seconds 𝑑𝑡 was calculated (10). The time between 

each raindrop determined the time between each calculation loop in the simulation. For each 

calculation loop, a random raindrop from the raindrop diameter classes was selected. The random 

raindrop impinged a random grid element. 

𝑑𝑡  =
𝑇

𝑅𝑎𝑖𝑛𝑑𝑟𝑜𝑝_𝑛𝑢𝑚_𝑝𝑟𝑜𝑠𝑢𝑟𝑓𝑎𝑐𝑒
 (10) 

2.1.3. Wind-Driven Rain Distribution (CFD Model by Blocken)  

The assessment of the WDR intensity in the VTP was based on the catch ratio distribution 

developed by Blocken [30]. The CFD distribution depends on the wind speed (𝑤_𝑠𝑝𝑒𝑒𝑑), the wind 

direction (𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) and the vertical rainfall intensity (𝑟𝑎𝑖𝑛_𝑖𝑛𝑡). 

Several assumptions were made with respect to this model. The first assumption was that the 

catch ratio of the WDR distribution is independent of the horizontal rainfall intensity. The second 

assumption was the linear relationship between the magnitude of the catch ratios of the WDR 

distribution and the wind speed. Therefore, if the wind speed equaled twice the reference wind speed 

used to calculate the catch ratio in the WDR distribution, the catch ratio was also doubled. The third 

and last assumption was related to the wind direction. Depending on the wind direction given by the 

weather file, a WDR distribution was given to the VTP grid. Assuming that all VTP were oriented 

westward, the relations between the wind direction and the used WDR distribution were as follows: 

• [270°–292.5°] distribution derived from 0° wind direction; 

• [292.5°–315°] distribution derived from 22.5° wind direction; 

• [315°–337.5°] distribution derived from 45° wind direction; 

• [337.5°–360°] distribution derived from 67.5° wind direction. 
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To implement these WDR distributions, each distribution was divided by the amount of grid 

elements used in the VTP grid. Five hundred grid elements with a specific catch ratio were then 

determined. This method was used to generate a discrete distribution for each of the four wind 

directions. To calculate the amount of water impinging (𝑤𝑎𝑙𝑙_𝑣𝑜𝑙) the grid elements of the VTP during 

a rain event in mm, the following equation was implemented: 

𝑤𝑎𝑙𝑙_𝑣𝑜𝑙(𝑖, 𝑗)  = (𝑤𝑎𝑙𝑙𝑣𝑜𝑙(𝑖,𝑗) + 𝑑𝑣𝑜𝑙,𝑖)  ∙ 𝑊𝐷𝑅_𝐵𝐶(𝑖, 𝑗)  ∙  (1 − (
𝑆𝑃

100
)) (11) 

where 𝑑𝑣𝑜𝑙,𝑖 is the raindrop volume that impinged on the grid element, 𝑊𝐷𝑅_𝐵𝐶(𝑖, 𝑗) is the catch 

ratio defined by the wind speed and the wind direction, and 𝑆𝑃 is the splash percentage, which is 

defined as a constant 30% of the total amount of water impinging on the VTP. 

2.1.4. Absorption 

The absorption model used for this simulation is that of Hall and Hoff [25]. This model has been 

used in past runoff models and is tailored to the needs of our simulation [9–12]. The model is 

composed of two phases. The first describes the absorption of WDR by the VTP surface materials. 

This absorption requires a constant flux as a boundary condition. This first phase lasts until the 

saturation of the material, defined by the capillary water absorption coefficient of the material (𝐴), 

and the impinged water volume (𝑤𝑎𝑙𝑙𝑣𝑜𝑙(𝑖,𝑗)) is achieved. The saturation time (𝑡𝑠𝑎𝑡), in seconds, is 

expressed by the following equation: 

𝑡𝑠𝑎𝑡  =
𝐴²

2 ·   (𝑤𝑎𝑙𝑙𝑣𝑜𝑙(𝑖,𝑗))² 
 (12) 

If the saturation of the material is not yet reached, the total amount of water that will be absorbed 

by the VTP (𝑣𝑜𝑙𝑎𝑏𝑠) will be equal to the total impinged water volume (𝑤𝑎𝑙𝑙𝑣𝑜𝑙(𝑖,𝑗)) that can be absorbed 

per grid element by a specific time (𝑡𝑛). After saturation is reached, the total amount of water that 

can be absorbed per grid element (𝑣𝑜𝑙𝑎𝑏𝑠) by a specific time (𝑡𝑛) will be equal to: 

𝑡𝑛 ≤ 𝑡𝑠𝑎𝑡: 𝑣𝑜𝑙𝑎𝑏𝑠  = (𝑤𝑎𝑙𝑙𝑣𝑜𝑙(𝑖,𝑗)) (13) 

𝑡𝑛 > 𝑡𝑠𝑎𝑡: 𝑣𝑜𝑙𝑎𝑏𝑠  = min  (𝑤𝑎𝑙𝑙𝑣𝑜𝑙(𝑖,𝑗)) ,
 𝐴    

2 ·   √𝑡𝑛 
(𝐷𝐻𝑆 · 𝐷𝐿𝑆) (14) 

The initial condition assumed by this model is that the material is dry. This assumption can 

present a limitation, as mentioned by Blocken [9]. Another limitation of this simplified model is that 

it does not take material thickness into account. Therefore, the model assumes that, before and after 

the material is saturated, the moisture from the surface can freely penetrate the material. Since the 

VTP runoff model focuses on the physical and numerical aspects of stormwater runoff rather than on 

moisture transfer walls, and our case concerns panels covered with a plaster layer with a maximum 

thickness of 20 mm (lime cement plaster) rather than walls, the simplified sharp front model by Hall 

and Hoff [25] fits our purpose. 

2.1.5. Runoff 

The model includes an assumption that the rainfall intensity is uniformly distributed over the 

VTP surface. Within each time step, a raindrop impinges on a random grid element in accordance 

with the raindrop distribution created. A portion of the impinged water splashes, another portion is 

absorbed and disappears from the surface, and the remaining water flows down the grid element if 

its water volume is larger than the CWFT and then runs off if the grid element is situated at the 

bottom of the VTP grid. 
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Cumulative Water Film Thickness (CWFT) 

The CWFT was defined according to Dussan’s [21] force balance equation for droplets in critical 

static conditions. This derived equation is written in terms of the surface tension force that operates 

in relation to the contact line of the droplet with the surface and the gravity forces. The CWFT 

(𝑐𝑤_𝑓𝑖𝑙𝑚_𝑡ℎ𝑖𝑐𝑘), in mm, is described by the following equations: 

𝑐𝑤_𝑓𝑖𝑙𝑚_𝑡ℎ𝑖𝑐𝑘 = (
𝑐𝑤_𝑓𝑖𝑙𝑚_𝑣𝑜𝑙 

𝐷𝐻𝑆 ∙   𝐷𝐿𝑆 ∙   𝑟𝑜𝑤 ∙   𝑐𝑜𝑙 
) (15) 

𝑐𝑤_𝑓𝑖𝑙𝑚_𝑣𝑜𝑙 

=

(

 
 
 
 
(
96
𝜋 
)
0.5

 ∙  
(cos(𝜃𝑟) − cos (𝜃𝑎))

1.5(1 + cos(𝜃𝑎))
0.75(1 − 1.5(cos(𝜃𝑎)) + 0.5(cos

3(𝜃𝑎)))
(2 + cos(𝜃𝑎))

1.5(1 − cos(𝜃𝑎))
2.25

(
𝜌𝑤  ∙   (

𝑔
1000

)

𝑠𝑤
)

0.66

∙  (1000)³

)

 
 
 
 

 
(16) 

where 𝑐𝑤_𝑓𝑖𝑙𝑚_𝑣𝑜𝑙 is the volume of water corresponding to the CWFT (mm), 𝜃𝑟  and 𝜃𝑎 are the 

receding and the advancing contact angles (°) of the material, respectively, 𝜌𝑤 is the water density 

(kg/m³), 𝑔 is the gravitational acceleration (m/s²) and 𝑠𝑤  is the surface water tension (N/m). 

When the amount of water on a grid element reaches CWFT, the water volume will start to flow 

down to the grid element below or will run off the VTP if it is situated at the last row of the grid. 

Trace Film Thickness 

The trace film thickness is the water volume that remains on a grid element after the water flow 

passes down to the grid element below. Since information is scarce on this topic, a default value of 

𝑡𝑟𝑎𝑐𝑒𝑡ℎ𝑖𝑐𝑘 = 0.002 (mm) was used for each of the different materials. 

Maximum Water Thickness 

The maximum water thickness (𝑚𝑎𝑥 _𝑓𝑖𝑙𝑚_𝑡ℎ𝑖𝑐𝑘) was defined by the minimum film thickness 

(𝛿𝑚𝑖𝑛) equation for stable films derived by El-Genk [31]. According to El-Genk, this thickness is 

determined by the minimal total energy equation. The equilibrium surface contact angle can be 

calculated if the receding (𝜃𝑟 ) and the advancing (𝜃𝑎 ) contact angles are given. To calculate the 

equilibrium contact angle (𝜃0) (°), Tadmor [32] suggested the following equations: 

𝜃0  = arccos (
𝑟𝑎cos𝜃𝑎+ 𝑟𝑟cos𝜃𝑟

𝑟𝑎  ∙   𝑟𝑟  
) (17) 

With the advancing 𝑟𝑎 and receding surface 𝑟𝑟  tensions: 

𝑟𝑎  = √
sin3𝜃𝑎

2 − 3cos𝜃𝑎 + cos3𝜃𝑎

3

 (18) 

𝑟𝑟  = √
sin3𝜃𝑟

2 − 3cos𝜃𝑟+ cos3𝜃𝑟

3

 (19) 

El-Genk gives an empirical relation for the dimensionless minimum film thickness: 

Δ𝑚𝑖𝑛  = (1 − cos𝜃0)0.22 (20) 

Finally, the maximum film thickness is given by the next equation: 

𝑚𝑎𝑥 _𝑓𝑖𝑙𝑚_𝑡ℎ𝑖𝑐𝑘 =
Δ𝑚𝑖𝑛

(
𝜌𝑤
3𝑔2

15𝜇𝑙
2𝜎
)
0.2 

(21) 
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where 𝜌𝑤 is the water density (kg/m³), 𝜇 is the dynamic viscosity of the water (N ∙ s/m²), and 𝜎 is 

the surface tension of water (N/m) at 20 °C. 

Flow Speed, Flow Rate and Flow Types 

To determine the flow speed of the water that flows during one time step, the parabolic velocity 

profile of the Nusselt solution [33] was used by simplifying the representation of thin film flow. The 

use of the Nusselt solution is determined for steady water films, but Blocken [9] proved that the 

Nusselt solution is plausible for the runoff of water films in vertical planes. The average flow speed 

of a vertical surface (𝑢) (mm/s²) is given by the following equation: 

𝑢 =
𝑔 ∙  𝑡𝑡2

3 ∙ 𝑣
 (22) 

where 𝑔 is the gravitational acceleration (mm/s²), 𝑣 is the kinematic viscosity of the water(mm/s²), 

and 𝑡𝑡 is the film thickness (mm). 

The flow rate between grid elements was defined by the runoff volume. If the cumulative water 

thickness is complied with, a water volume equal to the runoff volume flowed down to the adjacent 

grid element beneath. When water volume flowed downward, a part of the water volume remained 

on the departure grid element (𝑣𝑜𝑙_𝑡𝑟𝑎𝑐𝑒). In this regard, the runoff volume was equal to the volume 

that surpassed the cumulative water thickness minus the trace volume. The runoff volume 

( 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑣𝑜𝑙 ) divided by the grid element surface represents the transfer film thickness 

(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑡ℎ𝑖𝑐𝑘). The assumption was made for the flow rate that the cross-section of the rivulet 

spreads uniformly over the grid element. From the transfer film thickness and the use of the Nusselt 

solution, a flow speed (𝑢) can be calculated. The flow rate (𝑄) in mm³/s is then given by the following 

equation: 

𝑄 = 𝑢 ∙ 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑡ℎ𝑖𝑐𝑘 ∙ 𝐷𝐻𝑆 (23) 

Depending on the flow rate, different flow types may occur. According to Le Grand-Piteira [28], 

the different flow types and their transition flow rates were “drops” with Q ≤ 200 mm³/s, “small 

straight” with 200 < Q ≤ 470 mm³/s, “meandering” with 470 < Q ≤ 1330 mm³/s and “large straight” 

with Q > 1330 mm³/s, respectively. 

Roughness 

Roughness determines the direction of the flow, depending on its flow type. The water volume 

that flows down as a runoff volume will follow the path with the least resistance. The least resistance 

grid element below was consequently the one with the lowest roughness. Only the three grid 

elements beneath the grid element transferring water volume were taken into consideration in 

determining the flow direction. A change in direction only occurred if the flow rate corresponded to 

the meandering flow type (470 < Q ≤ 1330). If the flow rate corresponded to the other flow types, the 

runoff volume went directly to the grid element below without changing direction. 

To define a specific random roughness for every single grid element, a new grid was elaborated 

(𝑅𝑇). Random roughness coefficients were given to each of the grid elements. This new grid had the 

first and last column as boundaries. Each of these columns received the highest roughness coefficients 

in order to serve as an external limitation so that the runoff volume did not go beyond the area size 

established for the VTP. 
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Runoff Volume  

The runoff volume (𝑟𝑢𝑛𝑜𝑓𝑓_𝑣𝑜𝑙) was the amount of water that flowed from one grid element to 

another grid element below. This water volume was the difference between the water volume of the 

grid element (𝑤𝑎𝑙𝑙_𝑣𝑜𝑙(𝑖, 𝑗) ) and the water volume that stayed behind after runoff occurred 

(𝑡𝑟𝑎𝑐𝑒_𝑣𝑜𝑙). The runoff volume was given by the following equation: 

𝑟𝑢𝑛𝑜𝑓𝑓_𝑣𝑜𝑙 = 𝑤𝑎𝑙𝑙_𝑣𝑜𝑙(𝑖, 𝑗) − 𝑐𝑤_𝑓𝑖𝑙𝑚_𝑣𝑜𝑙 − (𝑡𝑟𝑎𝑐𝑒𝑡ℎ𝑖𝑐𝑘 ∙ (𝐷𝐻𝑆 ∙ 𝐷𝐿𝑆) ∙ 0.1) (24) 

The runoff volume for each of the grid elements was defined during each time step (𝑑𝑡). So, if 

the water volume of the grid element (i,j) was larger than the contact water film volume, a quantity 

of water equal to the runoff volume flowed away from this grid element and arrived at the element 

below, which was defined by the flow type and the random roughness determined. If the runoff 

volume was located in the bottom row of the grid, the water then left the plane and was considered 

to be runoff (𝑟𝑢𝑛𝑜𝑓𝑓). 

2.2. Outdoor Tests for Model Validation 

The VTP used during the outdoor tests were located in outdoor facilities at the Fraunhofer 

Institute for Building Physics (IBP) (47°52′30″ N, 11°43′41″ E) in Valley, Bavaria (Germany). 

Experimental VTP (each 0.5 m wide, 1 m high) consisting of stainless steel panels were covered by 

various plasters or mortars (see Figure 1). A detailed description of the sampling site and data 

analysis are provided in [6,13]. 

Stormwater runoffs from the VTP were channeled through stainless steel gutters into canisters. 

Forty-nine rain events were collected and analyzed over a monitoring period of 18 months. After 

each single rain event, the total volume of the runoff corresponding to each VTP was measured by 

weighing. A weather station (Davis Vantage Pro) was installed on site during the monitoring period. 

The weather station used was capable of recording wind speeds up to 322 km/h, temperatures 

between −40 °C and 65 °C, and precipitation height in 0.2 mm increments. Precipitation heights 

(vertical rain), temperature, wind speed and wind direction were recorded every 5 min. The recorded 

weather data of the study site were used as input data in the VTP runoff model. 

In Valley, there are approximately 180 rainy days per year. The monthly precipitation during 

the test period, from October 2013 to March 2015, ranged from 8.7 mm (L/m²) in December 2013 to 

224 mm in August of 2014. Detailed information about the daily precipitation during the sampling 

period and the runoff sampling dates are provided in [13]. During the 526-day observation period, 

precipitation events with more than 0.1 mm of rain occurred for 255 days. The strongest rain event 

occurred on August 2, 2014, reaching 60.4 mm. The lowest temperature recorded during the study 

period was −16.1 °C (29 December 2014). The highest temperature of 32.1 °C was measured on 19 

June 2014. The wind at the sampling site came mainly from the westerly and southwesterly directions 

[13]. The highest daily mean wind speed observation was 66 km/h on 31 March 2015. During this 

day, the gusts reached a maximum speed of 98 km/h [13]. 

The weather file was composed of an Excel file. Each of the columns of the file represented a 

measurement in 5-min intervals of rainfall intensity (𝑟𝑎𝑖𝑛_𝑖𝑛𝑡) in mm/h, wind speed (𝑤_𝑠𝑝𝑒𝑒𝑑) in m/s, 

wind direction (𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) in degrees, and temperature (𝑡𝑒𝑚𝑝) in °C. For each of the parameters, a 

column matrix was introduced into MATLAB, where each row represented the magnitude of the 5-

min measurement. 

To convert these micro-meteorological boundary conditions into impinging rain along the VTP, 

the WDR catch ratio distributions by Blocken [30] were used, as stated in Section 2.1.3. 
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2.3. Model Input Parameters 

A combination of parameters was used in order to illustrate the comparison between the 

different input parameters of the model. The VTP had a surface of 1.0 m by 0.5 m. It was assumed 

that a rainfall intensity of 2.5 mm/h would impinge the VTP. The total duration of the rain event was 

set to 1, 2, 3 and 5 h. The wind direction was constantly perpendicular to the VTP (0°). A constant 

splash percentage of 30% was maintained during the simulation, and the absorption coefficient was 

set to 0.01 mm³/mm²s0.5. The ambient temperature was fixed to 10 °C. The absorption coefficient 

values used in the simulation were taken out of the German standard norm DIN EN 998-1 [34]. 

2.4. Boundary Conditions for Runoff Simulation 

A 315-day simulation run was conducted on the basis of weather data measured during the VTP 

runoff outdoor tests. The data were available on a 5-min basis, which is a permissible time step for 

WDR measurements in accordance with Blocken [35]. The daily sum of the 5-min intervals where the 

rain event occurred was equal to the effective daily rain duration. At the start of every simulation 

cycle, the VTP was in balance with the outdoor environment. The effects of previous moisture loads 

and drying periods were neglected due to this initial condition. The moisture fluxes on the VTP were 

only dependent on the impinged WDR. Due to the neglected previous processes and high relative 

humidity (near 100%) during rain events, evaporation processes were not considered.  

The simulated runoffs were added up in order to obtain daily cumulative results. These results 

were then compared with the actual obtained cumulative runoffs from the outdoor tests in order to 

prove the veracity and accuracy of the model. 

3. Results 

The runoff was calculated using the established absorption model and the WDR distribution 

assessment model of Blocken [30]. The flow speed and the film thickness were analyzed and 

compared to the solutions of Beijer and Nusselt. Finally, the results were compared with existing 

runoff volumes obtained over an 18-month VTP outdoor testing period.  

3.1. Wind-Driven Rain Distribution  

In the CFD Model by Blocken [30], the WDR load in the VTP was determined by the 

multiplication of catch ratios with the rainfall intensity. In Figure 2, the WDR distribution for 0°, 

which was used for the previously specified rain event, can be seen. The figure shows that the 

magnitude of impinged water volume varies according to the exposure time of the VTP to the rain 

event. The upper edges of the VTP received the highest amount of WDR, while the lower part 

received the least amount of WDR. 

For the VTP that was exposed for t = 5 h, some elements in the upper edges received up to 0.8 

mL and 1.2 mL of water in comparison with the VTP exposed to t = 1 h, which only received up to 

0.4 mL during the rain event. The cumulative WDR received by the VTP for the surface exposed to t 

= 1 h was 1.3 L, for t =2 h 2.5 L, for t = 3 h 3.8 L, and for t = 5 h 6.4 L. 
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Figure 2. Impinged water volumes on vertical test panels (VTP) for time t = 1 h, 2 h, 3 h and 5 h using 

the wind-driven rain Computational Fluid Dynamics (CFD) model by Blocken [30]. 

3.2. Amount of Absorbed Water 

The Hall and Hoff [25] model was implemented to include the absorption parameters in the 

model. To investigate the amount of absorbed water, the same standard parameters as those 

described in Section 2.3 were used in conjunction with the CFD model by Blocken. The total height 

of the VTP was assumed to have the same capillary water absorption coefficient. 

For the VTP exposed to t = 2 h, a total absorption of 1.05 L was found. After t = 4284 s, the material 

was fully water saturated, and the water started to accumulate on the surface. The total amount of 

WDR available on the plane during the rest of the rain event was 0.87 L. This water volume was later 

available for runoff. The observed absorption and accumulated water volume in the material can be 

seen in Figure 3. The sorption capacity of the material led to a quick saturation of the surface and the 

building of runoff. If the water volume in the material was not taken into account, an underestimation 

of almost 45% of the moisture content after 1 h took place on the VTP. These results are similar to 

those presented by Van den Brande [12]. 

 

Figure 3. Accumulated water volume on the material and accumulated absorption during a defined 

standard rain event when implementing the Hall and Hoff [25] model. 
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3.3. Water Film Thickness  

In Table 1 the CWFT, the absorption coefficient and the results for a rain event with a duration 

of 2 h are depicted for three façade materials. The rain event standard parameters presented in Section 

2.3 were used for this simulation. 

Table 1. Cumulative water film thickness (CWFT) simulation results for the three different plasters 

after 7200 s (2 h). Absorption coefficient values according to DIN EN 998-1 [34] and contact angles 

according to [36]. 

Material 
CWFT 

[mm] 

Equilibrium 

Contact 

Angle [°] 

Capillary 

Absorption 

Coefficient 

[𝐦𝐦𝟑/(𝐦𝐦𝟐 ∗

𝐦𝐢𝐧𝟎.𝟓)] 

Absorption 

Volume [mL] 

Surface 

Cumulative 

Volume 

[mL] 

Runoff Volume 

[mL] 

Facing masonry 

mortar 
0.0204 83.8 0.16 210 1563 1539 

Lime cement 

render 
0.0212 82.9 0.39 1305 469 431 

Scrap render 0.0215 83.1 0.31 836 939 871 

These absorption coefficient values are commonly used in the plaster and mortar industry as 

standard values. In accordance with the contact angles given by Steffgen [36], mineral-bound plasters 

have angles of <90°. The CWFT is mainly influenced by the contact angles of the material, but this 

influence can be neglected because the plasters tested were mainly composed of mineral-bound 

materials and compositions very similar to those in Table 1. As seen in Table 1, the main parameter 

having an influence on the runoff volume was the absorption coefficient of the material. This 

parameter limits the amount of water that cumulates on the façade surface after a certain time 

duration of a rain event. The water film thickness varied with time (Figure 4). Film formation only 

started after the material’s absorption boundary condition was complied with. For the lime cement 

render, this film thickness was formed after 1 h of receiving WDR impingement. Meanwhile, 

regarding the other two materials, this film was formed within the first hour of the rain event. The 

reason for this was that the lime cement render has a higher absorption coefficient ( 𝐴 =

0.05 mm³/mm²s0.5) than the other two materials, thus absorbing more water. As a result, it needed 

more time to start forming a surface water film. The maximum film thicknesses during the rain event 

were 0.22 mm, 0.19 mm, and 0.23 mm for the facing masonry mortar, lime cement render, and scrap 

render, respectively. After applying the absorption boundary condition, the film thickness continued 

to grow, and the water travelled down the VTP. This behavior could also be observed in the flow rate 

figures when comparing the first hour of the facing masonry mortar with the plasters. Runoff started 

within the first hour for the facing masonry mortar, meaning that the wall absorbed enough water 

before complying with the absorption boundary condition and, subsequently, forming a water film 

thickness thick enough to start the transportation of the water down the surface of the VTP. This 

behavior was not evident for the other two materials, meaning that no runoff was present within the 

first hour. When runoff occurred, the flow rate at the center and bottom of the VTP was constant, 

meaning that most of the water impinging on the upper side of the VTP tended to flow downward, 

thus causing higher flow rates in the center and bottom part of the VTP. This effect was observed for 

all three materials. Higher flow rates were achieved in the facing masonry mortar (0.78 L/m), which 

tended to accumulate higher amounts of water volume on its surface due to a lower capillary 

absorption coefficient. With respect to the lime cement render and the scrap render, no flow rate 

resulted within the first hour of the rain event, meaning that there was not enough water on the 

surface of the VTP to start the runoff. This behavior was directly related to the formation of the water 

film thickness and the absorption capacity of the material. 
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Figure 4. Impinged wind-driven rain during 1 h, 2 h, 3 h and 5 h intervals. Corresponding numerical 

results for the 1 m high VTP at different time steps and different materials, for flow rate, film thickness 

and total absorbed water. 

3.4. Runoff Volume (Simulation and Model Validation with Outdoor Tests)  

To demonstrate the possibilities of the VTP runoff model and to evaluate the results provided, 

actual rain events were simulated on VTP covered by three different types of plaster and mortar. The 

characteristics of the materials are shown in Table 1. The runoff results were then compared with 

those obtained during the outdoor tests. 

A period of 315 days was simulated using the VTP runoff model. For the facing masonry mortar, 

the cumulative runoff volume obtained in the field tests after 315 days was 65.3 L, whereas the VTP 

runoff model obtained 63.1 L as a cumulative runoff result for this same material. The outdoor test 

cumulative runoff volumes for the lime cement render and the scrap render were 28.6 L and 45.4 L, 

respectively. The results obtained by the model for the previously mentioned materials were 29.5 L 

and 46.0 L. The difference between the results obtained in the field tests and the results provided by 
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the model at the end of the simulation was less than 3.5%. The results of the simulation vs. the outdoor 

test cumulative runoff volumes for the three materials are depicted in Figure 5.  

The day with the highest collected runoff for the three VTP was 24 October 2014 (Day 268). The 

weather measurements indicated that, the day before the runoff was collected from the canisters, 38 

mm of rain fell during a time span of 16 h with average wind speeds of 5.5 km/h, coming mainly from 

the southwest. During this day, total volumes of 8.8 L, 7.3 L and 5.5 L were collected for the facing 

masonry mortar, the lime cement render and the scrap render, respectively. The model also simulated 

the highest runoff on this day for the three VTP. The simulated runoff during this day for the facing 

masonry mortar was 10.1 L. For the lime cement render and the scrap render, simulated runoffs of 

8.4 L and 7.9 L were obtained, respectively. The difference between the collected runoff and the 

modelled runoff can be attributed to several factors. Due to the intensity of the rain event and the 

time it lasted, these factors may have varied more. One of the possible reasons for the variation in the 

runoff might be that the amount of water that splashed off the VTP was more than that stipulated in 

the model (30%). It is likely that the existence of a greater number of drops impinging the VTP meant 

that they splashed due to the speed at which they were directed to the VTP surface. Another possible 

reason for this over-estimation is that the model does not include evaporation processes. Although 

the relative humidity during rain events like this type approaches 100%, it is possible that some 

quantity of water evaporated during and after the rain event.  

The model simulated a total of 126 days when the VTP presented runoff on the facing masonry 

mortar, 53 days of which the runoff was below 100 mL, with 40 days between 100 mL and 500 mL, 

and 33 days over 500 mL. For the lime cement render, runoff was presented in 67 days, 33 of which 

presented a runoff below 100 mL, 18 days between 100 mL and 500 mL, and just 16 days over 500 

mL. Finally, the scrap render presented 93 days with runoff, of which 40 days presented a runoff 

below 100 mL, 31 days between 100 mL and 500 mL, and 22 days over 500 mL. The lime cement 

render presented less runoff events than the facing masonry mortar and the scrap render. This 

behavior was mainly dependent on the capillary absorption capacity of the material. Despite the fact 

that the least rainy days were recorded during the first days of testing (the first 100 days), the model 

yielded runoff results on some days that were not obtained in the outdoor test samples. This behavior 

is shown in Figure 5, in which the first cumulative daily runoffs given by the model for the lime 

cement render and the scrap render were not observable in the outdoor test results. One reason for 

this might be that the VTP absorbed more water than predicted by the model. Another reason might 

be that, during these rain events, the relative humidity of the field was not very high due to the low 

rain intensity and higher evaporation on the surface of the VTP. This last process was not represented 

in the facing masonry mortar results. Often, these effects were not visible during the rain events with 

greater intensity because the amount of water absorbed was very low in comparison with all of the 

impinged WDR. It is also possible that, during the effects of heavy rain, the relative humidity of the 

area was very high, and the evaporation process may have been neglected. 
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Figure 5. VTP daily-simulated runoff and cumulative simulated/actual runoff for facing masonry 

mortar (up), lime cement render (middle) and scrap renders (down). 

3.5. Advantages and Limitation of the Model 

Given the results obtained by the simulations, the advantages and limitations of the model can 

be described. For the most part, the limitations of the model go hand in hand with the constant 

variation in the weather data in reality vs. the assumptions made in the model (e.g., VTP surface 

temperature at 20 ° C). It is possible that these types of assumptions limited or influenced the 

calculation of runoff volumes and gave underestimated or overestimated results for certain simulated 

rain events. One example of this can be seen in Figure 5, in which, during the first 100 days, the model 

showed runoff in some of the events although no runoff volumes were collected in the field. As also 

observed by Blocken [9], many of the limitations in the VTP model are caused by the adopted 

simplifications, e.g., the use of the Nusselt solution to determine the flow film while not taking into 

account wave behavior, especially in strong rain events. Simulated values in certain rain events can 

be overestimated because drying or evaporation were not included in the model. For very weak rain 

events, these processes can have a very important impact and can be noticeable in the simulation of 

the first rain events, which were characterized by very weak precipitation. Another limitation of the 

model was that the method used to give roughness to the VTP is the same for all three types of 
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materials. The materials used in the field experiments showed physical differences in their surfaces, 

depending on the grain size of the mixture. One example of this is the lime cement render, which is 

a material with grains larger than plaster (max. 2 mm grain), making its surface less smooth. This 

physical characteristic of the material may play an important role in stream formation and could 

complicate the runoff patterns. A method for correctly defining the difference between the roughness 

of varying materials should be evaluated in future investigations. 

Despite the limitations caused by model uncertainties, the results obtained by the model and the 

results obtained in field tests (see Figure 5) exhibited a difference of no more than 3.5% of the 

accumulated runoff volumes for each of the analyzed materials. Using the runoff model, it is possible 

to investigate and to reproduce the runoff response of a VTP characterized by a specific plaster or 

mortar for a defined location and period of time, and obtain a good approximation of the amount of 

runoff that each material will have. The WDR load that is received by the VTP can be calculated on 

the basis of inputted weather parameters given by a weather dataset of the studied region. Depending 

on the weather conditions, an estimation of the runoff volumes can be determined. Additionally, the 

model can be adjusted to different materials. Given the use of some specific parameters like the 

capillary absorption coefficient and the contact angles, it is possible to differentiate the runoff 

behavior on the surfaces of various material types. In this way, the model makes it possible to predict 

the amount of runoff water volume from VTP results without needing to obtain samples of larger 

facades. These runoff results could help predict the runoff and leaching behavior of larger façades 

without having to reproduce them in the field in order to validate them. 

4. Conclusions 

Our runoff model is “Level 1” of a three-stage model. In the model described, existing modeling 

methods were adapted for the prediction and evaluation of rainwater runoff from VTP. Due to the 

incorporation of real weather data, it was possible to simulate a series of rain events over a period of 

315 days. The advantage of having a complete and detailed experimental dataset made it possible to 

validate the accuracy of the model by comparing the simulated results with those collected in the 

field. Despite the limitations of the model, caused by uncertainties, the difference between the 

simulated and the field data was no more than 3.5% of the accumulated runoff volumes for the 

analyzed materials.  

The presented runoff model makes it possible to investigate and reproduce the runoff response 

of VTP characterized by a specific plaster or mortar for a defined location and period and obtain a 

good approximation of the amount of runoff for different materials. First, the rain loads can be 

calculated and visualized with the aid of the simulation program; secondly, the total absorption of 

the material can be estimated at any time in accordance with the used absorption model, and, finally, 

the runoff volume and water flow rate on the VTP can be determined. The moisture content of the 

VTP is largely dependent on the supplied WDR and the material characteristics. We observed that 

higher runoff volumes and flow rates are more likely to appear on materials with a lower capillary 

absorption capacity.  

Flow rates and runoff volumes are of significant importance and can be used for the prediction 

of leaching substances (“Level 2”). The development and evaluation of the models of “Level 2” and 

“Level 3” will be the subject of further publications.  
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