
Exploiting Multicore Processors in PLCs using
Libraries for IEC 61131-3

Felix Specht, Holger Flatt, Jens Eickmeyer, and Oliver Niggemann
Fraunhofer IOSB-INA, Application Center Industrial Automation

Langenbruch 6, 32657 Lemgo, Germany
{felix.specht, holger.flatt, jens.eickmeyer, oliver.niggemann}@iosb-ina.fraunhofer.de

Abstract—This paper presents an approach for exploiting
multicore hardware architectures on coding level for the IEC
61131-3. An interface between the IEC 61131-3 code and software
of a different programming language outsources the actual par-
allel workload. For validation purpose, an embedded multicore
hardware is used as a controlling device, which executes software
for the use case of model based condition monitoring. The results
show an explicit benefit of the multicore exploiting software in
comparison to its singlecore counterpart, which is reflected with
a faster processing of up to a factor of 3. Overall, this approach
can be used for developing high performance applications or for
accelerating existing applications in industry.

I. INTRODUCTION

Cyber Physical Systems (CPSs) are a holistic view onto both
the physical systems and the computers controlling them. An
example for CPSs are production plants, where the increasing
complexity of plants leads to increasing requirements for the
corresponding automation systems, i.e. real-time requirements,
processing power demands or safety regulations [1].

The automation systems are evolving from pure controllers
towards complex CPSs, which leads towards an increasing
interconnection with algorithms and computer scientific tech-
nology. Model-based condition monitoring [2], image inter-
pretation algorithmic for camera sensors [3] or simulation-
based controlling [4] are use cases of such technology, which
require high processing performance. The performance is
directly connected with the efficiency of production facilities
and consequently has a big economical impact. In order to
keep the promises of CPSs, a sufficient processing power is
a key requirement, a requirement which can only be met by
leveraging technologies like multicore CPUs.

Physical devices are controlled by programmable logic
controllers (PLCs), which are specialized hardware systems for
the industrial environment. Nowadays, the majority of PLCs
in operation use singlecore architectures, while PLC manufac-
turers already provide multicore solutions and will expand this
trend[5]. Besides the advantage in terms of processing power,
multicore architectures outperform singlecore architectures in
respect of energy efficiency [6].

The software counterpart for programming PLCs is the IEC
61131-3 standard, which supports the utilization in various
domains [7]. Considering IEC 61131-3 in the context of mul-
ticore architectures, parallelism is supported at program and
task level, but not at coding level. However, code parallelism
is a considerable objective for a successful accomplishment

of the prior mentioned use cases, otherwise their potential for
high-performance computing can not be fully utilized.

Recent approaches consider the general use case, in an
attempt to generate parallelism from sequential IEC 61131-3
code [8][9]. In contrast, this work focuses only on particular
uses cases, which heavily benefit from parallelism on code
level. The basic idea is the deployment of a library, containing
corresponding parallel solutions. This is achieved by connect-
ing the sequential 61131-3 code with this library, which is
based on a different programming language. Interfaces enable
the PLC programmer to invoke the parallel functionality inside
his code, while the algorithmics and parallel execution is
hidden. Interface realizations are part of the IEC standard,
thus the complexity level remains the same for the user.

This paper is organized as follows: Section II reviews the
related work, considering both hardware and software issues.
In section III, different approaches to exploit the multicore
architecture are compared. Section IV issues the library ap-
proach and the mapping onto multiple CPUs. The case study
is explained in section V, introducing the implementation,
test scenario and corresponding results. Finally, section VI
concludes this paper.

II. STATE OF THE ART

Considering the single core architecture as origin, various
approaches for hardware, software and mixed solutions are
being researched and developed to increase the processing
performance.

A. Hardware Approaches

A combination of a single processor with FPGA extension
is demonstrated in [10]. This solution greatly increases the
performance of an implementation in the FPGA part, while
keeping the capability of general purpose computation. Due
to the limited bus connection, difficulties occur with tasks
requiring fine grained communication between the CPU and
the FPGA.

Coupling CPU and FPGA into a single system-on-chip
overcomes this connection issue by exploiting a very short
communication distance [11], though the CPU part does not
reach the performance of a standalone version. As in the case
of all FPGA solutions, the above mentioned are accompanied
with high development effort and relatively expensive hard-
ware.



A more sophisticated optimization for a specific problem
can be achieved with an application specific integration cir-
cuit (ASIC) architecture. This is a highly integrated circuit,
designed to solve one specific problem, but lacks in terms of
development efforts and costs [12].

The industrial trend evolves towards shorter assembly cy-
cles and individual products. The controlling systems need
to be both flexible and powerful, thus research focuses on
corresponding solutions. Since the performance of single core
processors reached physical limits, the trend evolves towards
multi-processor architectures [13]. Embedded multicore hard-
ware has the potential to supply better performance at lower
energy cost [14], hence modern PLCs already exploit these
architectures [5].

B. Software Approaches

The IEC 61131-3 software standard for PLCs is formed
by five distinct graphical and textual based programming
languages to achieve flexibility for different domains [15].

The usual IEC 61131-3 program consists of several tasks,
which are cyclically executed. In every cycle, a task reads input
values, processes controlling code and returns output values to
the environment [7]. A task is build of program organization
units (POUs), the basic software components. A POU is either
a function, a function block or a program. Besides the standard
functionality IEC 61131-3 supports implementing customized
POUs.

The IEC 61131-3 runtime enables parallel processing of
different programs and tasks onto multiple cores [5][16].
This provides a benefit in comparison to singlecore PLCs.
The programming capabilities only support sequential pro-
gramming, thus IEC 61131-3 is limited to coarse-grained
parallelism. The granularity of task parallelism depends on
the application, but it is not sufficient as the only source
of parallelism [17]. Figure 1 exemplarily demonstrates the
difference in execution behavior for a program of four tasks
with varying computational costs. In a) the four tasks are
successively processed onto a single core, while in b) each
task uses a separate core, with which the whole program is
significantly accelerated. Figure 1 c) illustrates the additional
benefit of fine-grained parallelism that introduces the missing
component required for shorter execution potential in shape of
fine-grained.

When taking a closer look at fine-grained parallelism,
industrial image processing is a suitable example, as it is a key
technology in automated manufacturing [18]. Here, specific
processing techniques perform algorithmic operations to every
pixel of an image. An operation without dependencies between
the pixels provides the opportunity of nearly unlimited data
parallelism [17], which is a specific fine-grained type.

Figure 2 illustrates an example of a simplified pipeline con-
sisting of different tasks as part of an entire image procedure
[19]. After the first filter is applied to the input image, the
pipeline splits into two traces. Here, task parallelism can
simultaneously handle Transformation 1 and Transformation
2 for instance, but not Transformation 2 and Filter 2.

a) 

Single Task

b)

Multi Task

t1

t2

t3

t4

t2

t3

t4

t1

t2   

t4

t1.1

t3.1

t1.1

t3.2

t3.3

c)

Multi Task

with Data 

Parallelism

Fig. 1. Parallel execution behavior over time in comparison of approaches
with different granularity.

Filter 1

Trans-

formation

1

Image

Trans-

formation

2

Filter 2

Feature

Analyse

Feature

Detection
Result

Fig. 2. Image pipeline of different tasks with dependencies.

The input of a task depends on the results of the former
one, thus task parallelism has no effect at this point. Inside a
single task, the same operation is executed many times onto
the input data, providing a high speed-up potential through
data parallelism and pipelining.

As a simple approach, an image processing task can man-
ually be split into multiple tasks, which the IEC 61131-3
runtime can execute. For instance, an initial task splits the
input image into four pieces, distributes them to four other
tasks for processing and merges the partial results afterwards.
However, this would involve a significant additional effort and
requires a specific knowledge about the operating PLC, since
the number of used tasks has to be set statically in advance
of the operation. Considering the scalability of a system, this
is not a practicable approach. Manual task handling for a big
number of CPU cores, like 16, 32, 64 cores, would be very
complex, if even possible. At this point, self-handled software
parallelism is a more sensible way.

Besides of image processing, additional data intensive pro-
cedures are in the focus of research and development for
industrial usage, like Data-driven Condition Monitoring or
Big Data. In these domains, data parallelism also yields a
significant potential for improving the processing performance.

Enabling data parallelism within IEC 61131-3 is a primary
objective to successfully exploit multicore hardware for indus-
trial CPSs.



III. PARALLEL EXTENSION TO IEC 61131-3

Computer science offers established concepts to exploit
multicore architectures with fine-grained parallelism. Different
approaches to integrate those concepts into IEC 61131-3 will
be introduced and compared in the following subsection. The
subsequent subsection presents the Libary Extension to IEC
61131-3, which is the actual approach in this paper.

A. Comparing Approaches

Existing programming languages provide techniques to en-
able parallelism at coding level, like the POSIX Threads
(Pthreads) library [20]. Assume an extension to IEC 61131-3,
which reproduces Pthreads, that supports programmers to
manually implement an arbitrary parallel application. This
method provides huge capabilities for high-performance, but
also comes with disadvantages. It requires a considerable
know-how in software development, while consuming huge
amounts of time and costs [21]. Engineering tools for parallel
programming are not yet in a state for a fast and reliable
development process [22]. Furthermore this extension would
require many changes to the IEC standard.

A different approach is the usage of software constructs
like OpenMP [23] within IEC 61131-3. OpenMP works on
a higher abstraction level [22], resulting in less complex
requirements for the developer. Here, parts of the programming
code are marked with pragmas, which instruct the compiler to
translate the sequential code to a parallel executing program.
Code constructs, like loops, suit well for this approach and
yield good results. Multiple iterations of a loop are executed
on multiple cores simultaneously. OpenMP can be classified
as semi-automatic parallelism, which abstracts from thread
handling or data consistencies.

The downside is an additional need of know-how about
assigning pragmas in the correct way at meaningful code
locations. Furthermore, OpenMP is limited to shared memory
systems and symmetric multiprocessing. In comparison to
Pthreads, the development risks are lower due to outsourced
thread handling, but at the costs of flexibility. Porting OpenMP
to IEC 61131-3 would require a medium amount of extension
to the actual syntax, but significant changes to the respective
compiler.

In terms of abstraction, fully generated parallelism is the
next step. The authors in [24] introduce different approaches
based on OpenMP, which analyze sequential code to find data
dependencies and code sections that suit parallel execution.
Depending on the tool, code coverage for parallel generation
and the correlating performance differs for distinct use cases
(e.g. Matrix Multiplication or Fourier Transformation).

The work [8] introduces a tool that generates parallelism
from sequential IEC 61131-3 code, based on a previous
transformation to C code. Generated parallelism promises
good usability and good results, but it turned out that industrial
applications in practice oftentimes poorly fit for parallel gener-
ation [9]. This approach shifts the complexity and development
risk to the generator, thus the output is hardly comprehensible
for the user.

Table I summarizes the properties of the different ap-
proaches. In addition to the introduced approaches, this paper
is classified according to the same categories. The primary
objectives are high performance and low user complexity, how-
ever there is a trade-off between performance and versatility.

TABLE I
OVERVIEW: THE INTRODUCED APPROACHES IN COMPARISON

Manual Semi-automatic Full-automatic This Paper
(Pthreads) [20] (OpenMP) [23] (Generator) [24][8]

Performance highest medium low - medium high
Complexity highest low - medium low low

Risk highest medium high medium
Versatility highest medium high low

Changes to IEC highest medium low low

B. Library Extension

The previously introduced approaches implement paral-
lelism through different sorts of source code modifications.
In contrast, this work does not directly aim towards the
creation of parallel code, but towards a connection between
the sequential IEC 61131-3 code and parallel constructs in
another programming language.

By including essential software libraries into IEC 61131-3,
established solutions from other domains are reused. As ex-
plained previously, the IEC 61131-3 does not support paral-
lelism at coding level. However, by implementing a custom
POU, which is a standardized procedure, an interface towards
a different programming language is established.

The actual IEC 61131-3 code remains sequential, while
the invoked library conducts parallel computing. The corre-
sponding development effort and complexity is outsourced,
e.g. handling of threads and data dependencies.

Figure 3 illustrates the approach with the example of a
controlling application. Here, the IEC 61131-3 controlling task
runs cyclically on one of the four CPU cores. In addition
to standard POU calls, the custom POU interface invokes an
external library in a different programming language, which
is capable of code parallelism. At this point, the invoking
task can hand over arbitrary parameters, which can serve as
settings or data input. Then this library can create threads
with corresponding functionality, which are distributed to the
different CPU cores. The thread scheduling is assumed by
the operating system that allocates the processing time for a
certain thread.

The workload over time of multiple CPU cores is demon-
strated in Figure 4. Already during execution of the IEC
61131-3 task, the library threads are started concurrently on
all the cores. The library threads fully utilize the CPU capacity
in between two task intervals, but complete and stop the
execution before the next interval. While this demonstrated
behavior is exemplary, an arbitrary combination of library
threads and IEC 61131-3 task are possible, each with various
execution and interval time.

IV. CASE STUDY

This section applies the presented approach as an example
to data driven condition monitoring (CM).



CPU2

61131-3

Task

CPU1

Thread 1

CPU3

Thread 3

MC

Library

Input

Output

POU

POU

POU

POU <
<

 call
>

>

<< run >>

CPU4

Thread 3

Fig. 3. Concept of task and library distribution to multiple cores.

0 10 20 30 40 50 60 70 80 90 100

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

MC Library

Task IEC 61131

Fig. 4. Concept of workload distribution onto multiple cores.

Maintaining a smooth production flow by a quick reaction
to malfunctions of machines is an important nontrivial task.
With modern CM systems being object of current research and
development, this scenario represents a meaningful use case
in automation.

At first, this section introduces a specific approach of
data driven CM, as a foundation for the case study. Then
the used hardware platform and its corresponding attributes
with respect to the study are described. Afterwards, the CM
software implementation is introduced, taking a closer look
at the applied tools and libraries. The section closes with the
measurement results of the example application.

A. Data driven Condition Monitoring

Condition Monitoring Systems (CMS) support maintenance
tasks of complex machines. In CMS, common solutions rely
on expert knowledge as part of the PLC [25]. While these
solutions are specialized for a specific machine, they require
time extensive development.

Machine learning algorithms, as a key component of CMSs,
automatically generate complex models. This procedure is
based on historical data that represent a normal work flow of
the monitored machine. As representation of the learned nor-
mal machine behavior, the model is compared with the actual
device state to identify system deviations [26]. Especially, data
driven modeling overcomes the need for expert knowledge and
enable a reduction of development costs. In complex systems,

one requirement is the processing of huge amount of sensor
values in a short time period. Parallel computing techniques
and high performance hardware help to utilize complex CM
algorithms as part of the PLC. This leads to a significantly
reduced data traffic, as there is no need to transfer sensor data
to a central service, which enables the option to skip additional
techniques for data acquisition. Furthermore, the timestamps
directly generated within the PLC increase the precision of
these used algorithms.

Complex facility processes and their corresponding models
require an appropriate visualization in order to support hu-
mans to understand the information content. One approach to
achieve this is the principal component analysis (PCA) [27],
which transforms a high dimensional data set MD into a low
dimensional space Md. With d,D = (R), where d ≤ D,
the low dimensional space Md is spanned by the eigenvectors
of the covariance matrix. The eigenvectors are then sorted
decreasingly according to their eigenvalues. The PCA returns
a rotation matrix R, which is used to transform new sensor
values into the low dimensional principal component space
Md. Time-critical production processes come with challenging
requirements for a data based CMS. Computing tasks, like
Md = R · MD, execute a matrix-vector operation for each
incoming sensor value and therefore need fast processing.
Parallel computing is able to challenge these requirements.

B. Hardware

The integration of the CM concept directly into a PLC
requires a powerful hardware, which is capable of handling
both controlling and CM in parallel. Therefore, the Odroid U3
development board was exemplary chosen, which provides a
multicore processor onboard of an embedded platform.

This hand-sized device comprises an ARM v7 based Cortex-
A9 processor with 4 CPU cores at 1.7 GHz. Each core includes
32 KB of first level cache, while 1 MB second level cache
is shared. Furthermore, the board provides 2 GB of internal
memory, as well as a single Ethernet port for communication.
Academic interest in this processor architecture is growing,
especially for the high performance computing and high en-
ergy physics domains [28]. The ARM architecture, in general,
is part of market available PLC products [5].

C. Application

PLC manufacturers usually provide specific IDEs to support
the integration of their own devices. Modifications are not
commonplace, thus a connection to a foreign device is hardly
realizable. Therefore the application development requires a
modifiable editor and a converter to compile IEC 61131-3
into the C programming language. Furthermore, the option
to describe hardware registers and to directly access them in
IEC 61131-3 is essential for the communication with indus-
trial devices. The development tool GebAutomation [29] was
chosen for implementation, since it meets these requirements.

The implementation integrates a device specific cross-
compiler and enables register usage of an industrial I/O device.
Due to its low complexity, the modbus protocol is used



for communication. By applying new IEC 61131-3 function
blocks into the GebAutomation environment, the C library
libmodbus enables a communication between the I/O device
and the Odroid.

The CM application requires a mathematical foundation,
which is made available through the hierarchical libraries
shown in Figure 5. The top level applies the interface between
the IEC 61131-3 FBs and C, using a library for IEC 61131-3-
to-C transformation. The transformed sources access the high-
level library libpca [30], which is an extension to the linear
algebra library Armadillo. It provides a good trade-off between
processing speed and ease of use, and therefore can be used
for fast prototyping and computationally intensive experiments
[31]. Armadillo itself builds upon a variation of basic linear
algebra subprograms (BLAS) [32], which holds as the de facto
standard for linear algebra operations [33]. The variant used
in this approach is OpenBLAS, which ranks as one of the top
implementations of BLAS [34][35]. The essential processing
performance of this library comes with its highly adapted
operations in Fortran and Assembler.

IDE Function

Block

IEC 61131

Function

Block

C

libPCA

C++

Armadillo

C++

OpenBLAS

Fortran

Assembler

High-level API

Low-level API

User Level

Transformation

Level

IEC 61131

Standard

C

Fig. 5. Library Architecture

Building upon the new functionality, the following software
modules are implemented in IEC 61131-3:

1) An IEC 61131-3 controlling program for a modbus I/O
device

2) The data-driven CM application, triggering the PCA and
processing input data for monitoring

3) Communication between the controlling program and
the CM application

4) Data value acquisition as input to the CM application
5) Providing feedback to the user and the controlling pro-

gram for adjustments
The realization is done with FBs on IEC 61131-3 side,

which interfaces to the corresponding C/C++ implementation.

Consequently, an FB enables the CM setup by performing
an initial PCA to compute the rotation matrix and scaling
values. During the operation process, a specific FB transforms
incoming data vectors based on the PCA results, e.g. process
data received via modbus connection. Another FB performs
the evaluation by comparing the transformed values against
the initially learned model. A corresponding feedback is send
to the controlling software, e.g. for performing adjustments or
for visualizing the CM results for the user.

D. Results

As a reference, the evaluation runs the previously introduced
CM application onto one and four CPU cores. The test system
consists of the Odroid board with a non-real time variant of
the Linux OS. Historical process data obtained by a real wind
power facility is used as input. The performance is measured
by reference to the cyclic execution time of a CM task.

Table II shows the average cyclic execution time of a task
and the corresponding data vector. In each execution cycle, a
vector of size 20 - 1000 is processed, measuring the required
time. The used historical data provides different vectors with
numerical entries of length 3 - 7. One million test iterations
were performed with these different input vectors. Due to the
mathematical background of vector/matrix multiplication, the
values show an exponential growth in cycle time. For vectors
of size 60 - 300, the quadcore solution spends significantly
less time than the singlecore.

Table II directly compares the single- and quadcore timings,
which show very similar results for small vector sizes. With
a vector size of 20, singlecore even comes with slightly
better results. This owes to the overhead of thread handling
while using multiple cores for small tasks. Furthermore, this
causes a better standard deviation for singlecore, due to less
interference of the operating system.

With an increasing vector size, the number of operations
increases, while the effort for thread handling remains un-
changed. As a consequence, the quadcore solution outperforms
singlecore. This progression is displayed in Figure 6, showing
the ratio between quad- and singlecore timings. The ratio is
synonymous to the performance gain of the quadcore towards
the singlecore solution. The ratio increases significantly up
to factor 3 for vectors with a size between 60 and 300. At
this point, the performance of quadcore is more than three
times better. Considering the vector range 20 - 300, the ratio
evolution corresponds to the typical relationship between a
single- and multicore solution, described by Amdahl’s Law
[36].

The quadcore progression massively drops for even bigger
vectors, with timings being reduces to nearly the same level
as singlecore. This effect occurs beacuse of hardware limits,
in particular the limited CPU cache. This is a common ob-
servation in the context of the BLAS library for matrix/vector
multiplications [33]. With the matrix reaching a certain size,
the CPU cache is not sufficient to store it and therefore needs
to fetch the matrix from main memory in every processing
step. After crossing this border, the processing bottleneck



TABLE II
AVERAGE EXECUTION TIME OF SINGLE/QUADCORE FOR DIFFERENT VECTOR SIZES.

Singlecore 20 40 60 80 100 200 300 400 800 1000
Avg. (µs) 4.20 8.26 15.16 25.69 36.13 118.79 253.20 548.00 3.157.00 4.936.52

Std. Dev. (µs) 0.79 1.01 0.82 1.05 1.13 2.36 5.50 13.02 25.12 53.97
Quadcore 20 40 60 80 100 200 300 400 800 1000
Avg. (µs) 5.01 6.23 9.40 11.09 14.20 41.86 82.64 450.66 2.918.04 4.742.31

Std. Dev. (µs) 2.35 1.82 3.11 2.25 2.11 3.21 12.25 20.94 57.98 65.98

0,5

1

1,5

2

2,5

3

3,5

20 40 60 80 100 200 300 400 800 1000

R
at

io
 Q

u
ad

/S
in

g
le

Vector Size

Quadcore Singlecore

Fig. 6. Ratio Single-/Quadcore for different vector sizes.

shifts from the CPU power towards the bridge, connecting
CPU and the main memory. The CPU cores are in an idle state
most of the time, hence the quadcore advantage disappears.

Assuming the cache limit is not an issue, the multicore
performance tends towards even better results.

E. Approaches to solve the caching problem

Two strategies are conceivable to approach the caching
limitation, as well as a combination of those. On the one
hand hardware based approaches promise better results. Due
to the direct dependency between L2 cache and matrix size,
a brute force approach is the usage of a bigger L2 or an
additional L3 cache. Another approach could focus on the
bus connection between main memory and CPU. While an
improved bus cannot nullify the need of cache, it can increase
the performance of a system, which has already reached its
cache limit. A third approach is the utilization of Scratchpad
memory, which is a high-speed internal memory holding
small data for rapid retrieval with a corresponding instruction
and data prefetching technique. On the other hand, software
offers an approach to a solution. During CM calculations,
the transformation matrix is applied to every input, thus the
matrix can be split and partly be used [37]. After applying all
matrix parts to an input, it is necessary to assemble the result.
Although this approach requires additional processing efforts,
it promises a better workload of the multicore architecture.

V. CONCLUSION

In this paper a concept for parallelism on coding level
for IEC 61131-3 was presented, which is based on an inter-
connection towards parallel libraries in different programming

languages. The evaluation was performed by the example
of parallel processing for data driven conditon monitoring.
Here, exploiting the multicore hardware with a corresponding
parallel software showed a significant benefit in execution
time, in comparison to sequential software, as long as the
hardware resources are not exhausted.

The use of the introduced approach yields the following
advantages: It is an extension to IEC 61131-3, which gets
along without affecting the IEC standard. By encapsulating
the IEC 61131-3 code from the parallel library, it is possible
to exchange the code without changing the library and vice
versa. Furthermore, this enables the same program to run on
a platform with one or multiple CPU cores. The basic idea
can be adapted to any library or a combination of libraries
with arbitrary functionality. By itself, a library is a modular
component and therefore suits well for a certification process.
Using a reliable library delivers predictable results, while
reducing the development risk and complexity.

While this approach is providing several advantages, this
work helped in revealing the following disadvantages: The
functionality of a library is limited to a certain area of
application, yet an additional effort for induction is required.
Implementing an extension or fixing errors is expensive and
may need to engage the library developer. Making use of an
untested library can involve unpredictable risks and conse-
quently lead to corresponding problems.

Future work will engage the problem of a dropping per-
formance when hitting the cache limit, though this is an
application specific issue and occurs by using the BLAS library.
The usage of a CM system on a multicore device, is not
only intended for demonstration purpose, but also in real
industrial operations. This porting procedure will come up
with further challenges, like the integration of a real-time OS
or hypervisor technologies. Parallelism in PLCs in general
and corresponding technologies are of further interest, like
the Embedded Multicore Building Blocks library or the Grand
Central Dispatch approach.

In addition, it is a desirable objective to create a collection
of parallel solutions for typical automation problems, for the
status quo as well as for upcoming problems.

REFERENCES

[1] G. Mustapic, A. Wall, C. Norstroem, I. Crnkovic, K. Sandstrom,
J. Froberg, and J. Andersson, “Real world influences on software
architecture - interviews with industrial system experts”, in Software Ar-



chitecture, 2004. WICSA 2004. Proceedings. Fourth Working IEEE/IFIP
Conference on, 2004, pp. 101–111.

[2] S. Ding, P. Zhang, E. Ding, P. Engel, and W. Gui, “A survey of the
application of basic data-driven and model-based methods in process
monitoring and fault diagnosis”, in Proceedings of the 18th IFAC World
Congress, 2011.

[3] S. Chen and D. Perng, “Automatic optical inspection system for ic
molding surface”, Journal of Intelligent Manufacturing, pp. 1–12, 2014.

[4] A. Canedo, G. Münzel, G. Lo, and T. Grünewald, “Cyber-physical
programmable logic controller”, atp edition, pp. 58–64, 04 2013.

[5] Beckhoff, Multi-core processors for controllers in the medium perfor-
mance range, http://www.beckhoff.com, 11 2013.

[6] E. Seo, J. Jeong, S. Park, and J. Lee, “Energy efficient scheduling
of real-time tasks on multicore processors”, Parallel and Distributed
Systems, IEEE Transactions on, vol. 19, no. 11, pp. 1540–1552, 2008.

[7] IEC 61131-3 ed3.0, Programmable controllers - Part 3: Programming
languages, http://www.iec.ch/.

[8] A. Canedo and M.A. Al-Faruque, “Towards parallel execution of IEC
61131 industrial cyber-physical systems applications”, pp. 554–557,
2012.

[9] A. Canedo, H. Ludwig, and M.A. Al Faruque, “High communication
throughput and low scan cycle time with multi/many-core programmable
logic controllers”, IEEE Embedded Systems Letters, vol. 6, no. 2, pp.
21–24, 2014.

[10] H. Flatt, J. Jasperneite, D. Dennstedt, and Tran Dinh Hung, “Mapping
of prp/hsr redundancy protocols onto a configurable FPGA/CPU based
architecture”, in Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIII), 2013 International Conference on, 2013,
pp. 121–128.

[11] S. Korf, G. Sievers, J. Ax, D. Cozzi, T. Jungeblut, J. Hagemeyer,
M. Porrmann, and U. Rückert, “Dynamic reconfiguration of real-
time ethernet standards with hard real-time requirements (in german)”,
Proceedings Wissenschaftsforum 2013 Intelligente Technische Systeme,
2014.

[12] K. Ian and J. Rose, “Measuring the gap between FPGAs and ASICs”,
vol. 26, no. 2, pp. 203–215, 2007.

[13] J.A. Darringer, “Multi-core design automation challenges”, pp. 760–
764, 2007.

[14] D. Abdurachmanov, P. Elmer, G. Eulisse, and S. Muzaffar, “Initial
explorations of arm processors for scientific computing”, in Journal of
Physics: Conference Series. IOP Publishing, 2014, vol. 523, p. 012009.

[15] M. Tiegelkamp and K.H. John, IEC 61131-3: Programming Industrial
Automation Systems, 2006.

[16] F.J. Bartos, “Computing power: Multi-core processors help industrial
automation”, http://www.controleng.com/, 02 2011.

[17] M.I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs”, in ACM
SIGOPS Operating Systems Review. ACM, 2006, vol. 40, pp. 151–162.

[18] C. Demant, B. Streicher-Abel, and C. Garnica, Industrial image
processing, Springer, 2013.

[19] H. Flatt, H. Blume, and P. Pirsch, “Mapping of a real-time object
detection application onto a configurable RISC/coprocessor architecture
at full HD resolution”, in Reconfigurable Computing and FPGAs
(ReConFig), 2010 International Conference on, 2010, pp. 452–457.

[20] “Ieee standards interpretations for ieee std 1003.1-1995 ieee standard for
information technology – portable operating system interface (posix)
- system application program interface (api) amendment 2: Threads
extension (c language)”.

[21] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel program-
ming models and tools in the multi and many-core era”, Parallel and
Distributed Systems, IEEE Transactions on, vol. 23, no. 8, pp. 1369–
1386, 2012.

[22] R. Strebelow, “Heavy. debugging of embedded multicore system.”, IX,
, no. 2, pp. 77–79, 2014, (in German).

[23] OpenMP - API specification for parallel programming,
http://openmp.org/wp/openmp-specifications/.

[24] E. Kallel, Y. Aoudni, and M. Abid, “Openmp automatic paralleliza-
tion tools: An empirical comparative evaluation”, IJCSI International
Journal of Computer Science Issues, Vol. 10, 2013.

[25] M.G. Ioannides, “Design and implementation of PLC-based monitoring
control system for induction motor”, IEEE Transactions onEnergy
Conversion, vol. 19, no. 3, pp. 469–476, 2004.

[26] O. Niggemann and B. Kroll, “On the applicability of model based soft-
ware development to cyber physical production systems”, in Emerging
Technology and Factory Automation (ETFA), 2014 IEEE, 2014, pp. 1–4.

[27] K. Pearson, “Principal components analysis”, The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, vol. 6, no.
2, pp. 559, 1901.

[28] D. Abdurachmanov et al., “Explorations of the viability of arm and xeon
phi for physics processing”, Journal of Physics: Conference Series, vol.
513, no. 5, 2014.

[29] Geb Automation, http://gebautomation.com/.
[30] “libpca c++ library”, http://sourceforge.net/projects/libpca/.
[31] C. Sanderson, “Armadillo: An open source c++ linear algebra library for

fast prototyping and computationally intensive experiments”, NICTA, 09
2010.

[32] C.L. Lawson et al., “Basic linear algebra subprograms for fortran usage”,
ACM Transactions on Mathematical Software (TOMS), vol. 5, no. 3, pp.
308–323, 1979.

[33] M.I. Soliman, “Performance evaluation of multi-core intel xeon proces-
sors on basic linear algebra subprograms”, in Computer Engineering
& Systems, 2008. ICCES 2008. International Conference on, 2008, pp.
3–9.

[34] D. Eddelbuettel, “Benchmarking single-and multi-core blas implemen-
tations and gpus for use with r”, Mathematica, 2010.

[35] X. Zhang, “Openblas”, https://github.com/xianyi/OpenBLAS/wiki,
2012.

[36] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities”, in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 483–485.

[37] A. Asaduzzaman, F.N. Sibai, and H. El-Sayed, “Performance and power
comparisons of MPI vs pthread implementations on multicore systems”,
in Innovations in Information Technology (IIT), 2013 9th International
Conference on, 2013, pp. 1–6.


