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tatkräftig unterstützt.

Prof. Dr. Lorenz T. Biegler danke ich herzlich für die Begutachtung meiner Arbeit und

viele wertvolle Kommentare und Anregungen.

Für das Korrekturlesen meiner Arbeit ein herzliches Dankeschön meinen Kolleginnen

und Kollegen Esther Bonacker, Helene Krieg, Rasmus Schroeder, Anne Friebel, Fabian

Jirasek, Elmar Kessler und Niklas Schmitz. Ein ganz besonderer Dank gilt Dr.-Ing. Katrin
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Modeling and problem definition
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CHAPTER 1

Introduction and overview

The present thesis is motivated by chemical engineering: process simulation and optimiza-

tion with a focus on distillation-based flowsheets. In this context, a process consists of

a number of unit operations connected by streams. Such a structure can be represented

by a so-called flowsheet. In general, the process should be designed in a way that certain

engineering demands are fulfilled, e.g. product purities, product yield, or maximum costs.

The design of a process includes the choice of units in combination with their respective

connections (layout of the flowsheet) and also the choice of values for the specific design

variables for each unit (operating point). Within the scope of this work, we assume that

the layout of the flowsheet is given and we focus on choosing the design variables for each

unit, such as operating pressure, temperature, energy demand, or product streams, just

to name a few. In reality, such a process will be dynamic, which mathematically means

that all process variables like product streams, pressures, and temperatures are varying

in time. For the planning of a process, however, it is significantly easier to neglect the

variation in time and to find a suitable steady state. In practice, the process will be

steered towards this steady state over time via a suitable control loop. In this thesis, we

will restrict ourselves to the design of this utopian steady state. For this purpose, we will

employ a well-established mathematical model that describes distillation-based processes

in steady state as a basis for process simulation. A suitable simulation will map the design

variables, which serve as input variables for the simulation, to values for the unknown
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1. Introduction and overview

process variables that are output of the simulation. The entire set of process variables

can then be used to determine whether the process meets the engineering demands and to

evaluate objective functions that measure product quality. If such a simulation routine

is at hand, it can be integrated with an optimization algorithm that will find optimal

choices of process variables taking engineering demands and physical laws into account as

constraints. Mathematically, we face a nonlinear, in general non-convex, and multi-criteria

optimization problem.

The steady state behavior of a distillation-based flowsheet is modeled by default via a

system of linear and nonlinear equations that reflect conservation and thermodynamic laws.

More complex units such as distillation columns, consisting of a number of equilibrium

stages, are described by a large number of model equations and process variables, whereas

the number of degrees of freedom is typically small. These large nonlinear systems of

equations cannot be solved analytically. Therefore, they are solved numerically, most often

by use of Newton-type or quasi-Newton-type methods.

Commercial process simulation environments typically address square systems of nonlin-

ear systems in which the number of unknown process variables and the number of equations

have to be identical. In order to accomplish this in practice, the degrees of freedom have to

be fixed, i.e. values for process variables have to be guessed and assigned by the experienced

user. In a next step, the simulation software attempts to solve the resulting square system

of equations using a Newton-type method. In this procedure, convergence failures occur

quite often, which can have different reasons: On the one hand, the internal starting values

for the Newton-type method could lie outside the locally guaranteed region of convergence.

Unfortunately, there is no global theory of convergence for iterative solution methods of

general systems of nonlinear equations. On the other hand, the guessed values for the fixed

process variables could be infeasible. Observing a failure of the algorithm, it is typically

not obvious for the user which reason applies. Hence, process simulation conducted in the

described way does not always guarantee an output for a given input, as in order to obtain

the output a nonlinear system of equations has to be solved. These drawbacks severely

compromise an integration of simulation and optimization in the described way. In case

of a convergence failure, the user has to come up with new guesses for the fixed process

variables until convergence is reached and all unknown process variables are determined.

As an alternative to this unsatisfying trial-and-error approach, in practice, a stepwise

4



1.1. Asymptotic limiting cases for distillation columns

assembly of the overall system of equations is often used where one starts from a smaller

subsystem and carefully builds up the overall process. However, both concepts potentially

turn the simulation and optimization of a flowsheet into a very time-consuming procedure.

In this thesis, our aim is to develop an approach for process simulation that guarantees

the mapping between the input and output variables and substitutes the frequently used

trial-and-error approach described above that is based on the empirical knowledge of the

specific user. The central ideas for such an approach are presented in the following section.

1.1. Asymptotic limiting cases for distillation columns

One of the most complex units in distillation-based flowsheets is a distillation column.

In this section, we describe simplified models for distillation columns using asymptotic

limiting cases whose mathematical simulation is much simpler and will help us to tackle

the aforementioned convergence problems.

A linear model for infinite reflux ratio and infinite number of stages

We want to consider the asymptotic limiting case of distillation columns with an infinite

number of stages and infinite reflux ratio, which is defined as the ratio of the reflux to

the overhead product. An infinite reflux ratio implies infinitely large internal streams and

thus requires infinite heat duty. In this limiting case, the underlying model equations

that describe the distillation processes significantly simplify to a linear model, which

is in general relatively easy to solve. Furthermore, the distillation columns have ideal

separation properties with respect to the thermodynamical properties of the considered

multi-component system. Energy balances are not taken into account in the simplified

model.

Solving the linear model yields the product streams of the distillation columns and

convergence failures are prevented. This approach is also known as ∞/∞-analysis in

the literature. With a finite number of stages and finite reflux ratio the ideal separation

assumed here can never be achieved and can thus only be regarded as a benchmark for

rigorous process simulation. However, the calculated product streams typically describe

the process quite well and serve as an excellent initial guess for the product streams that

are calculated for distillation columns with finite reflux ratio and a finite number of stages.

5



1. Introduction and overview

But not only the double asymptotic limiting case is of interest. It is also worthwhile

analyzing the limiting cases of distillation columns with an infinite reflux ratio but finite

number of stages and vice versa. From these limiting cases we can borrow additional

ideas in order to tackle the problems that we currently face in process simulation and

optimization.

Distillation columns with infinite reflux ratio and finite number of stages

Within the scope of the novel approach presented in this thesis, we use upward or downward

stage-to-stage calculations starting with the product stream at one end of the distillation

column in combination with the reboiler or condenser duty, respectively. given as input

variables for stage-to-stage calculations. The transition from one stage to the next is

formulated as a fixed-point problem. For an infinitely large reflux ratio we show that

convergence of the stage-to-stage calculations, and thus of the mapping between input and

output variables, is immediately guaranteed. Furthermore, we assume continuity for the

transition from an infinite reflux ratio to a finite reflux ratio. This raises the question how

small the reflux ratio, and thus the reboiler or condenser duty, respectively, can be chosen

in order to still have a guaranteed mapping between input and output variables. The

rigorous analysis conducted in this work answers this question: We apply the Banach fixed-

point theorem to the derived fixed-point problems and state conditions under which the

considered mapping is contractive and maps from a certain set to itself. This means that a

unique fixed point exists and convergence towards it is guaranteed. Hence, stage-to-stage

calculations meet our demands for a simulation in the sense that we have a deterministic

and also guaranteed mapping from the input variables to the remaining process variables

for input variables arbitrarily chosen from a region of convergence that we can quantify.

Distillation columns with finite reflux ratio and infinite number of stages

If we increase the number of stages for fixed column height, the difference equation that is

solved by stage-to-stage calculations turns in the limiting case of infinitely many stages

into an ordinary differential equation. Moreover, the approach proposed in this thesis uses

a larger number of process variables as input for stage-to-stage calculations than there

are degrees of freedom in the distillation model and thus we have to solve a boundary

value problem for the ordinary differential equation. This means that the input variables

for stage-to-stage calculations, which correspond to the initial values of the ordinary

differential equation, need to be adapted in a suitable way in order to obtain a feasible
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1.2. Modeling principles for distillation processes

solution. A method from the theory of ordinary differential equations that solves boundary

value problems is the so-called (single) shooting method. In this work, the task will be

embedded in an optimization problem, which finds feasible (or optimal) input variables in

a targeted way by using suitable optimization algorithms.

In this thesis, the ideas arising in the above limiting cases will be transferred to

distillation columns with finite reflux ratio and a finite number of stages. As a result, a

novel approach for process simulation and optimization of distillation-based flowsheets

is presented. Using ∞/∞-analysis we can generate excellent initial guesses for the input

variables of stage-to-stage calculations. By application of the Banach fixed-point theorem

we can guarantee convergence of stage-to-stage calculations for suitable input variables.

And finally, the input variables for stage-to-stage calculations can be adapted in an outer

optimization loop such that a feasible or even optimal solution is finally found, which is

similar to applying the shooting method to ordinary differential equations.

In the following, the modeling principles for steady state simulation of the considered

processes are introduced. Furthermore, we discuss different existing methods for process

simulation and optimization of distillation-based flowsheets and present a short review on

existing techniques for conceptual process design with a focus on distillation, which is the

most widely used technique for separating fluid mixtures.

1.2. Modeling principles for distillation processes

Distillation processes in steady state are usually described by the equilibrium stage model

(Thiele & Geddes, 1933) based on the so-called MESH equations (material balances,

equilibrium conditions, summation equations for the concentrations, heat (or better:

energy) balances, see also Wang & Henke (1966), and Appendix A).

Despite the important simplifications in this type of model, it is known to describe

distillation processes reasonably well, so that it has been used for distillation design very

successfully for many decades, and there is no good reason to believe that this will change

in the near future.

Describing distillation processes based on MESH equations leads to a large system of

nonlinear equations with many unknowns and only few degrees of freedom, which has to be

solved for process simulation. As a result, the internal and external streams of the column

are obtained (flow rate, composition, and temperature) for the steady state operation of
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1. Introduction and overview

the column. Furthermore, the heat flows in the reboiler and condenser are determined.

The model of the physical properties of the fluid mixtures is in general nonlinear. For

further reading, see e.g. Biegler et al. (1997) or Holland (1981).

1.3. Process simulation and optimization

Commercial simulation environments

As already mentioned, in order to perform process simulation with commercial process

simulators, the user has to specify a precise value for each degree of freedom. The number

of degrees of freedom is given by the problem and cannot be changed. After fixing the

degrees of freedom, the simulation software tries to solve the resulting nonlinear system of

equations where the number of variables equals the number of equations, usually using

Newton-type methods (Naphtali & Sandholm, 1971; Ishii & Otto, 1973; Vickery & Taylor,

1986) including the inside-out method by Boston & Sullivan (1974). See also Kelley (1995)

and Dennis & Schnabel (1996) for a more mathematical view on Newton-type methods.

Convergence failures may turn process simulation into a very time-consuming task. This is

especially cumbersome in process optimization in which the underlying system of nonlinear

equations has to be solved many times.

In general, the approach described above does not reflect the demands in process

engineering. Product purities, for example, require rather inequality constraints than

equality constraints. The fact that certain values have to be fixed impedes a full exploration

of process limitations and restricts the user to a small subset of the solution space. Freeing

optimization variables and changing equality to inequality constraints to extend the

feasible solution space is typically done only in a subsequent optimization step, which

requires repeated calls of the simulation with different parameters and increases the risk

of encountering numerical failures.

Flowsheet simulators can be classified as modular or equation-oriented. In the (sequential)

modular mode the different units of a flowsheet are simulated individually as subprograms

and in case recycle streams are present the entire flowsheet is iteratively converged at a

higher level introducing tear streams. In the equation-oriented mode all process equations

are assembled and solved simultaneously. An advantage of the equation-oriented mode is

the fact that the user is slightly more flexible in terms of design specifications. However,

this mode requires a large-scale nonlinear equation solver and is much harder to initialize
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1.3. Process simulation and optimization

than the modular mode. We also refer to Biegler et al. (1997, Chap. 8) for further

discussion on modular and equation-oriented flowsheeting methods and recent work of

Dowling & Biegler (2015).

State of the art process simulation software usually covers the simulation and optimization

of standard unit models such as distillation columns, heat exchangers, reactors, and many

more as well as the treatment of an entire flowsheet. Widely used process simulators are

ASPEN PLUS R©, HYSYS R©, and PROII R©, just to name a few. For more information on

process simulation environments the reader is referred to Biegler et al. (1997, Appendix

C) and Biegler (2014).

Simultaneous simulation and optimization

Instead of solving large systems of nonlinear equations during simulation, as done in

most process simulation environments, one could also embed process simulation in an

optimization problem by incorporating all model equations as constraints whereas the

process variables serve as optimization variables (Biegler et al., 1997; Dowling & Biegler,

2015). An important advantage of this equation-based optimization approach is the

possibility to include an arbitrary number of additional equalities and inequalities that

represent the desired process design. The large nonlinear system of equations is no longer

solved via Newton-type methods. Instead a solution is found by solving the optimization

problem using nonlinear optimization solvers that have full access to all model equations

and process variables. This approach enables simultaneously converging and optimizing

a flowsheet by adding suitable objective functions. One challenge of this approach is

the fact that the resulting optimization problems are large and may be difficult to solve.

Large-scale sequential quadratic programming (SQP) strategies have been developed and

analyzed by Murray & Wright (1978), Nocedal & Overton (1985), Schmid & Biegler (1994),

and Biegler et al. (1995).

Process simulation and process optimization can also be performed simultaneously by

applying infeasible path optimization (see Biegler & Hughes, 1982; Biegler & Cuthrell,

1985; Biegler, 1985; Biegler et al., 1997). Thereby, the different units of a flowsheet are

simulated individually and in sequence as building blocks by solving the corresponding

square systems of equations. Optimization is incorporated at a higher level in order to

iteratively converge the tear streams that have been introduced to break recycle streams.

Hence, only those process variables and equations that correspond to the tear streams

need to be considered in the optimization problem. This approach is easy to construct
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1. Introduction and overview

and to initialize due to the fact that it relies on building blocks that have been studied

extensively. However, the systems of equations for the different unit models have to be

solved many times during the execution and intermediate convergence failures due to

inappropriate starting points or unreachable specifications have to be prevented.

Alternative approaches

Furthermore, we also want to mention that there exist completely different approaches

for the calculation of distillation columns. One possibility are collocation methods that

yield a reduced order model (Cho & Joseph, 1983a,b, 1984; Srivastava & Joseph, 1985,

1987a,b; Stewart et al., 1985; Huss & Westerberg, 1996a,b) whereas the idea of collocation

is originally applied in the context of numerically solving differential equations. Recent

work (Kim et al., 2010; Kim & Linninger, 2010; Ruiz et al., 2011) combines the minimum

bubble-point distance algorithm embedded in the temperature collocation method with

column profile maps aiming for rigorous separation design.

1.4. Shortcut techniques for distillation processes

The question whether given specifications are feasible has been widely addressed in

conceptual process design, which is in general based on simplified models or so-called

shortcut techniques. In contrast to the described approach using the full set of MESH

equations, shortcut techniques facilitate a fast evaluation of alternatives. One area of

research discusses the question of minimum flow and minimum energy demand (MED) in

distillation, especially in awareness of rising energy costs. One of the earliest papers in

this field and the basis for subsequent research is the work of Lewis & Matheson (1932)

and Underwood (1948) for ideal mixtures under the simplifying assumption of constant

relative volatility (CRV) and constant molar overflow (CMO). Doherty and co-workers

(Levy et al., 1985; Van Dongen & Doherty, 1985; Levy & Doherty, 1986) introduced the

boundary value method (BVM), which is based on stage-to-stage calculations of column

profiles at CMO. In this method, the rectifying profile is integrated from top to the feed

stage while the stripping profile is integrated from bottom to the feed stage and a feasible

column configuration requires the rectifying and stripping profiles to intersect. The BVM

can only be applied to mixtures with up to four components. Julka & Doherty (1990)

extended this method to multi-component systems using the zero-volume criterion.
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1.4. Shortcut techniques for distillation processes

A significant advantage of shortcut methods using stage-to-stage calculations is the

fact that, under the assumption of CMO and based on the knowledge of the top and

bottom product compositions, it is possible to derive explicit expressions for all unknown

compositions. Hence, this method usually results in stable and efficient distillation

calculations as it does not require sophisticated solution strategies for nonlinear equation

systems.

There exist several other methods, which we do not want to discuss in detail, such

as the method by Köhler et al. (1991), which is based on reversible distillation and the

eigenvalue method by Pöllmann et al. (1994). The rectification body method (RBM)

proposed by Bausa et al. (1998) introduces triangular rectification bodies for the stripping

and rectifying section of and column and requires these rectification bodies to intersect for

a feasible column design. Urdaneta et al. (2004) extended the RBM to reactive distillation

whereas Zhang & Linninger (2004) introduced a BVM based on minimum bubble-point

distance. Halvorsen & Skogestad (2003) proposed the concept of Vmin diagram in order

to visualize the relation between minimum energy consumption and feed distribution. A

new concept, the so-called column profile maps, was proposed by Tapp et al. (2004) and

Holland et al. (2004). This method based on difference point equations assuming CRV

and CMO allows for the graphical representation of all possible profiles achievable by the

difference point X∆ and reflux ratio R∆ enabling the user to get an insight into the system

behavior and to choose the optimal profile for the desired separation. The work of Lucia

et al. (2006) and Lucia et al. (2008) uses the shortest stripping line approach in order to

find minimum energy requirements.

Köhler et al. (1995) and Bausa et al. (1998) give a comprehensive survey of methods for

calculating the MED. In summary, we can conclude that many of the proposed methods

in the field of minimum energy consumption are based on stage-to-stage calculations of

distillation columns mostly under the simplifying assumption of CRV and CMO.

Shortcuts techniques can also be applied in order to identify feasible separations. One

example is the∞/∞-analysis developed by Petlyuk & Avet’yan (1971) and Serafimov et al.

(1973) as the limiting case of the equilibrium stage model for columns with an infinite

number of stages and infinite reflux. In this limiting case, a simplified model with optimal

separation properties is obtained. This analysis was used to predict multiple steady states

in azeotropic distillation (Bekiaris et al., 1993, 1996; Bekiaris & Morari, 1996; Güttinger
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& Morari, 1997) and recently also for conceptual process design (Ryll et al., 2012, 2013).

Recent work of Petlyuk et al. (2015) enables the search and identification of feasible splits

of extractive distillations.

However, even if we can assure that the chosen specifications are feasible using so-

phisticated techniques as described above, convergence failures can still occur due to

inappropriate starting values when applying Newton’s method.

1.5. Contributions

In this thesis, we want to address the problems in process simulation of distillation-based

flowsheets introduced above and present an approach that facilitates robust, flexible,

and simultaneous steady state process simulation and optimization of distillation-based

flowsheets using ideas from ∞/∞-analysis based on a simplified model for an asymptotic

limiting case.

A new approach for simultaneous process simulation and optimization

We have seen that process simulation in commercial systems is in general conducted via

first fixing all degrees of freedom and then solving the large nonlinear systems of equations.

In this thesis, we break this paradigm and propose an approach that embeds process

simulation in an optimization problem that only includes a small subset of the process

variables and the model equations explicitly as optimization variables and constraints,

respectively. As the resulting optimization problems consist only of a few optimization

variables and constraints they do not require large-scale optimization solvers. However, the

question arises which process variables and model equations should be included explicitly

in the optimization problem and whether all process variables can be determined in a

guaranteed way when knowing the optimization variables and using the remaining model

equations. This question has to be answered individually for each unit model. This need

should not be considered as a drawback of the approach but rather as a positive feature

which adds flexibility. Tailored strategies are presented for flash units and distillation

columns, and it is shown how these ideas can be extended to distillation-based flowsheets

with recycle streams. In order to compute all process variables of a distillation column,

an algorithm based on the stage-to-stage solution of fixed-point problems is used in the

present work, which is shown to have guaranteed convergence for a suitable choice of input
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variables. A good guess for almost all input variables of the stage-to-stage calculations

can be generated by ∞/∞-analysis, and we derive guidelines for the choice of the missing

input variables.

The Banach fixed-point theorem applied to stage-to-stage calculations of

distillation columns

Due to the inherent structure of the equilibrium stage distillation column model it is quite

natural to decompose the system of equations and to consider stage-to-stage calculations of

distillation columns instead of solving the underlying equations for all stages simultaneously.

Early work in this field stems from Lewis & Matheson (1932) and Thiele & Geddes (1933)

and is based on equation tearing. Holland (1963), Billingsley (1970), and Haas et al.

(2007) enhanced the method of Thiele and Geddes. In the work of Friday & Smith (1964)

different tearing techniques for solving the MESH equations were analyzed. Depending

on the type of problem, the bubble-point method, a modification of the approach by

Amundson & Pontinen (1958), or the sum-rates method, developed by Sujata (1961)

in conjunction with the tridiagonal matrix formulation as described in Burningham &

Otto (1967), was suggested. In more recent work, the sum-rates method was modified by

Lucia and co-workers who developed a method that is good for both wide boiling and

narrow boiling mixtures (Sridhar & Lucia, 1990a,b; Lucia & Li, 1992). Rose et al. (1958)

developed the relaxation method, which uses stage-to-stage calculations and computes

the gradual changes in the stage and product compositions until a steady state is reached.

This method was extended for example by Ketchum (1979) and Mori and co-workers (Mori

et al., 1987b,a, 1990).

In this thesis, a new numerically stable and efficient approach for stage-to-stage cal-

culations of distillation columns is presented that does not use the assumption of CMO

but the full set of MESH equations. A feature of this approach is that the nonlinear

system of equations for the transition from one stage to the next is reformulated as a

fixed-point problem. This fixed-point problem can be solved by fixed-point iteration

without computing derivatives based on only a small number of given input variables. In

contrast to several other approaches for stage-to-stage calculations with energy balances,

the number of fixed variables does not depend on the number of stages of the column.

Only a small set of particular variables has to be given at either bottom or top of the

column in order to determine the column profile via stage-to-stage calculations. The

fixed-point iteration converges in general very fast. To get a better insight into this
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phenomenon, a detailed analysis is conducted in this work. Here, the asymptotic limiting

case of a distillation column with an infinite reflux ratio is of special interest. In this

special case, the underlying model equations significantly simplify and convergence of

the fixed-point iteration is guaranteed. We apply the Banach fixed-point theorem to the

derived fixed-point problems and prove that a unique fixed point exists and that the

convergence to that point is guaranteed, if certain minimum requirements on the energy,

which we derive, are fulfilled.

Stage-to-stage calculations as a boundary value problem

In order to calculate a distillation column by a stage-to-stage approach, the pressure, the

flow rate and composition of a product stream, and the duty of the reboiler, or condenser

respectively, are specified at one end of the column and serve as input for the simulation.

Depending on the choice of these values several scenarios are possible. If the duty does not

fulfill certain minimum requirements that are derived here using the Banach fixed-point

theorem, there exists no solution to the MESH equations and it is not possible to conduct

stage-to-stage calculations of the column. Even if the energy requirements are fulfilled, it

is still not guaranteed that the fixed variables at one end of the column yield a feasible

solution. This is due to the fact that we fixed more variables than there are degrees of

freedom for the column, i.e. the column is over-specified. By embedding stage-to-stage

calculations in an optimization problem, the given values serve as optimization variables

and can be adapted in a way that a feasible distillation column is obtained. This idea

is closely related to the solution of boundary value problems (BVP) (Stoer & Bulirsch,

2005, Chap. 7.3) for ordinary differential equations (ODE) using the shooting method.

The stage-to-stage calculations can be regarded as the solution of an ODE with fixed

step size and the fixed process variables at one end of the column are related to the

given initial value for an ODE. The ”boundary value” that should be achieved is the

composition of the second product stream of the column, which is already fixed using the

overall material balance of the column but also computed as simulation output of the

stage-to-stage calculations.
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An algorithm for the calculation order of the unit operations in a distillation-based

flowsheets

The new approach for integrated process simulation and optimization is not only applicable

to single units but, in this thesis, we also present the extension of the approach to distillation-

based flowsheets, which typically consist of several units of the same or different types that

are connected via streams. Analogously to the modular and the equation-oriented approach

in classical process simulation, this novel approach can also be realized in a modular or

a simultaneous way. Whereas the modular approach can be realized relatively straight-

forward, the simultaneous way requires determination of a feasible calculation order of

the units in a flowsheet within one iteration. We present an algorithm that translates a

distillation-based flowsheet into a graph representation and computes a feasible calculation

order of the units.

1.6. Outline

The remainder of the thesis is organized as follows:

Chapter 2 briefly reviews the mathematical principles that are applied in this thesis.

We mainly focus on the theory of nonlinear optimization, multi-criteria optimization and

shooting methods for ordinary differential equations.

In Chapter 3 we present a novel approach that embeds process simulation in an opti-

mization problem with a small number of optimization variables and constraints focusing

on single units. We present tailored strategies of setting up the optimization problem for a

flash unit and a distillation column using the shooting method and discuss the advantages

and possible extensions of the approach.

Chapter 4 is devoted to the development and detailed analysis of a numerically robust

algorithm for stage-to-stage calculations of distillation columns that facilitates the compu-

tation of all unknown process variables for the column based on given input variables. In

this chapter, we restrict ourselves to simple columns with only one feed and no side-draws.

The transition from one stage to the next one is formulated as a fixed-point problem and

by applying the Banach fixed-point theorem it is possible to derive energy bounds that

guarantee the existence and convergence of a fixed point. We illustrate the theoretical

results from Chapter 4 with a numerical example in Section 4.4. For our numerical studies

a binary system containing acetone and chloroform is considered.
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In Chapter 5 we extend the algorithm for stage-to-stage calculations of distillation

columns to general columns with an arbitrary number of feed streams and side-draws. For

the general case, we conduct a similar analysis as in Chapter 4 and due to these similarities

we omit most proofs in this chapter.

The presented approach for integrated process simulation and optimization is extended

to distillation-based flowsheets consisting of several units and recycle streams in Chapter 6.

We present two different approaches: the modular and the simultaneous approach and

state an algorithm that determines the calculation order of the different units within one

iteration for the simultaneous approach.

In Chapter 7 we present typical examples for process simulation and optimization of

single units and distillation-based flowsheets comprising several columns and also recycle

streams. By means of suitable examples we illustrate the robustness of the presented

approach with respect to poor initial values and the gain in flexibility with regard to the

problem formulation. Furthermore, we have guidelines at hand for the choice of input

variables for the distillation and do not have to fix all degrees of freedom as a prerequisite

for process simulation which makes it in general easier to find a feasible solution. Besides

typical nonlinear optimization problems, we also present examples that are concerned with

mixed-integer and multi-criteria optimization problems.

We conclude in Chapter 8 with a summary and a short outlook on future research

directions.
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CHAPTER 2

Mathematical principles

In this chapter, the mathematical principles that are needed for the approach developed in

this thesis are presented. In Section 2.1, the theory and a solution strategy for nonlinear

optimization problems are briefly reviewed. Section 2.2 presents well-known concepts for

multi-criteria optimization. Section 2.3 is devoted to the theory of shooting methods which

are originally designated for the solution of boundary value problems in the context of

ordinary differential equations.

2.1. Nonlinear optimization

In this section, we review the theory of nonlinear optimization that is needed in this work.

An elaborate description of the relevant concepts can be found in Bazaraa et al. (1993),

Bertsekas (1999), Geiger & Kanzow (1999), and Geiger & Kanzow (2002).

An optimization problem in general form can be written in the following way: Let

n ∈ N∗, m, p ∈ N, and f, gi, and hj functions mapping from Rn to R for all i = 1, . . . ,m,

and j = 1, . . . , p. We want to find a solution of
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min
x∈Rn

f(x) (2.1)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p.

The function f is called objective function of (2.1). Each of the constraints gi(x) ≤ 0,

i = 1, . . . ,m, is called an inequality constraint and each of the constraints hj(x) = 0,

j = 1, . . . , p, is called an equality constraint . The constraint functions gi can also be

summarized as a vector valued function g : Rn → Rm and the constraint functions hj can

be summarized in the same way as h : Rn → Rp. In case we have m = p = 0, we call

(2.1) an unconstrained optimization problem, otherwise we are talking about a constrained

optimization problem.

If the objective f and the constraints g and h are linear functions of x, the problem is

called a linear optimization problem (LP). If the objective f or the constraints g, and h

depend not only on real variables x ∈ Rn but also on integer variables y ∈ Rk we call (2.1)

a mixed-integer optimization problem (MIP). In this work, we concentrate on nonlinear

optimization problems (NLPs), in which at least some of the constraints or the objective

are nonlinear.

Any x ∈ Rn that satisfies all constraints is called a feasible solution. A feasible solution

x∗ such that f(x) ≥ f(x∗) for any feasible x ∈ Rn is called an optimal solution to (2.1).

W.l.o.g. we can restrict ourselves to the consideration of minimization problems as a

maximization problem can be transformed into a minimization problem by writing

max
x∈Rn

f(x) = − min
x∈Rn

−f(x). (2.2)

Many efforts have been made in order to develop solution strategies for constrained

nonlinear optimization problems. One widely-used approach is the sequential quadratic

programming (SQP). SQP methods are iterative methods. In each iteration step k ∈ N∗

an appropriate search direction dk is determined via solution of an optimization problem

with special structure. At iterate (xk,λk,µk) the search direction dk is defined as the
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solution of

max
d∈Rn

1

2
dT∇2

xxL(xk,λk,µk)d+∇f(xk)Td (2.3)

s.t. ∇gi(xk)Td+ gi(xk) ≤ 0, i = 1, . . . ,m

∇hj(xk)Td+ hj(xk) = 0, j = 1, . . . , p,

where L is the Lagrangian function defined as

L(x,λ,µ) := f(x)− λTg(x)− µTh(x) (2.4)

with Lagrange multiplier λ ∈ Rm and µ ∈ Rp.

If d∗ is the optimal solution of (2.3) with corresponding Lagrange multipliers (λ∗,µ∗)

the new iterate is obtained viaxk+1

λk+1

µk+1

 =

xk

λk

µk

+ αk

 d∗

λ∗ − λk

µ∗ − µk

 , (2.5)

where αk is an appropriate step length.

For a more detailed description of the implementation of SQP methods and step size

control the reader is referred to Han (1977) and Powell (1978) for the origin of this method

and Nocedal & Wright (2006) and Schittkowski (2011) for more recent work in this field.

2.2. Multi-criteria optimization

The field of multi-criteria optimization (MCO) deals with optimization problems where a

best possible compromise should be found by evaluating a number of conflicting objectives.

In this section, the mathematical principles of multi-criteria are presented and techniques

for deterministic multi-criteria optimization are introduced, which are in part also used

within the scope of this thesis. For more details on multi-criteria optimization the reader

is referred to, e.g. Steuer (1989), Hillier & Miettinen (1998), Ehrgott (2005), Rangaiah

(2009).
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A multi-criteria optimization problem in its general form can be formulated as follows:

min
x∈Rn

(f1(x), f2(x), . . . , fk(x)) (2.6)

s.t. x ∈ S.

We consider k ≥ 2 different objective functions fi : Rn → R, which should be minimized.

Furthermore, x ∈ Rn are the decision variables from the nonempty feasible region S ⊆ Rn.

Definition 2.1 (Ehrgott (2005), p.24). A feasible solution x̂ ∈ S is called efficient or

Pareto optimal if there is no other x ∈ S such that fi(x) ≤ fi(x̂) for all i = 1, . . . , k. If x̂

is efficient, f(x̂) is called nondominated point. The set of all efficient solutions is called

the efficient set or Pareto set.

Best compromises are supposed to be found among the set of Pareto optimal solutions.

In the following, two strategies for finding Pareto optimal solutions are presented.

Weighting method

When applying the weighting method (Gass & Saaty, 1955; Zadeh, 1963) the following

single-objective optimization problem is solved using appropriate techniques:

min
x∈Rn

k∑
i=1

ωifi(x) (2.7)

s.t. x ∈ S,

where ωi ≥ 0 for all i = 1, . . . , k and
∑k

i=1 ωi = 1.

One weakness of the weighting method is the fact that not all Pareto optimal solutions

can be found unless the problem is convex. Conditions under which the whole Pareto

optimal set can be generated by the above method are presented in Censor (1977).

ε-constraint method

Within the scope of the ε-constraint method (Haimes et al., 1971), one of the objective

functions is optimized in the following way:
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min
x∈Rn

fl(x) (2.8)

s.t. fj(x) ≤ εj, j = 1, . . . , l − 1, l + 1, . . . , k,

x ∈ S,

with εj ∈ R upper bounds for the objectives j 6= l.

In contrast to the weighting methods, the ε-constraint method is able to find all Pareto

optimal points even if the problem is not convex.

There exist more elaborate approaches that facilitate efficient approximation of the

Pareto set and techniques that help finding the best compromise. The work of Bortz et al.

(2014) uses some of these concepts in order to deal with MCO in chemical engineering and

decision support.

2.3. Ordinary differential equations and the shooting

method

Ordinary differential equations (ODEs) arise frequently in the context of engineering and

science. In the general case, we are looking for an n-dimensional differentiable function

y(x) :=


y1(x)

...

yn(x)

 , (2.9)

which is a function of x and fulfills

y′(x) = f(x,y(x)), (2.10)

where f is an n-dimensional function of the form

f(x,y(x)) :=


f1(x,y(x))

...

fn(x,y(x))

 . (2.11)
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We call (2.10) an ODE in explicit form. In general, there exist infinitely many functions

y that solve (2.10). The solution space can be restricted by additionally imposing an

initial value of the form

y(x0) = y0. (2.12)

Equation (2.10) together with (2.12) is called an initial value problem (IVP).

Apart from IVPs for systems of ODEs, real-life applications often deal with boundary

value problems (BVPs). For this class of problems, the solution y is supposed to fulfill a

boundary condition of the most general form

r(y(a),y(b)) = 0, (2.13)

where a 6= b and r is an n-dimensional function of 2n unknowns.

In contrast to IVPs that are usually uniquely solvable for an arbitrary initial value (cf.

Stoer & Bulirsch (2005, Theorem (7.1.1))), BVPs might also have no solution or multiple

solutions depending on the choice of the boundary conditions.

A well-known solution strategy for BVPs is the shooting method . This approach attempts

to find a solution of the IVP

y′(x) = f(x,y(x)), y(a) = s, (2.14)

with s ∈ Rn such that y(x) := y(x; s) fulfills the boundary conditions (2.13)

r(y(a; s),y(b; s)) ≡ r(s,y(b; s)) = 0. (2.15)

In order to solve BVPs using the shooting method, we can reformulate this task as

finding the root of a function F (s) with

F (s) := r(s,y(b; s)), (2.16)

for example by using Newton’s method.

We illustrate the shooting method with an example (see also Stoer & Bulirsch (2005,

Chap. 7.3.1)). Let the following one-dimensional BVP be given:

y′(x) = y(x), y(0) = s, y(1) = 3. (2.17)
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2.3. Ordinary differential equations and the shooting method

In this example, the boundary conditions are given in separated form. The IVP

y′(x) = y(x), y(0) = s (2.18)

will in general have a unique solution y(x) ≡ y(x; s) that depends on the choice of s. The

goal is now to determine s∗ in such a way that it holds

y(1) ≡ y(1; s∗) = 3 (2.19)

or in other words to find a root of the function

F (s) := y(1; s)− 3. (2.20)

The evaluation of the function F requires the solution of the IVP (2.18). In this simple

example, it is possible to derive the analytical solution of (2.18). In the general case, the

solution of the IVP can only be obtained by numerical integration as described for example

in Hairer et al. (1993). The function y(x; s) is depicted in Figure 2.1 for different choices

of s, including the root of F which is at s∗ = 1.1036 in this example.
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Figure 2.1.: Plot of y(x; s) for different choices of s. The dashed curve represents s = 0.5,
the dotted curve s = 1.5, and the solid curve depicts the choice of s such
that (2.19) is fulfilled. The horizontal line at y(x) = 3 indicates the desired
boundary value at x = 1.
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For a more detailed review on the mathematical theory and solution strategies for ODEs

and BVPs we refer the reader to Grüne & Junge (2009), Teschl (2012), Deuflhard &

Bornemann (2008), Hairer et al. (1993), and Stoer & Bulirsch (2005).
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CHAPTER 3

Embedding process simulation in an optimization problem

Commercial flowsheet simulators generally require the specification of fixed values for every

degree of freedom and try to solve the resulting square system of nonlinear equations in a

subsequent step. At this point, flowsheet simulators still encounter problems with regard

to the numerical stability of solution strategies for the underlying system of nonlinear

equations. This fact potentially turns process simulation into a tedious task. For process

optimization the situation is even worse, as it requires a convergent simulation run as a

starting point and repeatedly calls the process simulation during its execution.

In this chapter, a new approach is presented, which embeds the process simulation in

an optimization problem with a small number of optimization variables and constraints.

Hence, large-scale solvers are not needed. The question which process variables and model

equations should be included explicitly in the optimization problem and which process

variables can be determined via simulation in a guaranteed way using the remaining

model equations has to be answered individually for each unit model. To illustrate the

new approach, we present tailored strategies for a simple flash unit and a distillation

column. Especially the strategy for distillation columns was strongly inspired by the

asymptotic limiting cases of distillation columns with an infinite number of stages and

infinite reflux ratio. The presented approach facilitates simultaneous flowsheet simulation

and optimization. Moreover, an arbitrary number of specifications in the form of equalities
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or inequalities can be incorporated in the problem formulation. This matches the process

engineering demands usually much better than specifying a given quantity of fixed numbers,

when fixing the degrees of freedom.

3.1. General idea

The new approach described in this work is based on solving the MESH equations by for-

mulating this task as an optimization problem. Whenever process simulation is formulated

as an optimization problem, it is possible to incorporate an arbitrary number of additional

inequality and equality constraints which represent the specifications of the process. This

leads to significantly more flexibility in terms of problem formulation. However, not all

process variables are incorporated in the optimization problem as optimization variables

and not all MESH equations are included as constraints. The approach is particularly at-

tractive when it is possible to obtain solutions for the equations which are not incorporated

in the optimization problem as constraints in a robust manner.

For the following considerations we define Ieq to be the set of indices for the model

equations and Ivar to be the set of indices for the process variables with |Ieq| =: Neq and

|Ivar| =: Nvar. The number of degrees of freedom is Ndof = Nvar −Neq. We introduce the

notation xvar := (xj)j∈Ivar ∈ RNvar and xopt := (xj)j∈Iopt ∈ RNopt for the process variables

and optimization variables, respectively. Furthermore, we write

geq(xvar) := (gj(xvar))j∈Ieq ∈ RNeq , (3.1)

with gj : RNvar −→ R, j ∈ Ieq. The model equations are formulated in such a way that

geq(xvar) = 0. Seq and Sineq are the sets of indices for the desired specifications which

are formulated as equalities or inequalities, respectively. The number of specifications

given as equalities |Seq| as well as the number of specifications given as inequalities |Sineq|
is arbitrary and thus not referred to in the following discussion. To solve the flowsheet

problem, an optimization problem is formulated in the following general form:

Definition 3.1 (General optimization problem for process simulation). Let xvar ∈ RNvar

be the vector of process variables and xopt ∈ RNopt be the vector of optimization variables.

Furthermore, let Iconstr ⊆ Ieq be a set of indices for the model equations that serve as

constraints and Iopt ⊆ Ivar a set of indices for the optimization variables. The general
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optimization problem for process simulation is defined as

min
xopt

f(xvar) (3.2)

s.t. gj(xvar) = 0, j ∈ Iconstr
sk(xvar) = 0, k ∈ Seq
sl(xvar) ≤ 0, l ∈ Sineq,

with the objective function f : RNvar −→ R, and the constraints gj : RNvar −→ R, j ∈ Iconstr
and sj : RNvar −→ R, j ∈ Seq ∪ Sineq.

One possibility is to choose Iconstr = Ieq and Iopt = Ivar which means that all process

variables are regarded as optimization variables and all model equations are included

explicitly as constraints in the optimization problem. This typically leads to an optimization

problem with hundreds or thousands of optimization variables and constraints and requires

a large-scale optimization solver. Within the scope of this work, we do not consider

large-scale optimization strategies but want to focus on small optimization problems.

Hence, Nconstr := Iconstr is supposed to be much smaller than Neq and Nopt is supposed to

be much smaller that Nvar.

The novel approach presented in this work incorporates only a small number of model

equations explicitly as constraints and only few well selected process variables are used

as optimization variables, i.e. we suitably choose a set of indices for the constraints

Iconstr ⊂ Ieq and a set of indices for the optimization variables Iopt ⊂ Ivar. Thereby the

number of optimization variables Nopt equals the number of the constraints Nconstr plus

the number of degrees of freedom Ndof, i.e.:

Nopt = |Iopt|

= |Iconstr|+ |Ieq| − |Ivar| (3.3)

= Nconstr +Ndof.

The optimization solver ensures that the model equations included as constraints

gj(xvar) = 0, j ∈ Iconstr (3.4)

are solved when a solution is found.
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3. Embedding process simulation in an optimization problem

The remaining Neq−Nconstr model equations are not considered explicitly as constraints:

gj(xvar) = 0, j ∈ Ieq\Iconstr. (3.5)

A key idea of the present approach is to choose Iconstr and Iopt so that (3.5) can be

solved for the process variables xdep := (xj)j∈Ivar\Iopt ∈ RNvar−Nopt for given values of the

optimization variables xopt by numerically robust solution strategies and without observing

convergence failures. These strategies are tailor-made for the different unit models. Hence,

it is possible to determine xdep as a function of xopt within each iteration and we can write

xdep(xopt). Thus, the vector of process variables xvar is composed by xopt and xdep. By

construction, the number of process variables that are not chosen as optimization variables

equals the number of remaining model equations, i.e.:

|Ivar\Iopt| = Nvar −Nconstr −Ndof

= Neq −Nconstr (3.6)

= |Ieq\Iconstr| .

Hence, in a solution of (3.2) all Neq equations of the original problem are solved. Nconstr

of them are incorporated as constraints in the optimization problem and the remaining

Neq −Nconstr equations are incorporated in the robust solution of the subproblem (3.5).

The objective function of the optimization problem (3.2) can be chosen as a constant

function (e.g. 0). In that case, the optimization algorithm will try to find a solution that

fulfills all MESH equations geq and specifications sk(xvar) = 0, k ∈ Seq and sl(xvar) ≤
0, l ∈ Sineq. Depending on the number of specifications and the choice of inequalities or

equalities, there exists no solution (over-specification), exactly one solution, or there exist

infinitely many solutions (under-specification). If there exist infinitely many solutions, then

an optimization problem with constant objective function will output the first solution

found, which usually depends on the starting values for the optimization variables and the

optimization algorithm that is applied. However, it is also possible to choose the objective

function to be a non-constant function depending on the process variables, which means

that the obtained solution is optimal with respect to the objective function and enables

simultaneous simulation and optimization. This point is discussed in detail in Section 3.4.

The described approach is illustrated with the examples of a simple flash calculation in

Section 3.2 and the calculation of a distillation column in Section 3.3, which is an extremely

important unit model in process simulation. An algorithm that facilitates numerically
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robust calculation of xdep for simple distillation columns is presented in Chapter 4. The

ideas are extended to general columns with an arbitrary number of feed streams and

side-draws in Chapter 5.

3.2. Flash units

Consider the flash unit depicted in Figure 3.1. The model comprises the feed, the vapor and

the liquid stream which have molar flow rates F , V , and L, respectively. The liquid and

vapor mole fractions are x = (x1, . . . , xNC
) and y = (y1, . . . , yNC

), respectively, where NC

is the number of components in the system. The index i denotes the different components.

The state of the feed stream is assumed to be completely defined, i.e. the feed flow rate

and the mole fractions xFi , i = 1, . . . , NC , are known and, in this example, the feed is

assumed to be liquid boiling at a given pressure pF . The pressure and temperature in the

flash unit are denoted by p and T respectively, and the heat duty is denoted by Q̇.

F,xF

L,x

V,y
p, T

Q̇

Figure 3.1.: Schematic model of a flash unit.

The flash unit is described by the following model equations:

• Material balances

FxFi = Lxi + V yi, i = 1, . . . , NC . (3.7)

• Equilibrium conditions

Extended Raoult’s law is used here to describe the vapor-liquid equilibrium (VLE)

(see also Appendix A.2):

pSi (T )xiγi(x, T ) = pyi, for i = 1, . . . , NC , (3.8)
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3. Embedding process simulation in an optimization problem

where pSi (T ) is the vapor pressure of the pure component i at temperature T and

γi(x, T ) is the activity coefficient of component i for the composition x of the liquid

phase at temperature T . We assume that for given pressure and composition of one

of the phases in equilibrium the extended Raoult’s law can be solved without any

convergence failures. It is assumed that no second liquid phase (no LLE split) occurs

along the column.

• Summation equations

NC∑
i=1

xi = 1, and

NC∑
i=1

yi = 1. (3.9)

• Energy balance (see also Appendix A.2)

Q̇ = Lhl(x, T ) + V hv(y, T )− Fhl(xF , T F ), (3.10)

with hl(x, T ) and hv(y, T ) being the enthalpies of the liquid and vapor phase,

respectively, which depend on the composition and the temperature of the stream.

In this work, the enthalpy hvi in the vapor phase of each component i at 298 K is set

to 0 kJ/mol and the enthalpy of mixing is neglected in both phases, as well as the

pressure dependence of the enthalpy.

Alternatively, it would also be possible to omit Equation (3.9) assuming implicitly that

it is always fulfilled and to specify only (NC − 1) liquid and vapor mole fractions.

Under the above assumption of a completely defined feed stream, we obtain a system with

Neq = (2NC+3) equations andNvar = (2NC+5) unknowns, which hasNdof = Nvar−Neq = 2

degrees of freedom.

As already mentioned, there exist different possibilities of conducting process simulation.

Following the classical Newton approach of solving square nonlinear systems of equations

one could specify two unknowns and try to solve the resulting equation system.

As sketched in Section 3.1, we can also formulate process simulation as an optimization

problem. Our goal is to choose the set Iconstr small while it is still possible to solve for

xdep in an easy and numerically robust manner.

An exemplary strategy is presented now to solve the flash unit problem where Nconstr =

NC . As optimization variables p, ṅL := Lx, and Q̇ are used, i.e. Nopt = (NC + 2). It is

possible to compute the remaining variables based on the knowledge of these optimization
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variables without using all model equations: Fixing values for ṅL uniquely determines L

and x. Furthermore, the temperature T and the composition vector of the vapor phase

y that is in equilibrium with x can be determined by using the equilibrium equations

and the summation equation for y. The enthalpy equation can thereafter be used to

determine the vapor flow rate V . In order to emphasize that the calculated values for

T,y, and V depend on the specific choice of the optimization variables p, ṅL, and Q̇ we

write T (p, ṅL, Q̇),y(p, ṅL, Q̇), and V (p, ṅL, Q̇). At this point, values for all remaining

unknowns have been determined using Neq −Nconstr = (NC + 3) model equations but the

NC material balance equations have not been used. They are included as constraints in

the optimization problem, i.e. Nconstr = NC :

min
p,ṅL,Q̇

0 (3.11)

s.t. FxF = ṅL + V (p, ṅL, Q̇)y(p, ṅL, Q̇).

The equilibrium, summation and energy equations are not explicitly incorporated in the

optimization problem as constraints as they are already enforced during the calculation

of the remaining process variables at any iteration step of the optimization algorithm.

The fact that the process variables cannot only be calculated for feasible but also for

infeasible choices of values for the optimization variables facilitates the embedding of process

simulation in an optimization problem. Although (3.11) is formulated as an optimization

problem this approach basically solves the underlying system of MESH equations due to

the fact that the constant objective 0 is incorporated here. Thus, the solution to (3.11) is

typically not unique. Depending on the starting values for the optimization variables and

the specific implementation of the optimization algorithm, the first feasible solution found

by the optimization algorithm will be the final result.

The exemplary optimization problem (3.11) for a flash unit comprises (NC + 2) opti-

mization variables and NC constraints. The number of optimization variables is larger

than the number of degrees of freedom, which need to be fixed for the classical Newton

approach, but for systems with a moderate number of components this still results in a

small optimization problem.

The optimization problem (3.11) can be regarded as an example for the more general

case (3.2). However, one could also think of other examples by varying the number and

choice of optimization variables and constraints. In this work, our goal is to find an
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3. Embedding process simulation in an optimization problem

optimization problem with a small number of optimization variables that still enables

solving for the remaining unknown process variables in a robust manner. As described

above, this is the case here for Equations (3.8)–(3.10) in the variables p, ṅL, and Q̇.

3.3. Distillation columns in combination with the

shooting method

The advantages of the presented method become evident when considering units with

many process variables such as a distillation column. As depicted in Figure 3.2, the

distillation column is modeled here as a cascade of equilibrium stages with a reboiler with

duty Q̇R > 0 kW at the bottom and a total condenser with duty Q̇C < 0 kW at the top.

NS denotes the number of stages in the column with corresponding index n counted from

the bottom. For simplicity, a distillation column with one single feed on stage NF (NF = 2

in the example in Figure 3.2) and without side-draws is considered. As in the previous

example (cf. Section 3.2) the feed is assumed to be completely defined. Each stage n has

liquid and vapor streams flowing from it (with total molar flow rate Ln and V n) and onto

it (with total molar flow rate Ln+1 and V n−1) and is therefore connected to the stages

above and below. The reflux ratio R is defined as the ratio of the liquid molar flow rate LR

returned to the column divided by the molar flow rate of the distillate D, i.e. R = LR/D.

The MESH equations for an arbitrary control volume of the column can be easily derived

using the MESH equations for a flash unit (cf. Section 3.2) or the MESH equations for an

equilibrium stage (cf. Appendix A) as an example. Assuming constant pressure on all

stages yields Nvar = NS · (2NC + 3) + 3 and Neq = NS · (2NC + 3), which means that three

degrees of freedom remain for the combined MESH system.
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F,xF

1

2

V 1,y1 L2,x2

n

V n,yn Ln+1,xn+1

n+ 1

NS

L1,x1

B,xB

Q̇R

V R,yV R

V NS ,yNS

Q̇C

D,xD
LR,xLR

Figure 3.2.: Schematic of an equilibrium stage model of a distillation column with a single
feed on stage NF = 2, total condenser and reboiler.

For a distillation column a numerically robust algorithm is required that determines

the unknown process variables for a wide range of choices for the fixed variables without

observing convergence failures. In this thesis, we employ numerically stable stage-to-stage

calculations based on the solution of a fixed-point problem on every stage. The transition

from one stage to the next has guaranteed convergence if the input variables for stage-to-
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stage calculations are chosen in a suitable way as described in Chapter 4 and 5. These

chapters are devoted to the development of stage-to-stage strategies for simple column

with one feed and two product streams and general columns with an arbitrary number

of feed streams and side-draws. The approach is sketched briefly here: For an upward

calculation of the column, the values for p, ṅB := Bx, and Q̇R have to be given. In a first

step, the system of MESH equations for a control volume that comprises the reboiler and

the lowest stage of the column are derived and reformulated as a fixed-point problem as

presented in detail in Section 4.2. The unknowns in this problem are the liquid and vapor

streams connecting the first and the second stage of the column. This fixed-point problem

can be solved by applying fixed-point iteration. The control volume is extended by a stage

and in that way one can proceed upward a column by solving a fixed-point problem on

each stage. In an analogous way it is also possible to proceed downward the column. For

the asymptotic limiting case of a column with an infinite reflux ratio, convergence of the

fixed-point iteration is immediately guaranteed. Based on this asymptotic limiting case,

we want to answer the question how small the reflux ratio, and the heat duty respectively,

can be chosen in order to still be able to guarantee convergence of the fixed-point iteration.

A detailed analysis of the existence and uniqueness of fixed points and the convergence

properties of the corresponding fixed-point iteration for columns with finite reflux can be

found in Section 4.3.

When calculating a distillation column starting from the reboiler upward, based on given

input variables p, ṅB, and Q̇R, we proceed until we have solved the fixed-point problem

for stage (NS − 1). This gives the concentration vector xNS from which the composition of

the corresponding vapor phase yNS in equilibrium with the liquid phase can be calculated.

Due to the total condenser at the top of the column the following relation holds:

yNS = xD. (3.12)

Again we write xD(p, ṅB, Q̇R) in order to stress the dependence of this composition

vector on the choice of p, ṅB, and Q̇R. The component material balance for the entire

distillation column is not necessarily enforced during upward calculation of the distillation

column, i.e. xD(p, ṅB, Q̇R) will not necessarily fulfill:

FxF = BxB + (F −B)xD(p, ṅB, Q̇R), (3.13)
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where the relation F = B +D was used. In order to obtain a feasible column design p,

ṅB, and Q̇R have to be adapted in a way such that Equation (3.13) is fulfilled.

There is an analogy between the problem described above and boundary value problems

(BVP) (Stoer & Bulirsch, 2005, Chap. 7.3) that arise in the context of ordinary differential

equations (ODE). The parameters p, ṅB, and Q̇R, which are imposed at the bottom of the

column, correspond to the initial values of the ODE. The analogy is further strengthened

by the fact that a difference equation is solved by calculating the distillation column

upward, which is strongly related to the solution of an ODE with fixed step size. The

aspired boundary value corresponds to the result for xD that can be calculated a priori

using the overall component material balance:

xD =
FxF −BxB

F −B
. (3.14)

A method for solving such BVP is the (single) shooting method (Stoer & Bulirsch, 2005,

Chap. 7.3.1). For more details see also Section 2.3. One way of transferring the ideas of

this method to our problem of finding a feasible column design is to formulate the problem

as an optimization problem of the following form:

min
p,ṅB ,Q̇R

0 (3.15)

s.t. FxFi = BxBi + (F −B)xDi (p, ṅB, Q̇R), i = 1, . . . , NC − 1.

This optimization problem is very similar to the optimization problem for a flash unit

and again of size Nopt = (NC + 2) in terms of optimization variables. The number

of constraints in (3.15) is Nconstr = (NC − 1) (the component material balance for the

component NC is fulfilled by construction in case the component material balances for the

(NC − 1) remaining components are fulfilled). The fact that the number of constraints

remains small, although the total number of process variables and the size of the MESH

equation system is much larger for a distillation column than the MESH equation system

for a flash unit, is remarkable. Those MESH equations that are not incorporated explicitly

as constraints in the optimization problem are already enforced during the upward or

downward calculation of the distillation column, which is needed in any iteration step of the

optimization algorithm in order to determine all process variables. In Chapter 4 and 5 we

show that stage-to-stage calculations typically have guaranteed convergence for values of
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the input variables chosen in a wide region, which we can quantify, including also infeasible

choices and not only feasible ones. This allows the embedding of process simulation in an

optimization problem and it is possible to use suitable nonlinear optimization algorithms

to find a solution in a targeted manner.

The optimization problem (3.15) again has a constant objective function. This means

that the optimization algorithm will output the first feasible column found, analogously

to (3.11) for a flash unit. A non-constant objective function usually leads to a unique

solution. In the general case, it is also possible to impose additional equality or inequality

constraints, for example desired product purities.

Along the same lines, it is possible to formulate an optimization problem when calculating

a feasible distillation column starting from the condenser downward. For the sake of

brevity this is not discussed in detail.

Figure 3.3 depicts the different building blocks for process simulation or optimization of

a distillation column, which were discussed in this section and will be topic of the next

chapters, in a flow diagram.
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(3) Given input variables for
stage-to-stage calculations

(4) For all stages n but
the last: Initialize s0 and
solve a fixed-point prob-

lem of the form ϕn(s) = s

(5) Almost all MESH equations
are solved and numbers for all
process variables are obtained

(7) Update the input variables
using an optimization algorithm

(2) Will the input
variables lead to

convergent
stage-to-stage
calculations?

(1) Initialize:
input variables for

stage-to-stage calculations,
desired specifications,
upward or downward

calculation

(6) Is the distillation
column

feasible/optimal?

(8) Feasible/optimal dis-
tillation column found

no

no yes

yes

Figure 3.3.: A flow diagram for process simulation or optimization of a distillation column
embedded in an optimization problem.
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3.4. Simultaneous process simulation and optimization

In the previous section, process simulation was embedded in an optimization problem

aiming for a feasible design. However, in many cases we are not only interested in an

arbitrary feasible design but a design which is optimal in some sense. In order to perform

process optimization it is only necessary to replace the constant objective function in the

optimization problem (3.11) or (3.15) by an objective function of interest. It is of big

advantage that for optimizing a process there is no need for a feasible column design as a

starting point and hence it is not necessary to perform process simulation in advance.

In case we are not sure that the desired specifications can actually be met, process

simulation and optimization can be combined by incorporating suitable objective functions.

One possibility is to include the specified process variable as objective function, which

should be minimized or maximized. By that approach, the lower or upper bound of

the feasible interval for the considered process variable can be determined. If a certain

desired target value should be achieved for a process variable, a corresponding distance

function can be incorporated as objective function. Hence, the target value is feasible if

the optimization problem outputs a feasible design with objective value equal to 0.

3.5. Starting values

So far, we did not comment on the starting values for the considered optimization problems.

In principle, the pressure p can be used as an optimization variable. However, the designer

usually has some idea about the pressure and in many cases it is specified to a fixed value.

Conceptual methods for distillation-based flowsheets that determine feasible column

products can be used to generate starting values for one of the product stream, which is

used as optimization variable. Examples for such methods are the boundary value method

(Levy et al., 1985; Van Dongen & Doherty, 1985; Levy & Doherty, 1986), the rectification

body method (Bausa et al., 1998), the shortest stripping line method (Lucia et al., 2006,

2008), or ∞/∞-analysis developed by Petlyuk & Avet’yan (1971) and Serafimov et al.

(1973), which was used to predict multiple steady states in azeotropic distillation (Bekiaris

et al., 1993, 1996; Bekiaris & Morari, 1996; Güttinger & Morari, 1997) and for conceptual

process design (Ryll et al., 2012, 2013).
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In this work, ∞/∞-analysis is used, which can be derived as the limiting case of the

equilibrium stage model for columns with an infinite number of stages and infinite reflux.

In this limiting case, the number of degrees of freedom is decreased and the flowsheet can

be solved with guaranteed convergence (Ryll et al., 2012, 2013). The resulting solution

provides excellent starting values for B and xB, and thus also for ṅB. Note that, in case

∞/∞-analysis outputs a composition vector xB containing zero elements, we slightly

correct this vector by adding a small δ to the zero component and subtracting the same δ

from a non-zero component. By doing so, we move the starting value for the composition

vector to the interior of the ternary diagram, as its boundary can only be attained in the

asymptotic limiting case where separation is optimal.

Besides ∞/∞-analysis, starting values for B and xB could also be generated via solving

only the overall component material balances. Clearly, this approach does not necessarily

take into consideration the thermodynamic properties of the analyzed multi-component

system, but still the starting values can be a good initial guess.

The starting value for Q̇R can be chosen in such a way that the derived fixed-point

problem for the upward calculation of a distillation column has Lipschitz constant strictly

smaller than 1, which implies that the stage-to-stage calculations of the column in the

flowsheet have guaranteed convergence in the fixed-point iterations. This essential result

of the thesis is derived and proven in detail in Section 4.3 and 5.3. Without conducting

further analysis, it is always a good choice to start with a very large heat duty, as we

know that in the limiting case of infinitely large heat duty stage-to-stage calculations

have guaranteed convergence. The large starting value for the heat duty could then

be minimized during optimization by incorporating it as objective in the optimization

problem.

As discussed above, there exist several strategies that generate good starting values for

the optimization variables. In this regard, especially ideas from conceptual design such as

the ∞/∞-analysis perfectly match the choice of optimization variables and the structure

of the optimization problem. However, we will show in Chapter 7 that the optimization

problems are usually quite robust with respect to poor starting values.
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3.6. Extensions of the presented approach

We have presented an approach for embedding process simulation in an optimization

problem with the examples of a flash unit and a simple distillation column. It can be

easily extended in several ways.

First, it is not only possible to consider simple distillation columns but one could also

think of more complex distillation columns, for example with an arbitrary number of feed

streams on different stages. Furthermore, intermediate reboilers or condensers can be

included in the problem formulation, where every intermediate reboiler or condenser leads

to one additional optimization variable. Additional side-draws could also be incorporated.

Each side-draw results in NC additional optimization variables. Clearly, the approach can

be applied to systems with an arbitrary number of components NC .

Tailored strategies that determine the remaining process variables for simple distillation

columns and distillation columns with an arbitrary number of feed streams and side-

draws are derived and analyzed with respect to convergence of the fixed-point iteration in

Chapter 4 and 5, respectively.

Furthermore, the presented ideas in this chapter will be extended to flowsheets consisting

of several units of the same type or of different types in Chapter 6.

Another possible extension is to include the number of stages of a distillation column

as well as the feed stages in the problem formulation as integer optimization variables.

The optimization problem then turns into a mixed-integer nonlinear optimization problem.

A corresponding numerical example is shown in Section 7.3.1. If we use the number

of stages of a distillation column as optimization variable, it is possible to choose a

column with a large reboiler duty and a large number of stages as starting point. This

mimics the asymptotic limiting case considered in ∞/∞-analysis. From this starting

point it is empirically easier to initialize a column and during simultaneous simulation and

optimization we can decrease the reboiler duty and the number of stages to sound values.

The presented approach for process simulation via formulation of an optimization

problem of small size could also be extended to other (simple and stage-based) unit

operations such as splitters, reactors, heat exchangers, decanters, extraction columns,

absorption columns, or even Petlyuk distillation columns (Wolff & Skogestad, 1995). As

prerequisite, suitable algorithms are needed for the different units that facilitate the

calculation of all process variables. The number of additional optimization variables and

constraints depends on the specific unit. Absorption columns and Petlyuk distillation
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columns can be modeled as a special case of a distillation column, or the connection of

distillation columns respectively, and can therefore be easily incorporated. There exist

other units, however, which require more preliminary work.

In recent studies, distillation-based flowsheets including also splitters and decanters

have been simulated. The splitter with two product streams can be modeled in a very

simple and straight-forward way by including the split ratio as one additional optimization

variable in the optimization problem. No additional constraints have to be added and

process simulation of this unit does not require the solution of a system of equations. The

decanter was treated in a similar way as the flash unit described in Section 3.2 replacing

the equations for the vapor-liquid equilibrium with the equations for the liquid-liquid

equilibrium (LLE). However, efficient algorithms for example for the computation of

extractive columns still need to be developed and require a sound analysis. From our point

of view it would also be worthwhile to include reactions in our approach.

In case we want to consider competing objective functions for process optimization,

strategies for multi-criteria optimization can be applied in the context of process simulation

and optimization (Welke, 2013; Bortz et al., 2014). A numerical example with two

competing objective functions is shown in Section 7.3.2.
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CHAPTER 4

Stage-to-stage calculations of simple distillation columns

In this chapter, a novel approach for stage-to-stage calculations of distillation columns with

one feed stream and two product streams based on the MESH equations is presented. No

simplifying assumptions such as CMO are used. The transition from one stage to the next

is formulated as a fixed-point problem, which can be solved by fixed-point iteration without

computing derivatives. In the asymptotic limiting case of columns with infinite reflux ratio,

convergence of the fixed-point iteration is guaranteed and we address the question how

small the reflux ratio, or heat duty respectively, can be chosen to still have guaranteed

convergence. Applying the Banach fixed-point theorem, bounds on the minimum energy

requirement are derived. Within these bounds a solution to the fixed-point problem exists

and convergence of the fixed-point iteration is guaranteed.

4.1. System of equations

The equilibrium stage model of a distillation column is schematically depicted in Figure 4.1

and was already introduced in Section 3.3. The MESH equations for an equilibrium stage

are stated in detail in Appendix A. For simplicity, a distillation column with one single

feed on stage NF (NF = 2 in the example of Figure 4.1) and without any side-draws is

considered. The method described in the following will be extended to side-draws and

multiple feeds in a straight forward manner in Chapter 5.
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4. Stage-to-stage calculations of simple distillation columns

The state of the feed stream is assumed to be completely defined, i.e. the feed molar

flow rate F , the pressure pF , and the mole fractions xFi of each component i are known.

Furthermore, it is assumed here that the feed stream is liquid boiling and the pressure of

the feed stream pF equals the pressure of the distillation column p. Also these assumptions

are only used for simplicity and a generalization is possible.

F,xF

1

2

V 1,y1 L2,x2

n

V n,yn Ln+1,xn+1

n+ 1

NS

L1,x1

B,xB

Q̇R

VR,y
VR

V NS ,yNS

Q̇C

D,xD
LR,x

LR

Figure 4.1.: Schematic of a stage-by-stage model of a distillation column with a single feed
on stage NF = 2, total condenser, and reboiler. The dotted box indicates a
control volume.

46
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Again, the extended Raoult’s law is assumed to describe the VLE (see Section 3.2 and

Appendix A.2). Furthermore, hl(x, T ) and hv(y, T ) denote the enthalpies of the liquid

and vapor phase, respectively, which depend on the composition of the phase x or y, and

the temperature T . We introduce some short notations that will be used in the following:

Definition 4.1. Let the pressure p be given. For a liquid phase composition vector x that

is in equilibrium with the corresponding vapor phase we can determine the temperature

TVLE in equilibrium by using the extended Raoult’s law. We define

l(x) := hl(x, TVLE). (4.1)

Analogously, for a vapor phase composition vector y that is in equilibrium with the

corresponding liquid phase we can determine TVLE and define

v(y) := hv(y, TVLE). (4.2)

Thus, l(x) and v(y) are short notations for the molar enthalpy of a given composition

at liquid boiling and vapor dewing state, respectively.

For the subsequent results we assume the following to hold:

Assumption 4.2. Internal streams among stages never vanish and mole fractions in the

liquid and vapor phase are strictly larger than 0.

Assumption 4.3. Let the pressure p be given. For any composition vectors x,y ∈ RNC

for which the summation equation holds it is assumed that

v(y)− l(x) > 0. (4.3)

For the general case, Assumption 4.3 cannot be proven, but it is plausible that it will

hold for a big class of practical problems, cf. Appendix B.
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4.2. Derivation of an equivalent fixed-point problem

A new approach is presented in which the full set of MESH equations is successively solved

enabling a stage-wise calculation of distillation columns. It is either possible to calculate a

column from the bottom to the top or the other way round. We elaborately describe the

upward calculation of a distillation column and briefly describe downward calculation in

this section.

For the following considerations, it is assumed that values for the variables p, ṅB := BxB,

and Q̇R, as well as the specifications F and xF of the liquid boiling feed stream on stage

NF , are given in order to calculate a column from the bottom to the top. The given

variables should fulfill the following assumption:

Assumption 4.4. The values for B and xB are chosen in such a way that

D := F −B ≥ 0 (4.4)

and

xDi :=
FxFi −BxBi
F −B

> 0 (4.5)

for all i = 1, . . . , NC, i.e. the flow rate D and the composition xD of the distillate stream,

which fulfills the material balance of the column, should be positive.

We proceed in the following way: We consider the MESH equations for a control volume

including the reboiler and the first stage of the distillation column. The unknowns in the

resulting system of equations are L2,x2, V 1, and y1 (upper case numbers always denote

the stage in this work). The vapor stream leaving the first stage and the bottom stream,

i.e. the liquid stream leaving the first stage, are in vapor-liquid equilibrium. Because the

pressure p is given, the composition y1 of the vapor phase can immediately be calculated.

The unknowns L2,x2, and V 1 still need to be determined. For that purpose, the MESH

equations for the considered control volume are reformulated as a fixed-point problem and

solved by fixed-point iteration. This gives values for L2,x2, and V 1. The composition

y2 can then be calculated by solving the vapor-liquid equilibrium and a new fixed-point

problem for the transition from stage 2 to stage 3 can be derived by extending the control

volume by the second stage. In this way we can proceed upward the column.

In the following, the fixed-point problem for the transition from an arbitrary stage n to

stage n+ 1 based on the MESH equations for a control volume including the reboiler and

the lower part of the distillation column up to stage n as indicated by the dotted box in
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Figure 4.1 is derived. The composition of the liquid phase xn on stage n is assumed to be

given from the previous step which also determines the composition of the corresponding

vapor phase yn. Ln+1,xn+1, and V n are the unknown process variables, which have to be

determined to proceed upward.

For the considered control volume shown in Figure 4.1 the following total material

balance holds

F n
up + Ln+1 = V n +B, (4.6)

where

F n
up :=

0 for n < NF ,

F for n ≥ NF .
(4.7)

Taking component material balances, we have that

F n
upx

F + Ln+1xn+1 = V nyn +BxB. (4.8)

Dividing (4.8) by Ln+1 and substituting (4.6) into (4.8), we get

xn+1 =
V n

V n +B − F n
up

yn +
B

V n +B − F n
up

xB −
F n

up

V n +B − F n
up

xF . (4.9)

Considering the same control volume the following enthalpy balance holds:

Q̇R + F n
upl(x

F ) + Ln+1l(xn+1) = V nv(yn) +Bl(xB). (4.10)

Substituting (4.6) into (4.10) and solving for V n, we get

V n =
Q̇R + F n

upl(x
F ) + (B − F n

up)l(xn+1)−Bl(xB)

v(yn)− l(xn+1)
. (4.11)

For a feasible column design, the above equations have to be fulfilled. In particular, the

above equations are fulfilled for a fixed point of the function ϕn
up, which is defined in the

following way:

Definition 4.5 (Fixed-point problem for the transition from stage n to stage n+ 1). For

the transition from stage n to stage n+ 1, n = 1, . . . , NS − 1, a fixed point of the function

ϕn
up(s) :=

Q̇R + F n
upl(x

F ) + (B − F n
up)l(x

n+1(s))−Bl(xB)

v(yn)− l(xn+1(s))
, (4.12)
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where

xn+1(s) =
s

s+B − F n
up

yn +
B

s+B − F n
up

xB −
F n
up

s+B − F n
up

xF , (4.13)

has to be found. Due to the fact that the auxiliary variable s is introduced, the MESH

equations are decoupled and only in a fixed point s∗ of ϕn
up we have s∗ = V n.

Hence, fixing p, B, xB, and Q̇R enables upward stage-to-stage calculations of a distillation

column starting from the reboiler by solving a fixed-point problem on each stage.

Analogously, a sequence of fixed-point problems for the calculation of a distillation

column from the condenser downward can be derived. In this case p, ṅD := DxD, and

Q̇C are fixed and the vapor composition yn on stage n is assumed to be given from which

one can calculate the liquid composition xn in equilibrium. For downward calculation of a

distillation column analogous conditions as stated in Assumption 4.4 should be fulfilled.

The unknown values which have to be determined to proceed down the column are Ln

and yn−1. These values can also be obtained by solving a fixed-point problem.

Definition 4.6 (Fixed-point problem for the transition from stage n to stage n− 1). For

the transition from stage n to stage n− 1, n = 2, . . . , NS, a fixed point of the function

ϕn
down(r) :=

Q̇C + F n
downl(x

F ) + (D − F n
down)v(yn−1(r))−Dl(xD)

l(xn)− v(yn−1(r))
, (4.14)

where

yn−1(r) =
r

r +D − F n
down

xn +
D

r +D − F n
down

xD − F n
down

r +D − F n
down

xF (4.15)

and

F n
down :=

0 for n > NF ,

F for n ≤ NF ,
(4.16)

has to be found. Again, the MESH equations are decoupled by introducing the auxiliary

variable r. The solution of this fixed-point problem is r∗ = Ln.

The following results are explained using the example of calculating a distillation column

from bottom to the top. However, the results also hold for the opposite method unless

specified otherwise.
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4.3. Application of the Banach fixed-point theorem

In this section, the Banach fixed-point theorem is applied to the function ϕn
up introduced

in Definition 4.5. This theorem provides the answer to the question whether there exists a

fixed point and whether it is unique and it further provides a constructive way of finding

this fixed point. In the following, the one-dimensional version of the Banach fixed-point

theorem is used as stated in Forster (2013, p. 193):

Theorem 4.7 (Banach fixed-point theorem). Let I ⊂ R be a closed interval and f : I −→
R a differentiable function with f(I) ⊂ I. If there exists 0 ≤ q < 1 such that |f ′(x)| ≤ q

for all x ∈ I, the sequence (xn)n∈N defined by

xn := f(xn−1), n ≥ 1 (4.17)

converges towards the unique fixed point x∗ of f with f(x∗) = x∗ for any x0 ∈ I.

Any value of q in the above theorem is called a Lipschitz constant for f . The goal is to

provide insight how the process variables p, B, xB, and Q̇R have to be chosen in order to

be able to apply the Banach fixed-point theorem.

4.3.1. Existence of a fixed point

In a first step, we show under which conditions at least one solution of the fixed-point

problem can be guaranteed and under which conditions it is guaranteed that there exists

no solution to the fixed-point problem. The uniqueness of the fixed point is discussed at a

later point.

First of all, some properties of the derived fixed-point problems are discussed. This

helps finding a suitable closed interval into which the function ϕn
up should map.

Lemma 4.8. If s∗ is a fixed point of ϕn
up it holds

s∗ > F n
up −B. (4.18)

Proof. For a valid column design we have s∗ = V n and the following material balance

holds for the considered control volume

F n
up + Ln+1 = V n +B. (4.19)

51



4. Stage-to-stage calculations of simple distillation columns

Solving for s∗ leads to

s∗ = V n = F n
up −B + Ln+1︸︷︷︸

>0

, (4.20)

due to the fact that initial streams never vanish, cf. Assumption 4.2.

The subsequent results show which conditions have to hold in order to have strictly

positive mole fractions in all streams during upward calculation of a column as requested

in Assumption 4.2. There also exist solutions to the derived fixed-point problem, or the

MESH system respectively, with zero or negative mole fractions. However, these solutions

have only mathematical and no physical meaning, which is why we do not consider them

in this work.

Lemma 4.9. Let the composition vectors xB and yn be given. If n < NF and s > −B it

holds

xn+1
i (s) > 0, i = 1, . . . , NC ⇐⇒ s > −B min

i=1,...,NC

(
xBi
yni

)
≥ −B. (4.21)

Proof.

xn+1
i (s) > 0, i = 1, . . . , NC

⇐⇒ s

s+B
yni +

B

s+B
xBi > 0, i = 1, . . . , NC

⇐⇒ syni +BxBi > 0, i = 1, . . . , NC

⇐⇒ s > −B min
i=1,...,NC

(
xBi
yni

)
︸ ︷︷ ︸

≤1

.

Lemma 4.10. Let the composition vectors xD and yn be given. If n ≥ NF and s > D it

holds

xn+1
i (s) > 0, i = 1, . . . , NC ⇐⇒ s > D max

i=1,...,NC

(
xDi
yni

)
≥ D. (4.22)
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Proof.

xn+1
i (s) > 0, i = 1, . . . , NC

⇐⇒ s

s−D
yni +

B

s−D
xBi −

F

s−D
xFi > 0, i = 1, . . . , NC

⇐⇒ syni +BxBi − FxFi > 0, i = 1, . . . , NC

⇐⇒ syni −DxDi > 0, i = 1, . . . , NC

⇐⇒ syni > DxDi , i = 1, . . . , NC

⇐⇒ s > D max
i=1,...,NC

(
xDi
yni

)
︸ ︷︷ ︸

≥1

.

We can conclude that a fixed point with not only mathematical but also physical

meaning can only occur in

Mn :=

(0;∞) for n < NF ,

(Dmn;∞) for n ≥ NF ,
(4.23)

where

mn := max
i=1,...,NC

(
xDi
yni

)
.

It always holds that mn ≥ 1 and if the mole fraction of a component in yn is much

smaller than the mole fraction of the corresponding component in xD, the value for mn

gets large.

Lemma 4.11. Let n < NF . The function ϕn
up is bounded on Mn := (0;∞).

Proof. The function ϕn
up is a continuous function on Mn. Hence, we only have to consider

the behavior of ϕn
up at the boundaries of Mn. When considering the lower bound, we

distinguish the following two cases:

Case 1: B > 0

We have that

lim
s→0

xn+1(s) = xB (4.24)

and therefore

lim
s→0

∣∣ϕn
up(s)

∣∣ =

∣∣∣∣∣ Q̇R

v(yn)− l(xB)

∣∣∣∣∣ <∞. (4.25)
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Case 2: B = 0

In this special case, we immediately get

xn+1(s) ≡ yn (4.26)

and ∣∣ϕn
up(s)

∣∣ ≡ ∣∣∣∣∣ Q̇R

v(yn)− l(yn)

∣∣∣∣∣ <∞. (4.27)

For the limiting case s → ∞ we do not have to consider two different cases but can

conclude that

lim
s→∞

∣∣ϕn
up(s)

∣∣ =

∣∣∣∣∣Q̇R +Bl(yn)−Bl(xB)

v(yn)− l(yn)

∣∣∣∣∣ <∞ (4.28)

due to the fact that

lim
s→∞

xn+1(s) = yn. (4.29)

This is exactly the definition of a distillation line.

Lemma 4.12. Let n ≥ NF . The function ϕn
up is bounded on

Mn :=
(
Dmn;∞

)
. (4.30)

Proof. The function ϕn
up is a continuous function on Mn. Once again, we have to check

the behavior of ϕn
up at the boundaries of Mn. For the lower bound, we have to consider

two different cases:

Case 1: xD 6= yn

In this case we have that mn > 1 and thus Dmn > D, which yields

lim
s→Dmn

∣∣ϕn
up(s)

∣∣ <∞. (4.31)

Case 2: xD = yn

Using Equation (4.9) and the overall component material balance

FxF = BxB +DxD (4.32)

leads to

xn+1(s) ≡ xD (4.33)
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and

lim
s→D

∣∣ϕn
up(s)

∣∣ =

∣∣∣∣∣Q̇R + Fl(xF )−Dl(xD)−Bl(xB)

v(xD)− l(xD)

∣∣∣∣∣ <∞. (4.34)

For the limiting case s→∞ we can conclude that

lim
s→∞

∣∣ϕn
up(s)

∣∣ =

∣∣∣∣∣Q̇R + Fl(xF )−Dl(yn)−Bl(xB)

v(yn)− l(yn)

∣∣∣∣∣ <∞ (4.35)

due to the fact that

lim
s→∞

xn+1(s) = yn. (4.36)

For the limiting case s→∞ we end up with the same result for stages below and above

the feed stage. This is plausible due to the fact that for internal streams of infinitely large

flow rate the flow rate and composition of the feed stream vanishes in comparison to the

internal streams.

In summary, the function ϕn
up always maps from Mn into the compact interval

In :=

[
inf

s∈Mn

ϕn
up(s); sup

s∈Mn

ϕn
up(s)

]
. (4.37)

Lemma 4.13. Let n < NF . If

Q̇R > B
(
l(xB)− l(xn+1(s))

)
(4.38)

for all s ∈Mn and in the limiting cases s→ 0 and s→∞ it holds that ϕn
up(Mn) ⊂Mn.

Proof. In order to show that the function ϕn
up maps from Mn to itself it suffices to show

that the interval In is a subset of Mn. As we have already shown that sups∈Mn
ϕn

up(s) <∞
it remains to show that infs∈Mn ϕ

n
up(s) > 0 if Q̇R fulfills the above condition. If it holds

that

Q̇R +Bl(xn+1(s))−Bl(xB) > 0 (4.39)

for all s ∈Mn and in the limiting cases s→ 0 and s→∞ we can conclude that

ϕn
up(s) > 0 (4.40)
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for all s ∈Mn and in the limiting cases s→ 0 and s→∞. This immediately yields the

claim.

The lower bound for Q̇R derived in Lemma 4.13 depends on B, xB, and on the current

value of s, which usually changes during the fixed-point iteration. A more general bound

on Q̇R can be derived as follows: Define

FNC
:=

{
x ∈ RNC

∣∣∣∣∣
NC∑
i=1

xi = 1, xi > 0, i = 1, . . . , NC

}
(4.41)

as the set of all physically meaningful compositions of a mixture. Assuming that v(x) and

l(x) are bounded functions on FNC
we immediately get the following result:

Lemma 4.14. Let n < NF . If

Q̇R > Q̇LB1
R (4.42)

with

Q̇LB1
R := B

(
l(xB)− min

x∈FNC

l(x)

)
(4.43)

or alternatively if

Q̇R > Q̇LB2
R (4.44)

with

Q̇LB2
R := B

(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)
(4.45)

≥ Q̇LB1
R

it holds that ϕn
up(Mn) ⊂Mn.

The bound Q̇LB2
R depends only on B and the physical properties of the specific compo-

nents in the considered system at pressure p and is independent of the stage n < NF . The

maximum and minimum values of the liquid and vapor enthalpy functions for a system of

substances only have to be calculated once, which can be done in a preprocessing step

of process simulation. Enthalpy functions often exhibit only small changes on FNC
when

compared to enthalpy changes between liquid and vapor phase. Thus the more general

bound is expected to be close to the actual bound and not much more pessimistic.
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Lemma 4.15. Let n ≥ NF . If

Q̇R > Bl(xB)− Fl(xF ) +Dmnv(yn) +D (1−mn) l(xn+1(s)) (4.46)

or equivalently

Q̇C < D
(
l(xD)−mnv(yn) + (mn − 1) l(xn+1(s))

)
(4.47)

for all s ∈Mn and in the limiting cases s→ Dmn and s→∞ it holds that ϕn
up(Mn) ⊂Mn.

Proof. As before, it suffices to show that the interval In is a subset of Mn. Here, it remains

to show that infs∈Mn ϕn(s) ≥ Dmn if Q̇R, or Q̇C respectively, fulfills the above condition.

If it holds that

Q̇R > Bl(xB) +Dl(xn+1(s))− Fl(xF ) +Dmn

(
v(yn)− l(xn+1(s))

)
(4.48)

for all s ∈Mn and in the limiting cases s→ Dmn and s→∞ we can conclude that

ϕn
up(s) > 0 (4.49)

for all s ∈Mn and in the limiting cases s→ Dmn and s→∞. This immediately yields

the claim.

The condition for Q̇C follows from the overall energy balance for the column.

More general bounds on Q̇R that do no longer depend on xF , xB, and the current value

of s can be derived as follows:

Lemma 4.16. Let n ≥ NF . If

Q̇R > Q̇LB1,n
R (4.50)

with

Q̇LB1,n
R := Bl(xB)− Fl(xF ) +Dmnv(yn) +D (1−mn) min

x∈FNC

l(x) (4.51)

or alternatively if

Q̇R > Q̇LB2,n
R (4.52)
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with

Q̇LB2,n
R := B

(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)
+Dmn

(
max
x∈FNC

v(x)− min
x∈FNC

l(x)

)
(4.53)

≥ Q̇LB1,n
R

it holds that ϕn
up(Mn) ⊂Mn.

The new bound Q̇LB2,n
R depends only on F , B, mn, and on the physical properties of the

specific components in the considered system at pressure p. Unfortunately, the quotient

mn cannot be bounded from above due to the fact that yni can be arbitrarily small and

therefore it is not possible to derive a more general bound on Q̇R.

In an analogous way it is also possible to derive more general bounds for Q̇C using the

overall energy balance of the distillation column. However, we will focus on bounds for

Q̇R in the following.

Lemma 4.17. If the function ϕn
up maps from Mn to itself it also maps from In to itself.

Proof. Using the results of Lemma 4.13 and Lemma 4.15 we know that

ϕn
up(Mn) ⊆ In ⊆Mn. (4.54)

From this we can conclude

ϕn
up(In) ⊆ ϕn

up(Mn) ⊆ In. (4.55)

Theorem 4.18 (Brouwer fixed-point theorem, see also Heuser (2008, p. 593)). If the

continuous function ϕn
up maps from the closed interval In to itself there exists at least one

fixed point in the interval In.

Proof. The claim can be proven by defining a function gn(s) := ϕn
up(s)− s on the interval

In and applying the intermediate value theorem to this function in order to show that

there exists some s∗ ∈ In such that gn(s∗) = 0.

The above results can be summarized in the following way:

Theorem 4.19 (Existence of a fixed point of ϕn
up in the interval In). If n < NF and

Q̇R > Q̇LB2
R ≥ Q̇LB1

R (4.56)
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or n ≥ NF and

Q̇R > Q̇LB2,n
R ≥ Q̇LB1,n

R (4.57)

it holds that ϕn
up(In) ⊂ In and the existence of at least one fixed point in the closed interval

In can be guaranteed.

The bounds in Theorem 4.19 that guarantee the existence of a fixed point depend on

certain process variables and the physical properties of the multi-component system under

consideration. It is clear that it is always possible to chose a very large Q̇R such that

existence of a fixed point is guaranteed. In Section 4.4 these bounds will be evaluated for

a binary example separation problem.

Remark 4.20. It holds

Q̇LB2,n
R ≥ Q̇LB2

R for all n ≥ NF . (4.58)

This means that in order to be able to guarantee the existence of a fixed point for a tray

n ≥ NF we need at least the reboiler duty that is required to be able to guarantee a fixed

point for a tray n < NF .

So far, bounds on Q̇R, or Q̇C respectively, were derived such that the existence of at

least one solution is guaranteed for the derived fixed-point problem. Similarly, one can

show for which choices of Q̇R, respectively Q̇C , there exists no fixed point with physical

meaning and thus no solution of the MESH system. The possibility of excluding a fixed

point provides additional guidelines how the energy should be chosen.

Lemma 4.21. Let n < NF . If

Q̇R ≤ B
(
l(xB)− l(xn+1(s))

)
(4.59)

for all s ∈Mn and in the limiting cases s→ 0 and s→∞ the function ϕn
up has no fixed

point in Mn.

Proof. A way to guarantee that there exists no fixed point is to assure that In ∩Mn = ∅.
Requiring that

sup
s∈Mn

ϕn
up(s) ≤ 0

yields the claim.
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Again, a more general bound on Q̇R can be derived:

Lemma 4.22. Let n < NF . If

Q̇R ≤ Q̇UB1
R (4.60)

with

Q̇UB1
R := B

(
l(xB)− max

x∈FNC

l(x)

)
(4.61)

or alternatively if

Q̇R ≤ Q̇UB2
R (4.62)

with

Q̇UB2
R := B

(
min

x∈FNC

l(x)− max
x∈FNC

l(x)

)
(4.63)

≤ Q̇UB1
R

the function ϕn
up has no fixed point in Mn.

Remark 4.23. Note that it always holds Q̇UB1
R < 0 and Q̇UB2

R < 0. Hence, these bounds

are redundant for our considerations as we have already required Q̇R > 0.

Lemma 4.24. Let n ≥ NF . If

Q̇R ≤ Bl(xB)− Fl(xF ) +Dmnv(yn) +D (1−mn) l(xn+1(s)) (4.64)

or equivalently

Q̇C ≥ D
(
l(xD)−mnv(yn) + (mn − 1) l(xn+1(s))

)
(4.65)

for all s ∈ Mn and in the limiting cases s → Dmn and s → ∞ the function ϕn
up has no

fixed point in Mn.

Proof. Analogous to the proof for a stage below the feed stage.

Again, more general bounds on Q̇R that do no longer depend on xF and xB can be

derived:

Lemma 4.25. Let n ≥ NF . If

Q̇R ≤ Q̇UB1,n
R (4.66)
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with

Q̇UB1,n
R := Bl(xB)− Fl(xF ) +Dmnv(yn) +D (1−mn) max

x∈FNC

l(x) (4.67)

or alternatively if

Q̇R ≤ Q̇UB2,n
R (4.68)

with

Q̇UB2,n
R := B

(
min

x∈FNC

l(x)− max
x∈FNC

l(x)

)
+Dmn

(
min

x∈FNC

v(x)− max
x∈FNC

l(x)

)
(4.69)

≤ Q̇UB1,n
R

the function ϕn
up has no fixed point in Mn.

It is even possible to formulate a similar result independently of the quotient mn:

Lemma 4.26. Let n ≥ NF . If

Q̇R ≤ Q̇UB3,n
R (4.70)

with

Q̇UB3,n
R := Bl(xB)− Fl(xF ) +Dv(yn) (4.71)

or equivalently

Q̇C ≥ D
(
l(xD)− v(yn)

)
(4.72)

for all s ∈ Mn and in the limiting cases s → Dmn and s → ∞ the function ϕn
up has no

fixed point in Mn.

Proof. For the proof we use the fact that

B
(
l(xB)− l(xn+1(s))

)
+D mn︸︷︷︸

≥1

(
v(yn)− l(xn+1(s))︸ ︷︷ ︸

>0

)
+ F

(
l(xn+1(s))− l(xF )

)
≥B
(
l(xB)− l(xn+1(s))

)
+D

(
v(yn)− l(xn+1(s))

)
+ F

(
l(xn+1(s))− l(xF )

)
=Bl(xB)− Fl(xF ) +Dv(yn).
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As argued above, more general bounds can also be derived:

Lemma 4.27. Let n ≥ NF . If

Q̇R ≤ Q̇UB4
R (4.73)

with

Q̇UB4
R := B

(
min

x∈FNC

l(x)− max
x∈FNC

l(x)

)
+D

(
min

x∈FNC

v(x)− max
x∈FNC

l(x)

)
(4.74)

≤ Q̇UB3,n
R

the function ϕn
up has no fixed point in Mn.

As a final result we want to summarize our findings with regard to the existence of no

fixed point for the function ϕn
up:

Theorem 4.28 (Existence of no fixed point of ϕn
up in the interval Mn). For stages n < NF

and strictly positive Q̇R it is not possible to exclude the existence of a fixed point a priori.

For stages n ≥ NF and

Q̇R ≤ Q̇UB4
R ≤ Q̇UB3,n

R , Q̇UB2,n
R ≤ Q̇UB1,n

R (4.75)

there exists no fixed point for the function ϕn
up in the interval Mn.

Remark 4.29. For the sake of completeness we can also state that for n < NF and

0 < Q̇R ≤ Q̇LB1
R ≤ Q̇LB2

R (4.76)

it is neither possible to guarantee nor to exclude the existence of a fixed point. A similar

result can be derived for n ≥ NF and

Q̇UB4
R ≤ Q̇UB3,n

R , Q̇UB2,n
R ≤ Q̇UB1,n

R < Q̇R ≤ Q̇LB1,n
R ≤ Q̇LB2,n

R . (4.77)

The lower and upper bounds on Q̇R in Remark 4.29 for a stage n ≥ NF define intervals

for which we cannot state anything about the existence of a fixed point. However, these

intervals are usually very small. For a stage n ≥ NF it holds

Q̇LB1,n
R − Q̇UB1,n

R = D(mn − 1)

(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)
. (4.78)
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4.3.2. Uniqueness of the fixed point and convergence of the

fixed-point iteration

So far, the existence of a fixed point in the interval In with ϕn
up(In) ⊂ In was discussed. If

one can additionally show that there exists some 0 ≤ q < 1 such that

∣∣(ϕn
up)′(s)

∣∣ ≤ q (4.79)

for all s ∈ In, the fixed point s∗ ∈ In is unique and the sequence (sk)k∈N defined by

sk := ϕn
up(sk−1), k ≥ 1 converges to this fixed point for any s0 ∈ In by application of the

Banach fixed-point theorem.

In a first step we derive an expression for the derivative of ϕn
up:

(ϕn
up)′(s) =

(
ϕn

up(s) +B − F n
up

) ∇l(xn+1(s))(xn+1)′(s)

v(yn)− l(xn+1(s))
. (4.80)

Inserting

(xn+1)′(s) =
1

s+B − F n
up

(
yn − xn+1(s)

)
(4.81)

into Equation (4.80) yields

(ϕn
up)′(s) =

ϕn
up(s) +B − F n

up

s+B − F n
up

· ∇l(x
n+1(s)) (yn − xn+1(s))

v(yn)− l(xn+1(s))
. (4.82)

Before considering the general case we want to discuss three special cases.

Case a) n < NF and B = 0:

It follows that xn+1(s) ≡ yn and

ϕn
up(s) ≡ Q̇R

v(yn)− l(yn)
. (4.83)

From this we can conclude that (ϕn
up)′(s) ≡ 0.

Case b) n ≥ NF and B = F :

Analogously to a) we can conclude that (ϕn
up)′(s) ≡ 0.
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Case c) The asymptotic limiting case Q̇R →∞:

In this case we have

ϕn
up(s) = O(Q̇R) (4.84)

and hence also

inf
s∈Mn

ϕn
up(s) = O(Q̇R) (4.85)

and

sup
s∈Mn

ϕn
up(s) = O(Q̇R). (4.86)

This yields

lim
Q̇R→∞

max
s∈In

∣∣(ϕn
up)′(s)

∣∣ = 0 (4.87)

due to the fact that

lim
Q̇R→∞

max
s∈In

∣∣xn+1
i (s)− yni

∣∣ = 0 for all i = 1, . . . , NC . (4.88)

Theorem 4.30 (Uniqueness of the fixed point for three special cases). In each special

case discussed above (ϕn
up)
′ is bounded by 0, i.e. the Lipschitz constant is 0. Thus, the fixed

point is unique in In and the fixed point is obtained after the first iteration as the function

ϕn
up is a constant function.

Due to continuity reasons we can deduce that in case a) there exists ε > 0 such that

for all B < ε we have that
∣∣(ϕn

up)′(s)
∣∣ ≤ q < 1. Similar results can also be derived for b).

However, for many separation tasks the choice of B is not completely arbitrary and thus

it is not possible to choose B in such a way that a contraction mapping is guaranteed.

The most interesting special case is c) from which we can conclude that we can always get

an arbitrarily small upper bound on (ϕn
up)′, i.e. an arbitrary small Lipschitz constant, by

increasing Q̇R due to the fact that we have (ϕn
up)′(s) ≡ 0 for the asymptotic limiting case.

Note that we have already shown in Section 4.3.1 that the existence of a fixed point can

also be guaranteed by increasing Q̇R. Analogously to the approach in the previous section,

we want to investigate how small the reboiler duty can be chosen in order to be able to

guarantee uniqueness of the fixed point.

We now want to consider the general case and derive bounds on Q̇R such that the

bound
∣∣(ϕn

up)′(s)
∣∣ ≤ q < 1 holds. Once again, we discuss the cases n < NF and n ≥ NF

separately.
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Case 1: n < NF

Here, Equation (4.82) simplifies to

(ϕn
up)′(s) =

ϕn
up(s) +B

s+B
· ∇l(x

n+1(s)) (yn − xn+1(s))

v(yn)− l(xn+1(s))
. (4.89)

We assume B > 0 as we have already discussed B = 0 in case a) and furthermore we

require Q̇R to be large enough so that ϕn
up maps from In to itself (cf. Lemma 4.13). In

order to bound (4.89) we start by deriving a bound on the first part of (ϕn
up)′:

∣∣∣∣ϕn
up(s) +B

s+B

∣∣∣∣ =
ϕn

up(s) +B

s+B

≤
sups∈Mn

ϕn
up(s) +B

infs∈Mn ϕ
n
up(s) +B

= sup
s∈Mn

(
Q̇R +Bl(xn+1(s))−Bl(xB)

v(yn)− l(xn+1(s))
+B

)

· inf
s∈Mn

(
Q̇R +Bl(xn+1(s))−Bl(xB)

v(yn)− l(xn+1(s))
+B

)−1

= sup
s∈Mn

(
Q̇R +Bv(yn)−Bl(xB)

v(yn)− l(xn+1(s))

)

· inf
s∈Mn

(
Q̇R +Bv(yn)−Bl(xB)

v(yn)− l(xn+1(s))

)−1

≤
minx∈FNC

v(x)−minx∈FNC
l(x)

minx∈FNC
v(x)−maxx∈FNC

l(x)
.

This bound only depends on the physical properties of the multi-component mixture at

pressure p. Obviously, the denominator of the second fraction can be bounded by∣∣∣∣ 1

v(yn)− l(xn+1(s))

∣∣∣∣ ≤ 1

minx∈FNC
v(x)−maxx∈FNC

l(x)
. (4.90)

Using Equation (4.13) we can derive the following expression

yni − xn+1
i (s) =

B

s+B

(
yni − xBi

)
, i = 1, . . . , NC (4.91)

from which we can conclude that
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∣∣yni − xn+1
i (s)

∣∣ =
B

s+B

∣∣yni − xBi ∣∣ , i = 1, . . . , NC . (4.92)

If we additionally require infs∈Mn ϕ
n
up(s) ≥ ĉ ·B > 0 with parameter ĉ > 0 we get

∣∣yni − xn+1
i (s)

∣∣ ≤ 1

ĉ+ 1

∣∣yni − xBi ∣∣ , i = 1, . . . , NC . (4.93)

Lemma 4.31. Let n < NF . If

Q̇R ≥ ĉ ·B
(

max
x∈FNC

v(x)− min
x∈FNC

l(x)

)
+B

(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)
(4.94)

≥ ĉ ·B
(
v(yn)− l(xn+1(s))

)
+B

(
l(xB)− l(xn+1(s))

)
, (4.95)

for all s ∈Mn and in the limiting cases s→ Dmn and s→∞ it holds that infs∈Mn ϕ
n
up(s) ≥

ĉ ·B > 0.

The following computations yield a bound for the remaining nominator:

∣∣∇l(xn+1(s))
(
yn − xn+1(s)

)∣∣ (4.96)

=

∣∣∣∣∣
NC∑
i=1

∂l

∂xi
(xn+1(s))(yni − xn+1

i (s))

∣∣∣∣∣ (4.97)

=

∣∣∣∣∣
NC∑
i=2

( ∂l
∂xi

(xn+1(s))− ∂l

∂x1

(xn+1(s))
)

(yni − xn+1
i (s))

∣∣∣∣∣ (4.98)

using the fact that

yn1 − xn+1
1 (s) = −

NC∑
i=2

(yni − xn+1
i (s)). (4.99)

Triangle inequality gives us∣∣∣∣∣
NC∑
i=2

( ∂l
∂xi

(xn+1(s))− ∂l

∂x1

(xn+1(s))
)

(yni − xn+1
i (s))

∣∣∣∣∣ (4.100)

≤
NC∑
i=2

∣∣∣ ∂l
∂xi

(xn+1(s))− ∂l

∂x1

(xn+1(s))
∣∣∣ ∣∣yni − xn+1

i (s)
∣∣ (4.101)

≤ max
1≤i<j≤NC

∣∣∣ ∂l
∂xi

(xn+1(s))− ∂l

∂xj
(xn+1(s))

∣∣∣ NC∑
i=2

∣∣yni − xn+1
i (s)

∣∣ . (4.102)
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Inserting (4.93) into (4.102) and taking the maximum over all x ∈ FNC
yields

∣∣∇l(xn+1(s))
(
yn − xn+1(s)

)∣∣ (4.103)

≤ 1

ĉ+ 1
max

1≤i<j≤NC

max
x∈FNC

∣∣∣ ∂l
∂xi

(x)− ∂l

∂xj
(x)
∣∣∣ NC∑
i=2

∣∣yni − xBi ∣∣ . (4.104)

For the considered system a bound for the term

max
1≤i<j≤NC

max
x∈FNC

∣∣∣ ∂l
∂xi

(x)− ∂l

∂xj
(x)
∣∣∣ (4.105)

can be obtained from a preprocessing step.

The derived upper bound in Equation (4.104) does no longer depend on the fixed-point

variable s. In order to get an upper bound that is even independent of the concentration

vectors xB and yn we can use the rather cautious bound

NC∑
i=1

∣∣yni − xBi ∣∣ ≤ 2 (4.106)

which can be proven by using the summation equation for yn and xB. These results can

be summarized in the following lemma:

Lemma 4.32. Let n < NF and

Q̇R > Q̇LB1,n,unique
R or Q̇R > Q̇LB2,unique

R (4.107)

with

Q̇LB1,n,unique
R := ĉ ·B

(
v(yn)− min

x∈FNC

l(x)

)
+B

(
l(xB)− min

x∈FNC

l(x)

)
≥ Q̇LB1

R

(4.108)

and

Q̇LB2,unique
R := ĉ ·B

(
max
x∈FNC

v(x)− min
x∈FNC

l(x)

)
+B

(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)
≥ Q̇LB2

R .

(4.109)
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Then it holds that

∣∣(ϕn
up)
′(s)
∣∣ =

∣∣∣∣ϕn
up(s) +B

s+B
· ∇l(x

n+1(s)) (yn − xn+1(s))

v(yn)− l(xn+1(s))

∣∣∣∣
≤

minx∈FNC
v(x)−minx∈FNC

l(x)(
minx∈FNC

v(x)−maxx∈FNC
l(x)

)2

· 2

ĉ+ 1
max

1≤i<j≤NC

max
x∈FNC

∣∣∣ ∂l
∂xi

(x)− ∂l

∂xj
(x)
∣∣∣

=: q(ĉ).

(4.110)

This bound only depends on ĉ and the physical properties of the multi-component mixture

at pressure p. The value for ĉ can always be chosen in such a way that
∣∣(ϕn

up)′(s)
∣∣ ≤ q(ĉ) < 1.

This leads to the following result:

Theorem 4.33 (Uniqueness of the fixed point for stages n < NF ). Let n < NF and

Q̇R > Q̇LB1,n,unique
R or Q̇R > Q̇LB2,unique

R .

If ĉ is chosen in a way that
∣∣(ϕn

up)
′(s)
∣∣ ≤ q(ĉ) < 1 there exists a unique fixed point in In

and convergence of the sequence (sk)k∈N defined by sk := ϕn
up(sk−1) towards this fixed point

is guaranteed for any s0 ∈ In.

The fixed-point iteration thus has guaranteed convergence if Q̇R is chosen above the

derived limits Q̇LB1,n,unique
R or Q̇LB2,unique

R . Both limits depend on the choice of B, ĉ and the

physical properties of the considered system at pressure p, and evaluation of Q̇LB1,n,unique
R

additionally requires knowledge of the composition vectors yn and xB.

Note that the function q(ĉ) only serves as an upper bound for the actual Lipschitz

constant for (ϕn
up)′ based on the physical properties of the considered system at pressure p.

In case more information about the choice of process variables is known, it is also possible

to evaluate the Lipschitz constant more precisely. Appropriate numerical examples are

discussed in Section 4.4.

For completeness, we also want to discuss the second case.

Case 2: n ≥ NF

In this case, Equation (4.82) simplifies to
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(ϕn
up)′(s) =

ϕn
up(s)−D
s−D

· ∇l(x
n+1(s)) (yn − xn+1(s))

v(yn)− l(xn+1(s))
. (4.111)

Analogously to case 1, we assume D > 0 as we have already discussed D = 0 in case b)

and furthermore we require Q̇R to be large enough so that ϕn
up maps from In to itself (cf.

Lemma 4.15). In order to bound (4.111) we start by deriving a bound on the first part of

(ϕn
up)′:

∣∣∣∣ϕn
up(s)−D
s−D

∣∣∣∣ =
ϕn

up(s)−D
s−D

≤
sups∈Mn

ϕn
up(s)−D

infs∈Mn ϕ
n
up(s)−D

= sup
s∈Mn

(
Q̇R + Fl(xF )−Dl(xn+1(s))−Bl(xB)

v(yn)− l(xn+1(s))
−D

)

· inf
s∈Mn

(
Q̇R + Fl(xF )−Dl(xn+1(s))−Bl(xB)

v(yn)− l(xn+1(s))
−D

)−1

= sup
s∈Mn

(
Q̇R + Fl(xF )−Dv(yn)−Bl(xB)

v(yn)− l(xn+1(s))

)

· inf
s∈Mn

(
Q̇R + Fl(xF )−Dv(yn)−Bl(xB)

v(yn)− l(xn+1(s))

)−1

≤
minx∈FNC

v(x)−minx∈FNC
l(x)

minx∈FNC
v(x)−maxx∈FNC

l(x)
.

Furthermore, it holds:∣∣∣∣ 1

v(yn)− l(xn+1(s))

∣∣∣∣ ≤ 1

minx∈FNC
v(x)−maxx∈FNC

l(x)
. (4.112)

Using Equation (4.13) the following expression can be derived

yni − xn+1
i (s) =

D

s−D
(
xDi − yni

)
, i = 1, . . . , NC (4.113)

from which we can conclude

∣∣yni − xn+1
i (s)

∣∣ =
D

s−D
∣∣yni − xDi ∣∣ , i = 1, . . . , NC . (4.114)
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If we use this result and additionally require infs∈Mn ϕ
n
up(s) ≥ c̃ · D > 0 where we

introduce the parameter c̃ > 1 we get

∣∣yni − xn+1
i (s)

∣∣ ≤ 1

c̃− 1

∣∣yni − xDi ∣∣ , i = 1, . . . , NC . (4.115)

From the following result it is possible to deduce under which conditions it holds that

infs∈Mn ϕ
n
up(s) ≥ c̃ ·D > 0:

Lemma 4.34. Let n ≥ NF . If

Q̇R ≥ B

(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)
+Dc̃

(
max
x∈FNC

v(x)− min
x∈FNC

l(x)

)
≥ Bl(xB)− Fl(xF ) +Dmnv(yn) +D (1− c̃) min

x∈FNC

l(x)

for all s ∈Mn and in the limiting cases s→ Dmn and s→∞ it holds that infs∈Mn ϕ
n
up(s) ≥

c̃ ·D > 0.

Along the same lines as for the case n < NF we can proceed and summarize the final

result:

Lemma 4.35. Let n ≥ NF and

Q̇R > Q̇LB1,n,unique
R or Q̇R > Q̇LB2,n,unique

R (4.116)

with

Q̇LB1,n,unique
R := Bl(xB)− Fl(xF ) +Dmax (c̃, mn) v(yn)

+D (1−max (c̃, mn)) max
x∈FNC

l(x)

≥ Q̇LB1,n
R

(4.117)

and

Q̇LB2,n,unique
R := B

(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)
+Dmax (c̃, mn) ·

(
max
x∈FNC

v(x)− min
x∈FNC

l(x)

)
≥ Q̇LB2,n

R .

(4.118)
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Then it holds that

∣∣(ϕn
up)
′(s)
∣∣ =

∣∣∣∣ϕn
up(s)−D
s−D

· ∇l(x
n+1(s)) (yn − xn+1(s))

v(yn)− l(xn+1(s))

∣∣∣∣
≤

minx∈FNC
v(x)−minx∈FNC

l(x)(
minx∈FNC

v(x)−maxx∈FNC
l(x)

)2

· 2

c̃− 1
max

1≤i<j≤NC

max
x∈FNC

∣∣∣ ∂l
∂xi

(x)− ∂l

∂xj
(x)
∣∣∣

=: q(c̃).

(4.119)

The bound in (4.119) only depends on the parameter c̃ and the physical properties of

the multi-component mixture at given pressure p and again the value for c̃ can always be

chosen in such a way that
∣∣(ϕn

up)′(s)
∣∣ ≤ q(c̃) < 1. In summary we can conclude:

Theorem 4.36 (Uniqueness of the fixed point for stages n ≥ NF ). Let n ≥ NF and

Q̇R > Q̇LB1,n,unique
R or Q̇R > Q̇LB2,n,unique

R .

If c̃ is chosen in a way that
∣∣(ϕn

up)
′(s)
∣∣ ≤ q(c̃) < 1 there exists a unique fixed point in In

and convergence of the sequence (sk)k∈N defined by sk := ϕn
up(sk−1) towards this fixed point

is guaranteed for any s0 ∈ In.

The fixed-point iteration thus has guaranteed convergence if Q̇R is chosen above the

limits Q̇LB1,n,unique
R or Q̇LB2,n,unique

R . Both limits depend on the choice of F , B, i.e. also D,

the current value for mn, the physical properties of the considered system at pressure p,

and the parameter c̃. In addition, Q̇LB1,n,unique
R requires the knowledge of the composition

vectors xB, xF , and yn. As indicated in Lemma 4.35, the energy bounds that guarantee

uniqueness of the fixed point might be more restrictive than those energy bounds that

only guarantee the existence of at least one fixed point.

As in case 1, the bound q(c̃) on the Lipschitz constant only depends on c̃ and the

physical properties of the considered system at pressure p. The more information given on

the choice of process variables, the more precisely the Lipschitz constant can be evaluated

and numerical studies are presented in Section 4.4.

Remark 4.37. In case we have NC ≤ 3 the factor 2 in (4.110) and (4.119) can be replaced

by 1.
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4. Stage-to-stage calculations of simple distillation columns

4.3.3. Rate of convergence

In this section, the rate of convergence of the corresponding fixed-point iteration is

considered. In case the parameter ĉ, or c̃ respectively, is chosen in such a way that∣∣(ϕn
up)′(s)

∣∣ ≤ q < 1 we know that the fixed-point iteration converges at least linearly. The

question is now, whether higher order convergence can also be proven. We can state the

following result:

Theorem 4.38 (Rate of convergence). The rate of convergence for the considered fixed-

point iteration of the function ϕn
up is generally linear.

Proof. A necessary condition for convergence of order p ≥ 2 is that for a fixed point s∗ it

holds:

(ϕn
up)(k)(s∗) = 0 for all k = 1, . . . , p− 1. (4.120)

In the fixed point s∗ we have

(ϕn
up)′(s∗) =

∇l(xn+1(s∗)) (yn − xn+1(s∗))

v(yn)− l(xn+1(s∗))
. (4.121)

Hence, the derivative in the fixed point equals zero iff

∇l(xn+1(s∗))
(
yn − xn+1(s∗)

)
= 0, (4.122)

which is in general not the case and thus the rate of convergence is linear.

However, the actual Lipschitz constant is in general very small and the derived bound

on (ϕn
up)′ can be shown to be strictly smaller than 1 for suitable Q̇R. This bound can

be evaluated if only very basic information on the choice of variables is given and is

quite pessimistic, which is especially due to the fact that we bound the differences of the

composition vectors xB and yn, or yn and xD respectively, in the general case by 2.

4.4. A numerical example

In this section, we illustrate the theoretical results derived in this chapter with a numerical

example. First, an example separation problem is introduced. Based on this problem

it is possible to state minimal energy requirements that guarantee existence of a fixed
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point and convergence towards this fixed point. Furthermore, we investigate the speed of

convergence of the fixed-point iteration and determine the number of stages needed for

the desired separation as well as the minimum energy needed.

4.4.1. Example separation problem

A binary mixture of acetone (AC) and chloroform (CF) is considered which exhibits a

heavy-boiling azeotrope at

xAzeo
AC = 0.3454 mol/mol (4.123)

for 1 bar. The physical property models used for the calculation including enthalpy data

needed to derive the energy bounds are given in Appendix A.2. We specify the pressure

p, the molar flow rate F and composition xF of the feed, the molar flow rate B and

composition xB of the bottom product, the reboiler duty Q̇R, and the feed stage NF . The

parameters used in this example are given in Table 4.1.

Table 4.1.: Parameters used for stage-to-stage calculations of a distillation column for a
binary mixture of acetone (AC) and chloroform (CF).

Parameter Value
p / bar 1
F / (kmol/h) 1
xF / (mol/mol) 0.5 AC

0.5 CF
B / (kmol/h) 0.76
xB / (mol/mol) 0.35 AC

0.65 CF

Q̇R / kW 25
NF 30

Using the overall material balance for the parameters in Table 4.1 we obtain the molar

flow rate D = 0.24 kmol/h, and composition xDAC = 0.975 mol/mol, xDCF = 0.025 mol/mol

of the distillate. In this example, 0.975 mol/mol acetone is required as minimum purity of

the distillate.
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4. Stage-to-stage calculations of simple distillation columns

4.4.2. Energy bounds derived with the Banach fixed-point theorem

The energy bounds that have been derived in Section 4.3 can be applied to verify that the

choice of Q̇R in Table 4.1 enables upward calculation of the column. Again we consider

the two different cases n < NF and n ≥ NF .

In a first step we want to evaluate the energy bounds for an arbitrary stage n < NF .

Using the parameters from Table 4.1 we obtain using Equation (4.43)

Q̇LB1
R = 0.1431 kW (4.124)

and in case xB is not known we get using Equation (4.45)

Q̇LB2
R = 0.1477 kW. (4.125)

Note that in this exemplary case we need a very small reboiler duty in order to be able to

proceed upward the column for stages below the feed stage. The lower bounds derived in

Section 4.3.1 are negative and therefore not evaluated here. The physically relevant lower

bound is Q̇R > 0 kW.

Additionally, it is also possible to evaluate Q̇LB1,n,unique
R and Q̇LB2,unique

R for n < NF . For

that purpose, the parameter ĉ has to be chosen in an appropriate way such that q(ĉ) < 1.

In order to determine ĉ, the function q(ĉ) (cf. Equation (4.110)) is plotted in Figure 4.2

for the system acetone and chloroform at 1 bar.
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Figure 4.2.: Function q(ĉ) is plotted for the system acetone and chloroform at 1 bar. The
dotted horizontal line at q(ĉ) = 1 indicates for which values of ĉ we can be
sure to have a derivative which can be bounded by q(ĉ) < 1. The critical
bound is the lower bound 0 as the function decreases for increasing ĉ as shown
here for the exemplary interval [0; 2].

From Figure 4.2 we can conclude that for each ĉ > 0 we can guarantee q(ĉ) < 1 which

in turn gives uniqueness of the fixed point and convergence of the fixed-point iteration.

With this information and by using Equation (4.108) and (4.109) we immediately get:

Q̇LB1,n,unique
R = Q̇LB1

R (4.126)

and

Q̇LB2,unique
R = Q̇LB2

R . (4.127)

In a next step, we observe how the bounds change for a stage n ≥ NF .

In the binary separation problem introduced above, the mole fraction of acetone in

the vapor phase increases monotonously from stage to stage whereas the mole fraction of

chloroform decreases for suitable choices of the reboiler duty due to the different boiling

points. However, if the reboiler duty is chosen too small we obtain solutions that are only

mathematically but not physically feasible as presented in a later example. For a feasible
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4. Stage-to-stage calculations of simple distillation columns

column it holds

xDAC

ynAC

≥ 1 and
xDCF

ynCF

≤ 1 for all n = 1, . . . , NS, (4.128)

where xD = yNS . The parameter mn = maxi=1,...,NC

(
xD
i

yni

)
attains its maximum at

component i = AC and as the mole fraction of acetone increases for increasing n, mn takes

its largest and thus most restrictive value on stage n = 1:

mn ≤ m1 =
xDAC

y1
AC

= 2.774 (4.129)

for all n ≥ NF and y1
AC = 0.3515 mol/mol, where y1 is calculated from xB and p by using

the extended Raoult’s law (cf. Appendix A.2).

By inserting the worst case values of mn (cf. Equation (4.129)) and the vapor enthalpy

of yn (cf. Table A.6) we obtain general bounds for all stages n ≥ NF of the column. Using

the parameters from Table 4.1 in Equation (4.51) we can conclude that

Q̇LB1,n
R ≤ 5.502 kW for all n ≥ NF (4.130)

and in case the composition vectors xF and xB are not known we still obtain

Q̇LB2,n
R ≤ 5.697 kW for all n ≥ NF (4.131)

using Equation (4.53).

The above bounds are derived without knowing the exact values for yn and mn. Fur-

thermore, we can also calculate values for Q̇UB3,n
R and Q̇UB4

R using Equation (4.71) and

(4.74) based on the parameters from Table 4.1. We get

Q̇UB3,n
R ≥ 1.927 kW for all n ≥ NF (4.132)

and

Q̇UB4
R = 1.779 kW (4.133)

if the composition vectors xF and xB are not known.

For choices of Q̇R below the above bounds Q̇UB3,n
R and Q̇UB4

R there exists no fixed point

for a stage n ≥ NF and hence it is not possible to proceed upward the column. In order

to calculate the remaining bounds Q̇UB1,n
R and Q̇UB2,n

R , values for yn and mn also have to

be known.
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The energy bounds derived so far are visualized in Figure 4.3. For values of Q̇R chosen

between Q̇UB3,n
R and Q̇LB1,n

R it is not clear whether a fixed point exists or not.

unclearno solution solution

Q̇UB4
R Q̇UB3,n

R

0 kW 4 kW 8 kW

Q̇LB1,n
R Q̇LB2,n

R

Figure 4.3.: Schematic visualization of the energy bounds that can be derived with the
bound in Equation (4.129) and the parameters given in Table 4.1 but without
knowing yn.

In a next step, one certain stage n ≥ NF is considered for which yn is supposed to

be given. In this exemplary case, we assume ynAC = 0.6 mol/mol. This gives mn = 1.625.

Based on these values and the parameters in Table 4.1 we can again evaluate the bounds

Q̇LB1,n
R , Q̇LB2,n

R , and Q̇UB1,n
R – Q̇UB4

R derived in Section 4.3. The results are given in

Table 4.2.

In order to be able to evaluate Q̇LB1,n,unique
R and Q̇LB2,n,unique

R we need information about

an appropriate choice of c̃. For that purpose, the function q(c̃) (cf. Equation (4.119)) is

plotted in Figure 4.4 for the system acetone and chloroform at 1 bar.
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Figure 4.4.: Function q(c̃) is plotted for the system acetone and chloroform at 1 bar. The
dotted horizontal line at q(c̃) = 1 indicates for which values of c̃ we can be
sure to have a derivative which can be bounded by q(c̃) < 1.

From Figure 4.4 we can conclude that c̃ ≈ 1.09 suffices in order to guarantee q(c̃) < 1

which gives us uniqueness of the fixed point and convergence of the fixed-point iteration.

With this choice of c̃ it is now possible to determine the two remaining energy bounds. In

this exemplary case, we have

max(c̃, mn) ≤ max(c̃, m1) = m1 for all n ≥ NF (4.134)

and thus the energy bounds that guarantee uniqueness are not more restrictive than the

bounds that guarantee existence of a fixed point, cf. Table 4.2 and Figure 4.5. Note

that in this special case, where all information for the computation of Q̇LB1,n
R and Q̇UB1,n

R

is available, the gap between Q̇LB1,n
R and Q̇UB1,n

R , where we can neither guarantee, nor

exclude a fixed point, becomes very small. For the value of Q̇R chosen in Table 4.1 a

fixed point exists and stage-to-stage calculation of the column is possible with guaranteed

convergence of the fixed-point iteration.
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Table 4.2.: Energy bounds exemplarily evaluated for ynAC = 0.6 mol/mol and the parame-
ters given in Table 4.1.

Bound Value / kW

Q̇LB2,n
R = Q̇LB2,n,unique

R 3.399

Q̇LB1,n
R = Q̇LB1,n,unique

R 3.201

Q̇UB1,n
R 3.172

Q̇UB2,n
R 2.983

Q̇UB3,n
R 1.952

Q̇UB4
R 1.779

solutionno solution
unclear

Q̇UB4
R

Q̇UB3
R

Q̇UB2
R

Q̇UB1
R

0 kW 5 kW

Q̇LB1
R

Q̇LB2
R

Figure 4.5.: Schematic visualization of the energy bounds for ynAC = 0.6 mol/mol, mn =
1.625 and the parameters given in Table 4.1.

The energy bounds given in Table 4.2 can be graphically verified by plotting the function

ϕn
up(s) =

Q̇R + Fl(xF ) + (B − F )l(xn+1(s))−Bl(xB)

v(yn)− l(xn+1(s))
(4.135)

for the parameters given in Table 4.1 and inserting Q̇LB1,n
R = 3.201 kW or Q̇UB1,n

R =

3.172 kW in the above function as reboiler duty. We expect that for Q̇LB1,n
R the function

ϕn
up(s) intersects with the function f(s) = s, i.e. there exists a fixed point. The converse

holds for Q̇UB1,n
R . Here, we expect that there exists no intersection between ϕn

up(s) and

f(s) = s and thus also no fixed point. The result, which approves this behavior, is depicted

in Figure 4.6 and 4.7 where the region of interest (Dmn; 0.4) = (0.39; 0.4) on the x-axis is

enlarged.

79



4. Stage-to-stage calculations of simple distillation columns

0.390 0.392 0.394 0.396 0.398 0.400

0.390

0.392

0.394

0.396

0.398

0.400

s

ϕ
n u

p
(s

)

Figure 4.6.: ϕn
up is plotted for the region of interest (Dmn; 0.4) = (0.39; 0.4). The dotted

line represents the function f(s) = s. We used Q̇LB1,n
R = 3.201 kW, ynAC =

0.6 mol/mol, mn = 1.625 and the parameters given in Table 4.1.
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Figure 4.7.: ϕn
up is plotted for the region of interest (Dmn; 0.4) = (0.39; 0.4). The dotted

line represents the function f(s) = s. We used Q̇UB1,n
R = 3.172 kW, ynAC =

0.6 mol/mol, mn = 1.625 and the parameters given in Table 4.1.
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4.4.3. Number of stages needed for the desired separation

For the parameters in Table 4.1 we can also determine the minimum number of stages

needed for the desired separation. Stage-to-stage calculations are terminated if the mole

fraction of acetone in the liquid phase exceeds 0.975 mol/mol. In this binary example 42

stages are required. The result is depicted in Figure 4.8.
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Figure 4.8.: Column profile depicted as green circles in a McCabe-Thiele plot (McCabe
& Thiele, 1925) for the example in Table 4.1, Q̇R = 25 kW. The large black
circle depicts the azeotrope of the binary system and the vertical line on the
right indicates the desired acetone purity in the distillate.

4.4.4. Speed of convergence of the fixed-point iteration

As mentioned above, the transition from one stage to the next is conducted via solution of

a fixed-point problem. The rate of convergence is generally linear as shown in Section 4.3.3.

Nevertheless, the fixed-point iteration converges very fast due to a small Lipschitz constant.

For the parameters in Table 4.1 and a stage n < NF only two fixed-point iterations are

needed for the transition from stage 1 to stage 2 in order to obtain |sk+1 − sk| < 10−6. The

iteration values are depicted in Table 4.3. The starting value s0 is chosen to be 100 ∈M1
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in this example. Note that for practical purposes it is easier to choose s0 ∈ M1 than to

choose s0 ∈ I1 due to the fact that further investigations are needed in order to determine

the exact interval boundaries of I1. However, choosing s0 ∈M1 guarantees s1 ∈ I1.

Table 4.3.: Iteration steps for the transition from stage 1 to stage 2 of a distillation column
until it holds |sk+1 − sk| < 10−6. Parameter values can be obtained from
Table 4.1.

Iteration Value
s0 100
s1 3.071837
s2 3.071834

In order to illustrate the speed of convergence for a stage n < NF , the function

ϕ1
up(s) =

Q̇R +Bl(x2(s))−Bl(xB)

v(y1)− l(x2(s))
(4.136)

is plotted for the parameters in Table 4.1 over the set (0; 110) ⊂M1 = (0;∞) in Figure 4.9

and in an enlarged region around the fixed point in Figure 4.10. The iterations for s are

depicted as vertical dashed lines and labeled accordingly. The figures show that the range

of ϕ1
up is extremely small. This is a typical characteristic of the function ϕn

up, independently

of the current stage n and the considered multi-component mixture and as a consequence

the corresponding fixed-point iteration converges very fast.
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Figure 4.9.: Function ϕ1
up plotted for parameters in Table 4.1. The vertical dashed lines

depict iteration s0 and s1.
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Figure 4.10.: Function ϕ1
up plotted for parameters in Table 4.1. The vertical dashed lines

depict iteration s1 and s2 and the dotted line depicts the function f(s) = s.

In this exemplary study, we can also plot (ϕ1
up)′ over the set (0; 10) ⊂M1 = (0;∞). The

result is depicted in Figure 4.11 and from this figure we can conclude that the Lipschitz

constant is in the order of magnitude 10−5 for the function ϕ1
up.
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Figure 4.11.: Function (ϕ1
up)′ plotted for parameters in Table 4.1.

In a second example for a stage n ≥ NF , three fixed-point iterations are needed for

the transition from stage n to stage n + 1 in order to obtain |sk+1 − sk| < 10−6 where

once again we assume ynAC = 0.6 mol/mol. The iterations are depicted in Table 4.4 with

starting value s0 chosen to be 100 ∈Mn.

Table 4.4.: Iteration steps for the transition from stage n to stage n+1 of a distillation
column until it holds |sk+1 − sk| < 10−6. Parameter values can be obtained
from Table 4.1 and ynAC = 0.6 mol/mol.

Iteration Value
s0 100
s1 3.065025
s2 3.067851
s3 3.067848

For the second example, we also plot the function

ϕn
up(s) =

Q̇R + Fl(xF ) + (B − F )l(xn+1(s))−Bl(xB)

v(yn)− l(xn+1(s))
(4.137)
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for the parameters in Table 4.1 over the set (0.39; 110) ⊂Mn = (Dmn;∞) = (0.39;∞) in

Figure 4.12 and in an enlarged region around the fixed point in Figure 4.13. The iterations

for s are depicted as vertical dashed lines and labeled accordingly. The range of ϕn
up again

is very small.
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Figure 4.12.: Function ϕn
up plotted for parameters in Table 4.1 and ynAC = 0.6 mol/mol.

The vertical dashed lines depict iteration s0 and s1.
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Figure 4.13.: Function ϕn
up plotted for parameters in Table 4.1 and ynAC = 0.6 mol/mol.

The vertical dashed lines depict iteration s2 and s3 and the dotted line depicts
the function f(s) = s.

Again, we can also plot (ϕn
up)′ over the set (0.39; 10) ⊂ Mn = (Dmn;∞) = (0.39;∞).

The result is depicted in Figure 4.14 and we can conclude that the Lipschitz constant is

strictly smaller than 1 for the function ϕn
up.

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

s

(ϕ
n u

p
)′

(s
)

Figure 4.14.: Function (ϕn
up)′ plotted for parameters in Table 4.1 and ynAC = 0.6 mol/mol.
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In Section 4.4.3 it was shown that 42 stages are needed to obtain a distillate with

acetone purity greater than 0.975 mol/mol for stage-to-stage calculations based on the

input variables given in Table 4.1. In Figure 4.15 the number of iterations steps that are

needed in this example for the transition from stage n to stage n + 1 for n = 1, . . . , 41

are depicted. In the majority of all cases, only two iterations are needed and for a small

number of transitions three iterations are conducted.
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Figure 4.15.: Number of fixed-point iterations needed until a desired accuracy of 10−6 is
reached, plotted as a function of the stage number n for which the transition
to stage n+ 1 is computed.

Clearly, the convergence properties of the fixed-point iteration, in general, depend on

the considered example system. This means, that the Lipschitz constant could also be

significantly larger and, hence, more iterations would be required. However, all example

systems investigated so far have shown similar convergence properties as the example

system presented here.

4.4.5. Minimum energy needed for the desired separation

Applying the McCabe-Thiele method (McCabe & Thiele, 1925) under the assumption of

CMO to this binary example, the minimum energy that is needed in order to obtain the

desired acetone purity in the distillate, using an infinite number of stages, is determined

to be

Q̇R,min = 17.35 kW. (4.138)
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Comparing this result with the energy bounds derived in Table 4.2 we conclude that

stage-to-stage calculations can be conducted for all physically relevant Q̇R due to the fact

that Q̇R,min is significantly larger than the energy bounds in Table 4.2 that guarantee

existence and uniqueness of the fixed point. Hence, the presented approach can also be

used in order to determine Q̇R,min. For that purpose we start stage-to-stage calculations

at the bottom of the column and proceed without incorporating the feed stream until

the composition vector in the liquid phase from one stage to the next changes less than

some given threshold (here: 10−6). Then we assume that we are in a pinch point. Now

the feed stream is included in stage-to-stage calculations and we proceed until the desired

acetone purity of 0.975 mol/mol in the liquid phase is obtained. For the subsequent

numerical experiments the values for p, F , xF , B, and xB are taken from Table 4.1. In a

first experiment we choose Q̇R = 17.45 kW > Q̇R,min. The column profile is depicted in

Figure 4.16. A huge number of stages is needed to come from the bottom composition

to the feed pinch. However, we can verify that this energy suffices in order to obtain the

desired separation in a total of 316 stages.
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Figure 4.16.: Column profile depicted as green circles in a McCabe-Thiele plot for the
example in Table 4.1, Q̇R = 17.45 kW and the feed placed at the pinch. The
large black circle depicts the azeotrope of the binary system and the vertical
line on the right indicates the desired acetone purity in the distillate.
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In a next example, we choose Q̇R = 17.25 kW < Q̇R,min. The column profile is depicted

in Figure 4.17. Again, a huge number of stages is needed to reach the feed pinch. However,

the energy in this example does not suffice in order to obtain the desired separation. When

incorporating the feed stream, the mole fraction of acetone in the column starts decreasing

again using stage-to-stage calculations. Thus, the specified parameters are not feasible.
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Figure 4.17.: Column profile depicted as green circles in a McCabe-Thiele plot for the
example in Table 4.1, Q̇R = 17.25 kW and the feed placed at the pinch. The
large black circle depicts the azeotrope of the binary system and the vertical
line on the right indicates the desired acetone purity in the distillate.
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CHAPTER 5

Stage-to-stage calculations of general distillation columns

As an extension to Chapter 4, we consider in this chapter stage-to-stage calculations of

distillation columns with an arbitrary number of feed streams and side-draws. Analogously

to the approach for simple columns, the MESH equations are reformulated and the

transition from one stage to the next is conducted via solution of a fixed-point problem.

By applying the Banach fixed-point theorem we can derive lower bounds on the energy

that guarantee the existence of a fixed point and convergence of the fixed-point iteration

in this general case.

5.1. System of equations

In the following, distillation columns with fs ≥ 1 feed streams and sd ≥ 1 side-draws are

considered. The feed streams enter the column on stages NF1 ≤ . . . ≤ NFfs
with given

molar flow rates Fk and composition vectors xFk for k = 1, . . . , fs. Furthermore, all feed

streams are assumed to be liquid boiling with pressure p. The side-draws leave the column

liquid boiling on stages NS1 ≤ . . . ≤ NSsd
with given molar flow rates Sl, compositions xSl

for l = 1, . . . , sd, and pressure p.

For a control volume that comprises the lower part of a the distillation column and the

reboiler up to a certain stage n the following total material balance holds:
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5. Stage-to-stage calculations of general distillation columns

kact∑
k=1

Fk + Ln+1 − V n −B −
lact∑
l=1

Sl = 0, (5.1)

where

kact := max {k | n ≥ NFk
} (5.2)

is the number of (active) feed streams that enter the considered control volume and

lact := max {l | n ≥ NSl
} (5.3)

is the number of (active) side-draws that leave the considered control volume.

For the same control volume it is also possible to state the energy balance:

Q̇R +
kact∑
k=1

Fkl(x
Fk) + Ln+1l(xn+1)− V nv(yn)−Bl(xB)−

lact∑
l=1

Sll(x
Sl) = 0. (5.4)

5.2. Derivation of an equivalent fixed-point problem

Again, only the upward calculation of a general distillation column is discussed in detail.

For the following considerations, it is assumed that values for the variables p, B, xB,

and Q̇R are given. Furthermore, the specifications Fk and xFk of the liquid boiling feed

streams on stages NF1 ≤ . . . ≤ NFfs
, and the specifications Sl and xSl of the liquid boiling

side-draws on stages NS1 ≤ . . . ≤ NSsd
are given in order to calculate a column from the

bottom to the top. We assume the following to hold:

Assumption 5.1. The values for B and xB are chosen in such a way that the flow rate

D and the composition xD of the distillate stream, which fulfills the material balance of

the column, should be positive.

In an analogous way as presented in Chapter 4, the MESH equations for the transition

from stage n to stage n + 1 are reformulated as a fixed-point problem of the following

function:
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Definition 5.2 (Fixed-point problem for the transition from stage n to stage n+ 1). For

the transition from state n to stage n+ 1, n = 1, . . . , NS − 1, a fixed point of the function

ϕn
up(s) :=

(
Q̇R +

kact∑
k=1

Fkl(x
Fk) +

(
−

kact∑
k=1

Fk +B +
lact∑
l=1

Sl

)
l(xn+1(s))

−Bl(xB)−
lact∑
l=1

Sll(x
Sl)

)
1

v(yn)− l(xn+1(s))
,

(5.5)

where

xn+1(s) =
1

s−
∑kact

k=1 Fk +B +
∑lact

l=1 Sl

(
syn −

kact∑
k=1

Fkx
Fk +BxB +

lact∑
l=1

Slx
Sl

)
(5.6)

has to be found. Due to the fact that an auxiliary variable s is introduced, the MESH

equations are decoupled and only in a fixed point s∗ of ϕn
up it holds s∗ = V n.

Analogously, a sequence of fixed-point problems for the calculation of a general distillation

column from the condenser downward can be derived.

5.3. Application of the Banach fixed-point theorem

In this section, the Banach fixed-point theorem (cf. Theorem 4.7) is applied to the function

ϕn
up in Equation (5.5) for stage-to-stage calculations of a general distillation column. Using

this theorem, it is possible to determine under which conditions there exists a fixed

point and whether it is unique. In a first step, we discuss the existence of a fixed point.

Conditions that guarantee uniqueness of the fixed point are derived in a second step.

5.3.1. Existence of a fixed point

Similar results as in Section 4.3.1 can be derived for distillation columns with an arbitrary

number of feed streams and side-draws. In this section, most proofs are omitted due to

the fact that they can be conducted in a very similar way as in Section 4.3.1.

Lemma 5.3. If s∗ is a fixed point of ϕn
up it holds

s∗ >

kact∑
k=1

Fk −B −
lact∑
l=1

Sl. (5.7)
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The results given below are derived under the assumption that

kact∑
k=1

Fk −B −
lact∑
l=1

Sl 6= 0. (5.8)

The special case where this assumption does not hold is discussed in a subsequent step.

Lemma 5.4. If s >
∑kact

k=1 Fk −B −
∑lact

l=1 Sl it holds

xn+1
i (s) > 0, i = 1, . . . , NC

iff

s >

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i∑kact

k=1 Fk −B −
∑lact

l=1 Sl

· 1

yni

)
,

i = 1, . . . , NC

≥
kact∑
k=1

Fk −B −
lact∑
l=1

Sl.

For a general distillation column a fixed point with not only mathematical but also

physical meaning can only occur in

Mn :=

(
max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

)
;∞

)
, (5.9)

where mn is defined in the following way:

mn := max
i=1,...,NC

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i∑kact

k=1 Fk −B −
∑lact

l=1 Sl

· 1

yni

)
≥ 1, (5.10)

if

kact∑
k=1

Fk −B −
lact∑
l=1

Sl > 0 (5.11)

and

mn := min
i=1,...,NC

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i∑kact

k=1 Fk −B −
∑lact

l=1 Sl

· 1

yni

)
≤ 1, (5.12)
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if

kact∑
k=1

Fk −B −
lact∑
l=1

Sl < 0. (5.13)

The lower and upper bound in Equation (5.10) and (5.12) for mn can be obtained by using

the fact that

NC∑
i=1

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i∑kact

k=1 Fk −B −
∑lact

l=1 Sl

)
= 1. (5.14)

Lemma 5.5. The function ϕn
up is bounded on Mn.

Lemma 5.6. If

Q̇R >Bl(x
B)−

kact∑
k=1

Fkl(x
Fk) + max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

)
v(yn)

+

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl −max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

))
l(xn+1(s))

+
lact∑
l=1

Sll(x
Sl)

(5.15)

for all s ∈Mn and in the limiting cases s→ max
(

0,
(∑kact

k=1 Fk −B −
∑lact

l=1 Sl

)
mn

)
and

s→∞ it holds that ϕup
n (Mn) ⊂Mn.

It is also possible to derive a more general bound on Q̇R that does no longer depend on

the current iterate at s and the specific compositions of entering feed streams and leaving

side-draws. In order to derive this bound we use the following observation:

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl −max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

))
≤ 0. (5.16)

This leads to a more general bound:

Lemma 5.7. If

Q̇R > Q̇LB1,n
R (5.17)
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with

Q̇LB1,n
R :=Bl(xB)−

kact∑
k=1

Fkl(x
Fk) + max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

)
v(yn)

+

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl −max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

))
min

x∈FNC

l(x)

+
lact∑
l=1

Sll(x
Sl)

(5.18)

or alternatively if

Q̇R > Q̇LB2,n
R (5.19)

with

Q̇LB2,n
R :=

(
B +

lact∑
l=1

Sl

)(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)

+ max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

)(
max
x∈FNC

v(x)− min
x∈FNC

l(x)

)
≥Q̇LB1,n

R

(5.20)

it holds that ϕn
up(Mn) ⊂Mn.

Using the rather technical Lemma 4.17 and Theorem 4.18 the above results can be

summarized in the following way:

Theorem 5.8 (Existence of a fixed point of ϕn
up in the interval In). If

∑kact
k=1 Fk − B −∑lact

l=1 Sl 6= 0 and

Q̇R > Q̇LB2,n
R ≥ Q̇LB1,n

R

it holds that ϕn
up(In) ⊂ In and the existence of at least one fixed point in the closed interval

In can be guaranteed.

It is possible to conclude that Q̇R only has to be chosen large enough in order to

guarantee the existence of a fixed point. So far, we derived conditions that guarantee the

existence of a fixed point in the interval In. However, we also want to derive conditions that

exclude the existence of a fixed point and, thus, can serve as guidelines for an appropriate

choice of variables.
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Lemma 5.9. If

Q̇R ≤Bl(xB)−
kact∑
k=1

Fkl(x
Fk) + max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

)
v(yn)

+

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl −max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

))
l(xn+1(s))

+
lact∑
l=1

Sll(x
Sl)

(5.21)

for all s ∈Mn and in the limiting cases s→ max
(

0,
(∑kact

k=1 Fk −B −
∑lact

l=1 Sl

)
mn

)
and

s→∞ the function ϕup
n has no fixed point in Mn.

The result in Lemma 5.9 can also be formulated in a more general way:

Lemma 5.10. If

Q̇R ≤ Q̇UB1,n
R (5.22)

with

Q̇UB1,n
R :=Bl(xB)−

kact∑
k=1

Fkl(x
Fk) + max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

)
v(yn)

+

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl −max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

))
max
x∈FNC

l(x)

+
lact∑
l=1

Sll(x
Sl)

(5.23)

or alternatively if

Q̇R ≤ Q̇UB2,n
R (5.24)
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with

Q̇UB2,n
R :=

(
B +

lact∑
l=1

Sl

)(
min

x∈FNC

l(x)− max
x∈FNC

l(x)

)

+ max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

)(
min

x∈FNC

v(x)− max
x∈FNC

l(x)

)
≤Q̇UB1,n

R

(5.25)

the function ϕn
up has no fixed point in Mn.

We can summarize our insights in the following theorem:

Theorem 5.11 (Existence of no fixed point of the function ϕn
up in the interval Mn). If∑kact

k=1 Fk −B −
∑lact

l=1 Sl 6= 0 and

Q̇R ≤ Q̇UB1,n
R ≤ Q̇UB2,n

R (5.26)

the function ϕn
up has no fixed point in Mn and if

Q̇UB1,n
R ≤ Q̇UB2,n

R < Q̇R ≤ Q̇LB1,n
R ≤ Q̇LB2,n

R (5.27)

it is neither possible to exclude nor to guarantee a fixed point a priori.

For the sake of completeness we also discuss the case
∑kact

k=1 Fk −B −
∑lact

l=1 Sl = 0.

Lemma 5.12. If s >
∑kact

k=1 Fk −B −
∑lact

l=1 Sl = 0 it holds

xn+1
i (s) > 0, i = 1, . . . , NC

iff

s >

∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i

yni
, i = 1, . . . , NC

≥ 0.

A fixed point with not only mathematical but also physical meaning can only occur in

Mn,0 := (mn,0;∞) , (5.28)
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where mn,0 is defined in the following way:

mn,0 := max
i=1,...,NC

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i

yni

)
≥ 0. (5.29)

The fact that mn,0 ≥ 0 can be obtained by using the following relation:

NC∑
i=1

(
kact∑
k=1

Fkx
Fk
i −BxBi −

lact∑
l=1

Slx
Sl
i

)
= 0. (5.30)

Hence, the above sum consists of at least one non-negative element.

Lemma 5.13. The function ϕn
up is bounded on Mn,0.

Lemma 5.14. If

Q̇R >Bl(x
B)−

kact∑
k=1

Fkl(x
Fk) +

lact∑
l=1

Sll(x
Sl) +mn,0

(
v(yn)− l(xn+1(s))

)
(5.31)

for all s ∈Mn,0 and in the limiting cases s→ mn,0 and s→∞ it holds that ϕup
n (Mn,0) ⊂

Mn,0.

Again, it is also possible to derive a more general bound on Q̇R:

Lemma 5.15. If

Q̇R > Q̇LB1,n,0
R (5.32)

with

Q̇LB1,n,0
R := Bl(xB)−

kact∑
k=1

Fkl(x
Fk) +

lact∑
l=1

Sll(x
Sl) +mn,0

(
v(yn)− min

x∈FNC

l(x)

)
(5.33)

or alternatively if

Q̇R > Q̇LB2,n,0
R (5.34)
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with

Q̇LB2,n,0
R :=

(
B +

lact∑
l=1

Sl

)(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)
(5.35)

+mn,0

(
max
x∈FNC

v(x)− min
x∈FNC

l(x)

)
≥Q̇LB1,n,0

R

it holds that ϕn
up(Mn,0) ⊂Mn,0.

Using the same arguments as in Section 4.3.1 the above results can be summarized in

the following way:

Theorem 5.16 (Existence of a fixed point of ϕn
up in the interval In). If

∑kact
k=1 Fk −B −∑lact

l=1 Sl = 0 and

Q̇R > Q̇LB2,n,0
R ≥ Q̇LB1,n,0

R

it holds that ϕn
up(In) ⊂ In and the existence of at least one fixed point in the closed interval

In can be guaranteed.

On the other hand, bounds on the reboiler duty can be stated below which there exists

no fixed point.

Lemma 5.17. If

Q̇R ≤Bl(xB)−
kact∑
k=1

Fkl(x
Fk) +

lact∑
l=1

Sll(x
Sl) +mn,0

(
v(yn)− l(xn+1(s))

)
(5.36)

for all s ∈ Mn,0 and in the limiting cases s→ mn,0 and s→∞ the function ϕup
n has no

fixed point in Mn,0.

This result can be formulated in a more general way:

Lemma 5.18. If

Q̇R ≤ Q̇UB1,n,0
R (5.37)

with

Q̇UB1,n,0
R := Bl(xB)−

kact∑
k=1

Fkl(x
Fk) +

lact∑
l=1

Sll(x
Sl) +mn,0

(
v(yn)− max

x∈FNC

l(x)

)
(5.38)
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or alternatively if

Q̇R ≤ Q̇UB2,n,0
R (5.39)

with

Q̇UB2,n,0
R :=

(
B +

lact∑
l=1

Sl

)(
min

x∈FNC

l(x)− max
x∈FNC

l(x)

)
(5.40)

+mn,0

(
min

x∈FNC

v(x)− max
x∈FNC

l(x)

)
(5.41)

≤ Q̇UB1,n,0
R

the function ϕn
up has no fixed point in Mn,0.

Last but not least we can state under which condition it is possible to exclude a fixed

point and under which condition we have not enough information to come to a decision

for the special case
∑kact

k=1 Fk −B −
∑lact

l=1 Sl = 0:

Theorem 5.19 (Existence of no fixed point of the function ϕn
up in the interval Mn,0). If∑kact

k=1 Fk −B −
∑lact

l=1 Sl = 0 and

Q̇R ≤ Q̇UB1,n,0
R ≤ Q̇UB2,n,0

R (5.42)

the function ϕn
up has no fixed point in Mn,0 and if

Q̇UB1,n,0
R ≤ Q̇UB2,n,0

R < Q̇R ≤ Q̇LB1,n,0
R ≤ Q̇LB2,n,0

R (5.43)

it is neither possible to exclude nor to guarantee a fixed point a priori.

5.3.2. Uniqueness of the fixed point and convergence of the

fixed-point iteration

In this section, we derive conditions that guarantee the uniqueness of the fixed point and

convergence of the fixed-point iteration. For a general distillation column with an arbitrary

number of feed streams and side-draws the derivative of ϕn
up can be written as

(ϕn
up)′(s) =

ϕn
up(s)−

∑kact
k=1 Fk +B +

∑lact
l=1 Sl

s−
∑kact

k=1 Fk +B +
∑lact

l=1 Sl

· ∇l(x
n+1(s)) (yn − xn+1(s))

v(yn)− l(xn+1(s))
. (5.44)
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As we pay special attention to the asymptotic limiting case Q̇R →∞ throughout this

work, we discuss this special case in a first step. Following the arguments derived in

Section 4.3.2 we can state:

Theorem 5.20 (Uniqueness of the fixed point for Q̇R → ∞). In this special case the

function (ϕn
up)
′ is bounded by 0, i.e. the Lipschitz constant is 0. Thus, the fixed point is

unique in In and the fixed point is obtained after the first iteration as the function ϕn
up is a

constant function.

However, we are also interested in the bounds that guarantee uniqueness of a fixed point

for finite Q̇R. These bounds will be investigated in the remainder of this chapter.

Analogously to the results in Section 4.3.2, a bound for the first part of Equation (5.44)

can be derived:

∣∣∣∣∣ϕn
up(s)−

∑kact
k=1 Fk +B +

∑lact
l=1 Sl

s−
∑kact

k=1 Fk +B +
∑lact

l=1 Sl

∣∣∣∣∣ ≤ minx∈FNC
v(x)−minx∈FNC

l(x)

minx∈FNC
v(x)−maxx∈FNC

l(x)
. (5.45)

Again, we consider the case
∑kact

k=1 Fk −B−
∑lact

l=1 Sl = 0 separately in a subsequent step.

If
∑kact

k=1 Fk −B −
∑lact

l=1 Sl 6= 0 we can derive the following expression:

yni − xn+1
i (s) =

∑kact
k=1 Fk −B −

∑lact
l=1 Sl

s−
∑kact

k=1 Fk +B +
∑lact

l=1 Sl

(5.46)

·

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i∑kact

k=1 Fk −B −
∑lact

l=1 Sl

− yni

)

=

∑kact
k=1 Fk −B −

∑lact
l=1 Sl

s−
∑kact

k=1 Fk +B +
∑lact

l=1 Sl

yni (5.47)

·

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i∑kact

k=1 Fk −B −
∑lact

l=1 Sl

· 1

yni
− 1

)
.

This expression gives a bound for
∣∣yni − xn+1

i (s)
∣∣:

∣∣yni − xn+1
i (s)

∣∣ ≤ ∑kact
k=1 Fk −B −

∑lact
l=1 Sl

s−
∑kact

k=1 Fk +B +
∑lact

l=1 Sl

yni · bn︸ ︷︷ ︸
≥0

, (5.48)
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with

bn := max

{
max

i=1,...,NC

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i∑kact

k=1 Fk −B −
∑lact

l=1 Sl

· 1

yni

)
− 1,

1− min
i=1,...,NC

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i∑kact

k=1 Fk −B −
∑lact

l=1 Sl

· 1

yni

)}
,

(5.49)

if
∑kact

k=1 Fk −B −
∑lact

l=1 Sl > 0 and

bn := max

{
1− max

i=1,...,NC

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i∑kact

k=1 Fk −B −
∑lact

l=1 Sl

· 1

yni

)
,

min
i=1,...,NC

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i∑kact

k=1 Fk −B −
∑lact

l=1 Sl

· 1

yni

)
− 1

}
,

(5.50)

if
∑kact

k=1 Fk −B −
∑lact

l=1 Sl < 0.

The right hand side of Equation (5.48) is positive as it holds(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
bn ≥ 0. (5.51)

Lemma 5.21. Let cn ≥ 1. It holds(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
(cn · bn + 1) ≥

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn. (5.52)

Proof. For the proof we use Equation (5.51) and the fact that cn ≥ 1. If bn 6= 0 we can

conclude (
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
(cn · bn + 1) ≥

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
mn

⇐⇒

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
bn︸ ︷︷ ︸

≥0

(
cn −

≤1︷ ︸︸ ︷
mn − 1

bn

)
︸ ︷︷ ︸

≥0

≥ 0.

If bn = 0, it follows mn = 1 and both sides of Equation (5.52) are identical.
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5. Stage-to-stage calculations of general distillation columns

If we require that infs∈Mn ϕ
up
n (s) ≥

(∑kact
k=1 Fk −B −

∑lact
l=1 Sl

)
(cn · bn + 1), where cn ≥ 1

we obtain the following result:

∣∣yni − xn+1
i (s)

∣∣ ≤ ∑kact
k=1 Fk −B −

∑lact
l=1 Sl(∑kact

k=1 Fk −B −
∑lact

l=1 Sl

)
cn · bn

yni · bn (5.53)

=
1

cn
yni . (5.54)

Along the same lines as in Section 4.3.2 we obtain:

∣∣∇l(xn+1(s))
(
yn − xn+1(s)

)∣∣
=

∣∣∣∣∣
NC∑

i=1,i 6=i0

( ∂l
∂xi

(xn+1(s))− ∂l

∂x1

(xn+1(s))
)

(yni − xn+1
i (s))

∣∣∣∣∣
≤ max

1≤i<j≤NC

∣∣∣ ∂l
∂xi

(xn+1(s))− ∂l

∂xj
(xn+1(s))

∣∣∣ NC∑
i=1,i 6=i0

∣∣yni − xn+1
i (s)

∣∣ ,
where i0 can be arbitrarily chosen from arg maxi=1,...,NC

yni . Using Equation (5.53) we end

up with

∣∣∇l(xn+1(s))
(
yn − xn+1(s)

)∣∣ ≤ max
1≤i<j≤NC

max
x∈FNC

∣∣∣ ∂l
∂xi

(x)− ∂l

∂xj
(x)
∣∣∣ (1− yni0

cn

)
≤ max

1≤i<j≤NC

max
x∈FNC

∣∣∣ ∂l
∂xi

(x)− ∂l

∂xj
(x)
∣∣∣(1− 1

NC

cn

)
.

In summary, we can state the following lemma:

Lemma 5.22. Let

Q̇R > Q̇LB1,n,unique
R or Q̇R > Q̇LB2,unique

R (5.55)

104



5.3. Application of the Banach fixed-point theorem

with

Q̇LB1,n,unique
R := Bl(xB)−

kact∑
k=1

Fkl(x
Fk)+

max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
(cn · bn + 1)

)
v(yn)+(

kact∑
k=1

Fk −B −
lact∑
l=1

Sl −max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
(cn · bn + 1)

))

· min
x∈FNC

l(x) +
lact∑
l=1

Sll(x
Sl)

≥ Q̇LB1,n
R

(5.56)

and

Q̇LB2,n,unique
R :=

(
B +

lact∑
l=1

Sl

)(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)
+

max

(
0,

(
kact∑
k=1

Fk −B −
lact∑
l=1

Sl

)
(cn · bn + 1)

)(
max
x∈FNC

v(x)− min
x∈FNC

l(x)

)
≥ Q̇LB2,n

R .

(5.57)

Then it holds that

|(ϕup
n )′(s)| =

∣∣∣∣∣ϕn
up(s)−

∑kact
k=1 Fk +B +

∑lact
l=1 Sl

s−
∑kact

k=1 Fk +B +
∑lact

l=1 Sl

· ∇l(x
n+1(s)) (yn − xn+1(s))

v(yn)− l(xn+1(s))

∣∣∣∣∣
≤

minx∈FNC
v(x)−minx∈FNC

l(x)(
minx∈FNC

v(x)−maxx∈FNC
l(x)

)2

· max
1≤i<j≤NC

max
x∈FNC

∣∣∣ ∂l
∂xi

(x)− ∂l

∂xj
(x)
∣∣∣(1− 1

NC

cn

)
=:q(cn).

(5.58)
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This bound only depends on cn and the physical properties of the multi-component

mixture at pressure p. The value for cn can always be chosen in such a way that∣∣(ϕn
up)′(s)

∣∣ ≤ q(cn) < 1.

Theorem 5.23 (Uniqueness of the fixed point). Let
∑kact

k=1 Fk −B −
∑lact

l=1 Sl 6= 0 and

Q̇R > Q̇LB1,n,unique
R or Q̇R > Q̇LB2,n,unique

R . (5.59)

If cn is chosen in a way that
∣∣(ϕn

up)
′(s)
∣∣ ≤ q(cn) < 1 there exists a unique fixed point in In

and convergence of the sequence (sk)k∈N defined by sk := ϕn
up(sk−1) towards this fixed point

is guaranteed for any s0 ∈ In.

If
∑kact

k=1 Fk −B −
∑lact

l=1 Sl = 0 we get:

yni − xn+1
i (s) =

1

s
·

(
kact∑
k=1

Fkx
Fk
i −BxBi −

lact∑
l=1

Slx
Sl
i − yni

)
(5.60)

=
yni
s
·

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i

yni

)
. (5.61)

This expression gives a bound for
∣∣yni − xn+1

i (s)
∣∣:

∣∣yni − xn+1
i (s)

∣∣ ≤ yni
s
· bn,0︸ ︷︷ ︸
≥0

, (5.62)

with

bn,0 := max

{
max

i=1,...,NC

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i

yni

)
,

− min
i=1,...,NC

(∑kact
k=1 Fkx

Fk
i −BxBi −

∑lact
l=1 Slx

Sl
i

yni

)}
.

(5.63)

Lemma 5.24. Let cn,0 ≥ 1. It holds

cn,0 · bn,0 ≥ mn,0. (5.64)
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If we require that infs∈Mn,0 ϕ
up
n (s) ≥ cn,0 · bn,0, where cn,0 ≥ 1 we obtain the following

result:

∣∣yni − xn+1
i (s)

∣∣ ≤ 1

cn,0
yni . (5.65)

Along the same lines as before we obtain:

∣∣∇l(xn+1(s))
(
yn − xn+1(s)

)∣∣ ≤ max
1≤i<j≤NC

max
x∈FNC

∣∣∣ ∂l
∂xi

(x)− ∂l

∂xj
(x)
∣∣∣ (1− yni0

cn,0

)
≤ max

1≤i<j≤NC

max
x∈FNC

∣∣∣ ∂l
∂xi

(x)− ∂l

∂xj
(x)
∣∣∣(1− 1

NC

cn,0

)
.

Lemma 5.25. Let

Q̇R > Q̇LB1,n,0,unique
R or Q̇R > Q̇LB2,n,0,unique

R (5.66)

with

Q̇LB1,n,0,unique
R := Bl(xB)−

kact∑
k=1

Fkl(x
Fk) +

lact∑
l=1

Sll(x
Sl) + cn,0 · bn,0

(
v(yn)− min

x∈FNC

l(x)

)
≥ Q̇LB1,n,0

R

(5.67)

and

Q̇LB2,n,0,unique
R :=

(
B +

lact∑
l=1

Sl

)(
max
x∈FNC

l(x)− min
x∈FNC

l(x)

)
+ cn,0 · bn,0

(
max
x∈FNC

v(x)− min
x∈FNC

l(x)

)
≥ Q̇LB2,n,0

R .

(5.68)
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Then it holds that

|(ϕup
n )′(s)| =

∣∣∣∣ϕn
up(s)

s
· ∇l(x

n+1(s)) (yn − xn+1(s))

v(yn)− l(xn+1(s))

∣∣∣∣
≤

minx∈FNC
v(x)−minx∈FNC

l(x)(
minx∈FNC

v(x)−maxx∈FNC
l(x)

)2

· max
1≤i<j≤NC

max
x∈FNC

∣∣∣ ∂l
∂xi

(x)− ∂l

∂xj
(x)
∣∣∣(1− 1

NC

cn,0

)
=:q(cn,0).

(5.69)

Once again, the bound q(cn,0) only depends on cn,0 and the physical properties of the

multi-component mixture at pressure p. The value for cn,0 can always be chosen in such a

way that
∣∣(ϕn

up)′(s)
∣∣ ≤ q(cn,0) < 1. We can formulate the following theorem:

Theorem 5.26 (Uniqueness of the fixed point). Let
∑kact

k=1 Fk −B −
∑lact

l=1 Sl = 0 and

Q̇R > Q̇LB1,n,0,unique
R or Q̇R > Q̇LB2,n,0,unique

R . (5.70)

If cn,0 is chosen in a way that
∣∣(ϕn

up)
′(s)
∣∣ ≤ q(cn,0) < 1 there exists a unique fixed point in

In and convergence of the sequence (sk)k∈N defined by sk := ϕn
up(sk−1) towards this fixed

point is guaranteed for any s0 ∈ In.

For the general distillation column discussed in this chapter, we can also summarize that

the reboiler duty only needs to be increased sufficiently in order to be able to guarantee

existence and uniqueness of a fixed point.
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CHAPTER 6

Distillation-based flowsheets comprising several unit operations

So far, the embedding of process simulation in an optimization problem was only presented

for single units. However, typical flowsheets consist of several units of the same or different

types, which are connected via streams. Analogously to the modular and the equation-

oriented approach in classical process simulation (see also Biegler et al. (1997, Chap. 8),

Biegler (2014), and Dowling & Biegler (2015)), the approach of the present work can

also be realized in a modular or a simultaneous way. In this chapter, the two different

alternatives are discussed and a graph theoretic algorithm is presented that determines

the calculation order of units in a flowsheet within one iteration for the simultaneous

approach.

6.1. The modular and the simultaneous approach

In the modular way, an optimization problem is formulated for each unit separately.

The optimization problems are then solved in sequence. The sequence, in which the

optimization problems are solved, can be determined completely analogous as for the

classical modular flowsheeting methods. An advantage of this modular approach is that

the resulting optimization problems are quite small. However, in case recycle streams

are present in the considered flowsheet, this way of simulating flowsheets requires the

introduction of tear streams and converging these tear stream on a higher level.
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6. Distillation-based flowsheets comprising several unit operations

In the simultaneous approach the different constraints and optimization variables of each

unit are gathered and a single optimization problem is formulated. For flowsheets with

a moderate number of units NU , the resulting optimization problem is still of moderate

size (O(NC ·NU) optimization variables and constraints) and does not require large-scale

optimization solvers. In contrast to that, the classical equation-oriented approach typically

comprises hundreds or thousands of optimization variables and constraints for distillation-

based flowsheets and requires sophisticated strategies in order to find appropriate starting

values for the large number of optimization variables. Using the simultaneous approach in

combination with the numerically robust stage-to-stage calculations of distillation columns

as presented in Chapter 4 and 5, the unknown process variables can be easily determined

based on the knowledge of a small number of optimization variables for distillation-based

flowsheets. In this work, all numerical results are obtained by applying the simultaneous

approach.

6.2. The simultaneous approach: Calculation order of

units in a flowsheet within one iteration

When applying the simultaneous approach, all process variables have to be determined

within every iteration of the optimization algorithm. In order to calculate the unknown

process variables of a unit U1 all of its feed streams have to be known. A feed stream can

be known due to the fact that it is given as external stream or chosen as optimization

variable and therefore also specified in each iteration. It is also possible, that the relevant

stream can be computed robustly as output stream of another unit U2 in the flowsheet. In

this case, unit U2, which determines the relevant stream as output stream, clearly has to

be calculated before unit U1 and thus the calculation order within one iteration might not

be arbitrary.

In the following, it is assumed that external input streams are completely specified. A

calculation order for the units in the flowsheet within one iteration has to be determined

and we have to decide which streams to choose as optimization variables. Note that the

calculation order of units within one iteration should not be confused with the sequence in

which the units are calculated in the modular flowsheet approach.
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For flowsheets without recycle streams it is trivial to determine the calculation order of

the units by proceeding through the flowsheet starting from a unit with given external

feed streams. If recycle streams are present, it is not always obvious how the calculation

order within one iteration should be chosen.

For distillation-based flowsheets (with and without recycle streams) consisting only of

mixers and simple (one feed) distillation columns we prove that it is possible to choose

the optimization variables for the distillation columns in such a way that all streams that

serve as feed streams for a unit are determined either as external streams, as optimization

variables, or computed as output streams of other units. Furthermore, we present an

algorithm based on a graph-theoretical representation of the distillation-based flowsheet

that determines the optimization variables in the flowsheet and gives a feasible calculation

order of the units.

In a first step, a distillation-based flowsheet is regarded as a directed graph G = (V,E)

in the following way: Every distillation column is represented by a node v ∈ V and

an additional node is added as the sink t ∈ V of the graph. Mixers are fused with

the subsequent distillation column and hence neglected in the graph. Every stream is

represented as a directed edge e ∈ E pointing from the source unit to the target unit,

except the external input streams which are neglected in the graph. Every effluent product

stream ends in the sink t.

The construction of the graph-theoretical problems is illustrated by means of two

exemplary distillation-based flowsheets. Figure 6.1 depicts the first flowsheet, which

consists of two simple distillation columns C1 and C2 and one mixer M with two input

streams. The external stream 1 is assumed to be fully specified.
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C1 C21 M
2

4

3

6

5

Figure 6.1.: Schematic representation of a flowsheet consisting of two simple columns and
a mixer.

The second flowsheet consists of three simple columns and a mixer and is depicted in

Figure 6.2. As in the previous example, stream 1 is assumed to be completely specified.

C1 C2 C31 M
2

4

3

6

5

8

7

Figure 6.2.: Schematic representation of a flowsheet consisting of three simple columns
and a mixer.

Figure 6.3 depicts the graph-theoretical representation of the flowsheets in Figure 6.1

and 6.2.
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t

C1
3

C2
5

6 4

tC2C1

4

5

3

C3

78
6

Figure 6.3.: Schematic representation of the flowsheets in Figure 6.1 (left) and 6.2 (right)
as a graph G = (V,E).

For the constructed graphs the following result holds:

Remark 6.1. Due to its construction, the graph G is weakly connected, which means that

replacing all directed edges with undirected edges yields a connected graph. Furthermore, it

has no parallel edges. Every node v ∈ V \ {t} has outdegree deg+(v) = 2 and every node is

connected with the sink t via a directed path.

In order to calculate a unit, all input streams have to be known. When we are trying

to find the calculation order of the units within one iteration, directed circles consisting

of unknown streams in the graph G pose a problem. However, it is possible to eliminate

the directed circles from G, because for every distillation column either the bottom or the

distillate stream is chosen as optimization variable depending on the choice of upward or

downward calculation of the column. One of the product streams of a distillation column

is therefore known in each iteration step and can be deleted from the set of edges E.

The task is now to determine the streams that are optimization variables in such a way

that the resulting graph G̃, whose edges represent only the unknown streams, contains

no directed circles. This is conducted via the following Algorithms 1 and 2. The edges

that are deleted from the set of edges during Algorithm 1 represent the streams that are

chosen as optimization variables and thus known in each iteration.

Algorithm 1 Reduction of a graph G to obtain an acyclic graph G̃

Require: A directed graph G = (V,E) with sink t and properties stated in Remark 6.1
Ensure: An acyclic directed graph G̃ = (V, Ẽ)
Visit(t)
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6. Distillation-based flowsheets comprising several unit operations

Algorithm 2 Visit(v)

Require: A node v ∈ V
for all w that are predecessors of v do

Keep the edge e = (w, v) and delete the second outgoing edge.
Visit(w)

end for

Theorem 6.2. Algorithm 1 correctly produces an acyclic graph in O(|V |).

Proof. In a first step, we show that the resulting graph G̃ = (V \ {t} , Ẽ) is weakly

connected. To prove this by contradiction, we assume that V can be partitioned into two

disjoint sets V1, V2 with no edge going from V1 to V2 or vice versa. W.l.o.g. assume that

t ∈ V1. Due to the properties of the original graph G = (V,E) stated in Remark 6.1 there

has to be an edge e = (v, t) ∈ E with v ∈ V2. However, this edge can never be deleted (see

Algorithm 2). This contradicts our initial assumption and hence G̃ is weakly connected.

One can even conclude that in the reduced graph G̃ = (V, Ẽ) there still exists a directed

path from any node to the sink.

Furthermore, we claim that every node v ∈ V is visited exactly once during Algorithm

1. After a node w has been visited from its successor v, the outdegree is reduced to

deg+(w) = 1. Hence, a node can only be visited twice, iff the successor v is visited twice.

Inductively, one can conclude that this is not possible. Along the same lines and using the

fact that from any node there exists a directed path to the sink, one can conclude that

every node is visited at least once. Visit(v) is therefore called |V | − 1 times.

Finally, we shown that there exists no cycle in G̃ = (V, Ẽ). Let us assume that there

exits a cycle C. Clearly, the sink t cannot be part of the cycle due to the fact that it has

no outgoing edge. However, the nodes in the cycles have to be connected with t via a

directed path pointing towards the sink. For every node v ∈ V \ {t} it holds true that

deg+(v) = 1 after the execution of Algorithm 1, so a cycle cannot exist.

We have shown that execution of Algorithm 1 always yields an acyclic graph. For

this acyclic graph G̃ = (V, Ẽ) it is possible to calculate a topological sorting σ : V −→
{1, 2, . . . , |V |} (see Krumke & Noltemeier, 2012, Chap. 3.2). The topological sorting can in

turn serve as calculation order for the flowsheet within an iteration, which was the desired

objective. Any mixer is calculated immediately before its target unit. The calculation
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6.2. The simultaneous approach: Calculation order within one iteration

order will in general not be unique, but there usually exist several solutions. In case we

can choose from several alternatives, it is always a good choice to calculate a distillation

column in direction of a product stream with a desired high purity.

The exemplary graphs in Figure 6.3 are simplified to the graphs in Figure 6.4 using

Algorithm 1.

t

C1
3

C2
5

tC2C1

3

C3

7
6

Figure 6.4.: Simplification of the graphs in Figure 6.3 after execution of Algorithm 1.

In the left graph the edges 4 and 6 have been deleted. This means that streams 4 and 6

are selected as optimization variables for the flowsheet in Figure 6.1, and the columns are

calculated upward. A possible calculation order within one iteration is: C1, C2.

For the second flowsheet (right graph in Figure 6.4) the streams 4, 5, and 8 have been

deleted. The molar flow rates of the streams 4, 5, and 8 are selected as optimization

variables. Column C1 and C3 are calculated upward, C2 downward. A feasible calculation

order within one iteration is: C1, C2, C3.

Graph theoretic methods are also applied in the context of data reconciliation in order

to classify observable and redundant streams. Concepts for such classification based on

overall flows have been developed by Václavek (1969) and Mah et al. (1976) and were

extended by Václavek & Loučka (1976) to multi-component systems. For a brief overview

and the algorithmic ideas behind the graph theoretic concepts the reader is referred to

Narasimhan & Jordache (2000, pp. 72).
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Numerical analysis
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CHAPTER 7

Numerical results

In this thesis, a novel approach that enables integrated process simulation and optimization

was introduced. In this chapter, the approach is illustrated by numerical results. First, the

performance of different optimization solvers is compared. In a subsequent step, typical

examples for process simulation and optimization of single units and distillation-based

flowsheets are presented that emphasize the advantages of the new approach.

7.1. Implementation details

Within the scope of this thesis, the novel approach for process simulation and optimization

was implemented in C# in order to conduct numerical studies. The arising optimiza-

tion problems are solved using either commercial optimization solvers or an in-house

development.

Our code is not optimized for speed and therefore we will not focus on CPU times.

However, the numerical results shown in this chapter are typically obtained within seconds

for small examples or within a few minutes for large examples.

Our results have been checked for correctness by a comparison with the process simulator

CHEMASIM (Hasse et al., 2006).
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7.2. Comparison of optimization algorithms

In this section, different implementations of optimization algorithms are applied to the

type of optimization problem that has been derived in Chapter 3. In order to compare the

results a test problem is defined: The solver studies are conducted for a single distillation

column with a ternary feed stream containing acetone, chloroform, and benzene. The

column consists of 20 stages with feed on stage 10 and operates at 1 bar. Acetone is

supposed to be withdrawn as distillate with a minimum purity of 0.99 mol/mol. Table 7.1

displays the specifications used in the test problem. The distillation column will be

calculated upward. Using the ideas introduced in Section 3.3, this test problem can be

formulated as an optimization problem with four optimization variables: the reboiler duty

and the three molar flow rates of the bottom product.

Table 7.1.: Specifications for the distillation column used as test problem for solver
comparison.

Stream Flow rate Composition
Feed 3.6 kmol/h 0.4 mol/mol AC

0.3 mol/mol CF
0.3 mol/mol BE

Distillate ≥ 0.99 mol/mol AC

The different implementations of the optimization algorithms considered in this thesis

all aim at constrained nonlinear optimization. The following five commercial solvers and

an in-house implementation will be compared:

• NLPQLP: A sequential quadratic programming algorithm using a line search method

(monotone and non-monotone) (Schittkowski, 2009).

• ALTRA: A sequential quadratic programming algorithm using a trust region method

(developed by Prof. Schittkowski and co-workers).

• MINNS: An adaptive gradient sampling solver (ALGLIB, 2016).

• MINNLC: An augmented Lagrangian solver (ALGLIB, 2016).

• IPOPT: An interior point solver (Wächter & Biegler, 2006).

• ITWMSQP: A sequential quadratic programming algorithm using a trust region

method based on the quadratic programming algorithm of the ALGLIB.
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7.2. Comparison of optimization algorithms

In the solution, the algorithm requires that a final accuracy is not exceeded by the

constraint violation. In the following examples, this final accuracy was chosen to be 10−6.

All solvers use derivative information that is approximated via numerical differentiation.

In a first study, the performance of the optimization solvers using forward differences for

numerical differentiation

∂

∂xi
f(x) ≈ 1

ηi
(f(x+ ηiei)− f(x)) (7.1)

is compared to the usage of central differences

∂

∂xi
f(x) ≈ 1

2ηi
(f(x+ ηiei)− f(x− ηiei)) , (7.2)

where ηi = ηmax(|xi| , 10−6) and ei is the i-th unit vector for all optimization variables

i = 1, . . . , Nopt. For both cases, different step lengths η are applied. The subsequent test

configurations are defined:

(a) central differences, η = 10−3

(b) central differences, η = 10−5

(c) forward differences, η = 10−4

(d) forward differences, η = 10−5

The initial values for the optimization variables, which are used in the following test

scenarios, are derived by ∞/∞-analysis and displayed in Table 7.2.

Table 7.2.: Initial values for the optimization variables.

Optimization variable Initial value

Q̇R / kW 100.00
ṅB

AC / (kmol/h) 0.1376
ṅB

CF / (kmol/h) 1.0800
ṅB

BE / (kmol/h) 1.0800

Table 7.3 shows the number of iterations needed for process simulation for the different

test configurations and the different solver implementations, i.e. the algorithm terminates

if an arbitrary feasible solution with the required product purity is found. In case no

number is given in Table 7.3 the algorithm failed to find a feasible solution. NLPQLP
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requires the smallest number of iterations, followed by ITWMSQP and ALTRA. MINNS

performed poorly as it did not find a solution for configurations (a), (b), and (d) and

MINNLC required a large number of iterations. The number of iterations required by

IPOPT was larger than the number of iterations required for NLPQLP, ALTRA, and

ITWMSQP for configurations (a)–(c) and for configuration (d) no solution was found.

Table 7.3.: Number of iterations needed for process simulation of a single distillation
column with ternary feed stream for the different test configurations and the
different solver implementations. A missing number means the algorithms did
not find a solution.

Number of iterations
Configuration (a) (b) (c) (d)
NLPQLP 4 4 4 4
ALTRA 8 8 5 5
MINNS - - 477 -
MINNLC 1689 489 56 556
IPOPT 16 31 13 -
ITWMSQP 5 5 5 5

Table 7.4 shows the number of iterations required for process optimization where the

reboiler duty of the distillation column is incorporated as objective function. The trivial

solution with D = 0 kmol/h is prevented by the fact that we incorporate an additional

constraint on the minimum acetone yield in the distillate: ṅD
AC ≥ 1.2 kmol/h. As for

process simulation of the test problem, NLPQLP, ALTRA, and ITWMSQP required

a small number of iterations. MINNLC failed for configuration (b) and for all other

configurations MINNLC and MINNS required significantly more iterations. IPOPT was

not able to find an optimal solution. The number of iterations that are needed in order to

obtain an optimal solution is in general larger than the number of iterations needed to

find an arbitrary feasible solution.
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Table 7.4.: Number of iterations needed for process optimization of a single distillation
column with ternary feed stream for the different test configurations and the
different solver implementations. A missing number means the algorithms did
not find a solution.

Number of iterations
Configuration (a) (b) (c) (d)
NLPQLP 13 14 13 14
ALTRA 12 12 12 12
MINNS 126 119 156 139
MINNLC 62 - 84 82
IPOPT - - - -
ITWMSQP 18 18 18 18

In conclusion, especially for those solver implementations that performed well, there

was no advantage in using central differences in order to approximate the derivative

information. Furthermore, it is not clear which choice of η should be preferred and for

NLPQLP, ALTRA, and ITWMSQP this choice had almost no influence on the number of

iterations needed. For the following studies, forward differences are applied due to the fact

that they need less function evaluations compared to central differences. The step length

is chosen to be η = 10−4.

In a next study, the robustness of the different solver implementations with respect to

poor initial values is investigated. For this purpose, three poor initial values are defined

in Table 7.5. The composition of the bottom product of ”Initial value 1” even lies in a

different distillation region than the desired distillate.

Table 7.5.: Different poor initial values for the optimization variables.

Optimization variable Initial value 1 Initial value 2 Initial value 3

Q̇R / kW 100.00 100.00 100.00
ṅB

AC / (kmol/h) 0.25 0.25 2.00
ṅB

CF / (kmol/h) 2.00 0.25 0.25
ṅB

BE / (kmol/h) 0.25 2.00 0.25

First, the distillation column in the test problem is simulated without including a

non-constant objective function in the optimization problem. Table 7.6 shows the number

of iterations needed until a feasible solution is found. Compared to the results for the

initial values that are generated by ∞/∞-analysis, it is harder for the optimization solver

to find a feasible solution and the different solvers fail in about half the scenarios. The
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best results are obtained by using NLPQLP, ALTRA, and MINNLC. If the results from

NLPQLP and ALTRA are combined, a feasible solution can be found for all poor initial

values defined in Table 7.2.

Table 7.6.: Number of iterations needed for process simulation of a single distillation
column with ternary feed stream for different initial values and the different
solver implementations. A missing number means the algorithms did not find
a solution.

Number of iterations
Initial values IV∞/∞ IV1 IV2 IV3
NLPQLP 4 6 - 30
ALTRA 5 - 4 -
MINNS 477 - - -
MINNLC 56 22 17 -
IPOPT 13 - - -
ITWMSQP 5 - - -

Process optimization, with the reboiler duty chosen as objective function, is also

conducted for the poor initial values from Table 7.2. The results are summarized in

Table 7.7. With a non-constant objective function NLPQLP and ALTRA always succeed

in finding an optimal solution. MINNS also performs better when using the reboiler duty

as objective function whereas MINNLC fails more often.

Table 7.7.: Number of iterations needed for process optimization of a single distillation
column with ternary feed stream for different initial values and the different
solver implementations. A missing number means the algorithms did not find
a solution.

Number of iterations
Initial value IV∞/∞ IV1 IV2 IV3
NLPQLP 13 21 12 13
ALTRA 12 10 9 9
MINNS 156 183 158 123
MINNLC 84 - - -
IPOPT - - - -
ITWMSQP 18 - - -

In summary, one can conclude that especially the solver implementations NLPQLP and

ALTRA are robust in terms of poor initial values and perform even better in case the

reboiler duty is incorporated as objective function.
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For the subsequent numerical studies, we use NLPQLP or ALTRA as optimization

solver. Derivative information is generated using forward differences and η = 10−4, as

described in test configuration (c).

7.3. Separation of acetone and chloroform

In a first study, we consider the separation of acetone and chloroform. This binary system

exhibits a heavy-boiling azeotrope.

7.3.1. Single distillation column

A simple distillation column is considered with a defined binary feed containing acetone

(AC) and chloroform (CF) as depicted in Figure 7.1. Acetone is obtained as distillate.

The distillation column operates at 1 bar and has 20 stages. The feed stage is stage 10

counted from bottom. This example comprises 182 process variables. Assuming that the

pressure is given and the feed is fully defined, there remain two degrees of freedom.

C11 (CF+AC)

3 (CF+AC)

2 (AC)

Figure 7.1.: Schematic distillation column with binary feed containing acetone (AC) and
chloroform (CF).

Process simulation

The required minimum purity of acetone in the distillate is 0.99 mol/mol. There are no

further requirements. This specification and the specifications of the feed stream are

summarized in Table 7.8.
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Table 7.8.: Specifications for the distillation column shown in Figure 7.1.

Stream Flow rate Composition
1 1 kmol/h 0.5 mol/mol AC

0.5 mol/mol CF
2 ≥ 0.99 mol/mol AC

If only the specifications in Table 7.8 are required, there will clearly not exist a unique

solution to the problem but infinitely many solutions due to the fact that we did not fix

the two degrees of freedom. Even if we include two specifications, which are formulated

as inequalities, the solution will in general not be unique. The optimization algorithm

will output the first feasible solution that is found depending on starting values for the

optimization variables and the choice of internal parameters for the optimization algorithm.

In order to simulate the distillation column using commercial systems, all degrees of

freedom have to be specified. An obvious specification is to fix the mole fraction of acetone

in stream 2 to be 0.99 mol/mol. However, this specification significantly restricts the

solution space compared to incorporating the required purity via an inequality constraint.

Using the method introduced in Chapter 3, we can formulate an optimization problem

with three optimization variables Q̇R and ṅ3 and include the desired acetone purity in

stream 2 as an inequality constraint. In order to obtain the remaining process variables

the distillation column is computed stage-wise starting from the bottom.

The system acetone, chloroform at 1 bar exhibits a heavy-boiling azeotrope at xAzeo
AC =

0.3454 mol/mol. Given the feed on the acetone-rich side of the azeotrope, the fraction of

acetone in the bottom product cannot fall below xAzeo
AC . Therefore, the starting value for

x3 is chosen to be the azeotropic composition. The starting value for the molar flow rate

of stream 3 is calculated from the material balance assuming pure acetone in the distillate.

The starting value for the reboiler duty can be chosen in a suitable way following the

guidelines in Section 4.3.

In this example, a feasible distillation column that meets the specifications in Table 7.8

is calculated in four iterations. The obtained solution strongly depends on the choice of

starting values for the optimization variables and internal parameters of the optimization

algorithm and different solutions can vary strongly for example in terms of the reboiler duty.

The initial values as well as the final values for the optimization variables are summarized

in Table 7.9. The resulting mole fraction of acetone in stream 2 is 0.9996 mol/mol, which

is also depicted in Table 7.10 (stream table).
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7.3. Separation of acetone and chloroform

Table 7.9.: Initial values and final values for the optimization variables.

Optimization variable Initial value Final value

Q̇R / kW 40.71 7.320
ṅ3

AC / (kmol/h) 0.2638 0.4575
ṅ3

CF / (kmol/h) 0.5000 0.4999

Table 7.10.: Stream table for a solution of the column depicted in Figure 7.1 that meets
the specifications in Table 7.8.

Stream 1 2 3
ṅ / (kmol/h) 1.0000 0.0426 0.9574
xAC / (mol/mol) 0.5000 0.9996 0.4779
xCF / (mol/mol) 0.5000 0.0004 0.5221

The presented approach is robust with respect to poor initial values. This is illustrated

by choosing a bottom composition on the wrong side of the azeotrope as starting value. A

feasible solution is still found within four iterations, cf. Table 7.11 and 7.12 (stream table).

Table 7.11.: Initial values and final values for the optimization variables.

Optimization variable Initial value Final value

Q̇R / kW 86.12 45.47
ṅ3

AC / (kmol/h) 0.1 0.3003
ṅ3

CF / (kmol/h) 0.4 0.5000

Table 7.12.: Stream table for a solution of the column depicted in Figure 7.1 that meets
the specifications in Table 7.8 when starting with poor initial values.

Stream 1 2 3
ṅ / (kmol/h) 1.0000 0.1998 0.8002
xAC / (mol/mol) 0.5000 0.9999 0.3752
xCF / (mol/mol) 0.5000 0.0001 0.6248

Process optimization

Additionally, one could include the reboiler duty as objective function aiming for minimal

energy costs. If only the specifications listed in Table 7.8 are requested and the reboiler

duty is minimized we end up with a solution where the molar flow rate of stream 2 is
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0 kmol/h. However, one can easily incorporate an additional lower bound on the yield of

acetone in the distillate in the problem formulation, for example ṅ2
AC ≥ 0.23 kmol/h, cf.

Table 7.13. In this example, the maximum yield of acetone in the distillate cannot be

significantly larger than 0.23 kmol/h due to the binary azeotrope.

Table 7.13.: Specifications for the distillation column shown in Figure 7.1.

Stream Flow rate Composition
1 1 kmol/h 0.5 mol/mol AC

0.5 mol/mol CF
2 ≥ 0.23 kmol/h AC ≥ 0.99 mol/mol AC

An optimal solution is found in eight iterations. The larger number of iterations

illustrates that it is harder to find the optimal solution than to find an arbitrary feasible

solution. The initial and final values are summarized in Table 7.14 and 7.15 (stream table).

Table 7.14.: Initial values and final values for the optimization variables.

Optimization variable Initial value Final value

Q̇R / kW 150.00 113.64
ṅ3

AC / (kmol/h) 0.2677 0.2700
ṅ3

CF / (kmol/h) 0.5000 0.4977

Table 7.15.: Stream table for a solution of the column depicted in Figure 7.1 that meets
the specifications in Table 7.8 at minimal energy demand.

Stream 1 2 3
ṅ / (kmol/h) 1.0000 0.2323 0.7677
xAC / (mol/mol) 0.5000 0.9900 0.3517
xCF / (mol/mol) 0.5000 0.0100 0.6483

Mixed-integer optimization

For the previous process simulation and optimization example, the feed stage NF = 10

was fixed. In the subsequent example, a mixed-integer optimization algorithm (Exler

& Schittkowski, 2007) is applied in order to determine the optimal feed stage which

is incorporated now as an integer optimization variable. Again, the specifications in

Table 7.13 should be met. An optimal solution is found within 57 iterations and the result
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is depicted in Table 7.16 and Table 7.17 (stream table). The result of the mixed-integer

optimization problem requires only 94.76 kW compared to 113.64 kW for the result in

Table 7.14 where the feed stage is fixed.

Table 7.16.: Initial values and final values for the optimization variables.

Optimization variable Initial value Final value

Q̇R / kW 150.00 94.76
ṅ3

AC / (kmol/h) 0.2677 0.2700
ṅ3

CF / (kmol/h) 0.5000 0.4977
NF 10 13

Table 7.17.: Stream table for a solution of the column depicted in Figure 7.1 with optimized
feed stage that meets the specifications in Table 7.8 at minimal energy demand.

Stream 1 2 3
ṅ / (kmol/h) 1.0000 0.2323 0.7677
xAC / (mol/mol) 0.5000 0.9900 0.3538
xCF / (mol/mol) 0.5000 0.0100 0.6462

It is also possible to vary the total number of stages NS and to minimize the reboiler

duty for every new choice of NS with optimized feed stage. The number of stages can be

plotted against the required minimal reboiler duty as displayed in an N -Q-curve (Zeck,

1990) in Figure 7.2. From this figure one can estimate the minimum number of stages

needed for this separation task as well as the minimum reboiler duty needed for a column

with infinitely many stages. The optimal feed stage NF is encoded in Figure 7.2 in the

color of the marker and also increases with increasing total number of stages.

Figure 7.2 illustrates the multi-criteria character of this question and facilitates an easy

identification of relevant intervals for the two different criteria. However, one could also

think of combining the number of stages and the reboiler duty in a cost function which

then serves as objective function.
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Figure 7.2.: N -Q-curve for the distillation column in Figure 7.1 where the specifications
in Table 7.13 are met. The optimal feed stage NF can be obtained from the
greyscale of the marker in combination with the colorbar on the right.

A separation of acetone and chloroform into pure components using simple distillation

is not possible due to the fact that the two components form an azeotrope. However,

this separation task can be solved using either pressure-swing distillation or an entrainer.

These two methods are discussed in the following.

7.3.2. Pressure-swing distillation

This method of separating acetone and chloroform takes advantage of the pressure depen-

dency of the binary azeotrope. For increasing pressure the binary azeotrope contains more

chloroform. A flowsheet that takes advantage of this shift is depicted in Figure 7.3. The

distillation columns C1 and C2 are assumed to have 35 stages each with feed on stage 18,

where C1 operates at 5 bar and C2 at 1 bar.
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C1 C21 (CF+AC) M
2

4

3 (AC)

6

5 (CF)

Figure 7.3.: Flowsheet of the pressure-swing distillation process for separating acetone
(AC) and chloroform (CF).

Acetone is obtained as distillate of the first distillation column C1. At the top of column

C2 the product chloroform is withdrawn. The bottom product of C2 is recycled and mixed

in mixer M with the external feed stream 1 giving the feed stream for column C1. So far,

a mixer has not been discussed in detail. However, this unit is easy to compute due to the

fact that it has no degrees of freedom and the output stream is calculated based on given

input streams. The specifications for this flowsheet are stated in Table 7.18.

Table 7.18.: Specifications for the flowsheet shown in Figure 7.3.

Stream Flow rate Composition
1 3 kmol/h 0.5 mol/mol AC

0.5 mol/mol CF
3 ≥ 0.99 mol/mol AC
5 ≥ 0.99 mol/mol CF

Process simulation

First, a feasibility study is conducted, which means that an arbitrary solution that meets

the specifications in Table 7.18 is supposed to be found.

Embedding this process simulation task in an optimization framework leads to an

optimization problem with six optimization variables. These optimization variables are

the reboiler duty of the columns C1 and C2, respectively, as well as the four molar flow

rates of the components in streams 4 and 6. Both columns are calculated upward and for
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this flowsheet the order of calculation within on iteration for the distillation columns can

be chosen arbitrarily. This is due to the fact that the feed stream of C1 is given as the

external feed stream 1 and stream 6 serves as optimization variable and is therefore also

given in each iteration. The same holds for column C2 with feed stream 4. However, the

mixing unit M has to be calculated before calculating C1.

Note that the degrees of freedom do not have to be fixed in order to be able to conduct

process simulation by optimization and we can formulate the desired specifications for this

flowsheet in a flexible way. Indeed, even if the purities in Table 7.18 would be specified by

equalities, there would still be degrees of freedom left for the simulation.

Initial values for the optimization variables can be obtained by ∞/∞-analysis. These

values are depicted in Table 7.19. A feasible flowsheet that meets the desired specifications

in Table 7.18 is calculated in 40 iterations. The final values for the optimization variables

are shown in Table 7.19 and 7.20 (stream table).

Table 7.19.: Initial values and final values for the optimization variables.

Optimization variable Initial value Final value

Q̇R,C1 / kW 336.1 320.9
ṅ4

AC / (kmol/h) 0.6598 1.1705
ṅ4

CF / (kmol/h) 2.7502 3.7095

Q̇R,C2 / kW 381.3 431.6
ṅ6

AC / (kmol/h) 0.6597 1.1657
ṅ6

CF / (kmol/h) 1.2503 2.2143

Table 7.20.: Stream table for a solution of the flowsheet depicted in Figure 7.3 that meets
the specifications in Table 7.18.

Stream 1 2 3 4 5 6
ṅ / (kmol/h) 3.00 6.38 1.50 4.88 1.50 3.38
xAC / (mol/mol) 0.5000 0.4178 0.9966 0.2399 0.0033 0.3449
xCF / (mol/mol) 0.5000 0.5822 0.0034 0.7601 0.9967 0.6551

Process optimization

It is also possible to introduce an objective function for the above example of separating

acetone and chloroform by pressure-swing distillation. One reasonable choice is to define

the objective function as the sum of the reboiler duties of columns C1 and C2. There

is no need to specify the yield for the two product streams in this example due to the
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fact that there are no waste streams, i.e. no product loss, hence, it suffices to specify the

product purities as stated in Table 7.18. The result of such optimization is summarized in

Table 7.21 and 7.22 (stream table).

Table 7.21.: Initial values and final values for the optimization variables.

Optimization variable Initial value Final value

Q̇R,C1 / kW 488.2 259.5
ṅ4

AC / (kmol/h) 1.5 1.5901
ṅ4

CF / (kmol/h) 4.5 4.6799

Q̇R,C2 / kW 835.0 131.6
ṅ6

AC / (kmol/h) 1.32 1.5752
ṅ6

CF / (kmol/h) 2.68 3.1948

Table 7.22.: Stream table for an energy optimal solution of the flowsheet depicted in
Figure 7.3 that meets the specifications in Table 7.18.

Stream 1 2 3 4 5 6
ṅ / (kmol/h) 3.00 7.77 1.50 6.27 1.50 4.77
xAC / (mol/mol) 0.5000 0.3958 0.9900 0.2536 0.0100 0.3302
xCF / (mol/mol) 0.5000 0.6042 0.0100 0.7464 0.9900 0.6698

Nothing had to be stated about the streams 4 and 6 of the flowsheet. In commercial

flowsheet simulators, the designer would be forced to give two more specifications because

the problem corresponding to Table 7.18 is under-specified. These specifications could

be on the concentrations or flow rates of streams 4 and 6. How to choose these two

specifications is far from trivial and subject to several studies in the literature, e.g. Muñoz

et al. (2006); Bonet et al. (2007) and Luyben (2012). The approach of this work eliminates

the entire discussion.

7.3.3. Benzene as entrainer

The flowsheet for the entrainer distillation is depicted in Figure 7.4. The entrainer benzene

(BE) is added to the binary feed mixture. Assume that the distillation columns C1, C2,

and C3 have 40 stages each with feed on stage 20.
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C1 C2 C31

(CF+AC+BE)

M
2

4

3 (AC)

6 (BE)

5

8

7 (CF)

Figure 7.4.: Flowsheet of the entrainer distillation for separating acetone (AC) and chloro-
form (CF) using benzene (BE) as entrainer.

The distillate of column C1 is acetone and the corresponding bottom product is the

feed stream for distillation column C2. From this column benzene is withdrawn as the

bottom product. The distillate which contains mainly chloroform and acetone and only a

small amount of benzene serves as feed stream for the third column C3. The distillate of

C3 is chloroform and the bottom product is recycled to column C1. All columns operate

at 1 bar. The specifications for this flowsheet are stated in Table 7.23.

Table 7.23.: Specifications for the flowsheet shown in Figure 7.4.

Stream Flow rate Composition
1 3.6 kmol/h 0.4 mol/mol AC

0.3 mol/mol CF
0.3 mol/mol BE

3 ≥ 0.99 mol/mol AC
6 ≥ 0.98 mol/mol BE
7 ≥ 0.99 mol/mol CF

A ternary map of the system, which also shows the distillation boundary, is shown in

Figure 7.5. In a first step, only column C1 is considered with a constant feed stream equal

to stream 1 as given in Table 7.23. The composition of stream 1 is located in the left

distillation region, as is the distillate (stream 3). The initial value for x4 is deliberately

chosen in the other distillation region. Despite this, the optimization algorithm finds a
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feasible solution within five iterations. The composition profiles of the liquid phase in

column C1 for the different iterations are depicted in Figure 7.5. The initial and final

values of the optimization variables are summarized in Table 7.24 and 7.25 (stream table).
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Figure 7.5.: Composition profiles of the liquid phase in the column C1 of the flowsheet
in Figure 7.4 when the recycle stream 8 is neglected for iterations 0–5 when
using a poor initial value for x4. The line indicates the distillation boundary
in the system.

Table 7.24.: Initial values and final values for the optimization variables.

Optimization variable Initial value Final value

Q̇R,C1 / kW 156.9 139.4
ṅ4

AC / (kmol/h) 0.25 0.2008
ṅ4

CF / (kmol/h) 2.00 1.0809
ṅ4

BE / (kmol/h) 0.25 1.0782
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Table 7.25.: Stream table for a solution of column C1 of the flowsheet depicted in Figure 7.4
without recycle stream 8 that meets the specifications in Table 7.23.

Stream 1/2 3 4
ṅ / (kmol/h) 3.60 1.24 2.36
xAC / (mol/mol) 0.4000 0.9978 0.0851
xCF / (mol/mol) 0.3000 0.0000 0.4580
xBE / (mol/mol) 0.3000 0.0022 0.4569

In a next step, the specifications in Table 7.23 are shown to be feasible for the entire

flowsheet by finding a corresponding solution. Distillation columns C1 and C3 are calculated

from bottom to the top, whereas column C2 is calculated stage-wise in opposite direction.

Once again, the calculation order of the distillation columns can be chosen arbitrarily. If

the ideas from Section 3 are now applied to the flowsheet an optimization problem with

12 optimization variables is obtained: The reboiler duties of the columns C1 and C3, the

condenser duty of column C2 and the nine molar flow rates of the components in stream

4, 5, and 8. The alternative equation-oriented approach that uses all process variables as

optimization variables and the complete system of MESH equations as constraints yields

an optimization problem with more than 500 optimization variables and constraints, which

clearly requires a large-scale optimization solver. Infeasible path optimization (Biegler &

Hughes, 1982) requires the introduction of one tear stream and results in an optimization

problem with nine optimization variables (six degrees of freedom and three optimization

variables related to one tear stream).

Using starting values that are obtained by∞/∞-analysis, a feasible solution is computed

within 15 iterations. Hence, the specifications in Table 7.23 are shown to be feasible and

the obtained solution could be used as starting point for further investigations of the

process. The initial and final values of the optimization variables are stated in Table 7.26

and 7.27 (stream table) and the composition profiles of the liquid phase in each column

are depicted in Figure 7.6.
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Figure 7.6.: Composition profiles of the liquid phase in the columns C1, C2, and C3 of
the process in Figure 7.4. The line indicates the distillation boundary in the
system.
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Table 7.26.: Initial values and final values for the optimization variables.

Optimization variable Initial value Final value

Q̇R,C1 / kW 248.5 248.5
ṅ4

AC / (kmol/h) 0.4684 0.4664
ṅ4

CF / (kmol/h) 1.9828 1.9829
ṅ4

BE / (kmol/h) 1.0791 1.0907

Q̇C,C2 / kW -416.6 -431.3
ṅ5

AC / (kmol/h) 0.4681 0.4665
ṅ5

CF / (kmol/h) 1.9618 1.9614
ṅ5

BE / (kmol/h) 0.0001 0.0121

Q̇R,C3 / kW 182.2 181.9
ṅ8

AC / (kmol/h) 0.4673 0.4655
ṅ8

CF / (kmol/h) 0.9026 0.9024
ṅ8

BE / (kmol/h) 0.0001 0.0121

Table 7.27.: Stream table for a solution of the flowsheet depicted in Figure 7.4 that meets
the specifications in Table 7.23.

Stream 1 2 3 4
ṅ / (kmol/h) 3.60 4.98 1.44 3.54
xAC / (mol/mol) 0.4000 0.3826 0.9999 0.1317
xCF / (mol/mol) 0.3000 0.3981 0.0000 0.5601
xBE / (mol/mol) 0.3000 0.2193 0.0001 0.3081
Stream 5 6 7 8
ṅ / (kmol/h) 2.44 1.1 1.06 1.38
xAC / (mol/mol) 0.1912 0.0000 0.0001 0.3373
xCF / (mol/mol) 0.8038 0.0200 0.9999 0.6539
xBE / (mol/mol) 0.0050 0.9800 0.0000 0.0088

Multi-criteria optimization

The column C1 from the flowsheet in Figure 7.4 in considered with a constant feed stream

equal to stream 1 as given in Table 7.23 in order to present an example for multi-criteria

optimization. The specifications are stated in Table 7.28. In this example two competing

objective functions are considered. One the one hand the reboiler duty Q̇R,C1 and on the

other hand the molar flow rate of the distillate stream ṅ3, which immediately influences

the acetone yield. Pareto optimal points are determined by applying the ε-constraint

method (see textbooks on multi-criteria optimization Steuer (1989); Hillier & Miettinen

(1998); Ehrgott (2005) and Section 2.2). We conduct several optimization runs. For each
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optimization we impose a lower bound ε kmol/h on the molar flow rate of the distillate

stream where ε ∈ [0.15; 1.31] and minimize the reboiler duty Q̇R,C1. The Pareto optimal

solutions, which are obtained in that way, are depicted in Figure 7.7. The set of Pareto

optimal solutions is almost linear for ε ∈ [0.15; 1.2]. In case the lower bound on ṅ3 is

chosen to be larger than 1.2 kmol/h the minimum reboiler duty needed rises significantly.

Based on the information shown in Figure 7.7 an engineer can choose a good compromise

between the two objective functions.

Table 7.28.: Specifications for a multi-criteria example for column C1 shown in Figure 7.4.

Stream Flow rate Composition
1 3.6 kmol/h 0.4 mol/mol AC

0.3 mol/mol CF
0.3 mol/mol BE

3 ≥ ε kmol/h ≥ 0.99 mol/mol AC

0.2 0.4 0.6 0.8 1 1.2

20

40

60

80

ṅ3 / (kmol/h)

Q̇
R
,C

1
/

k
W

Figure 7.7.: Pareto optimal solutions for column C1 depicted in Figure 7.4 and the objective
functions reboiler duty and molar flow rate of the distillate.
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7. Numerical results

7.4. Separation of water and ethanol using

tetrahydrofuran as entrainer

The ternary system containing water (W), ethanol (ET), and tetrahydrofuran (THF) is

considered. This systems exhibits three binary azeotropes and one ternary azeotrope.

7.4.1. Single distillation column

In a first step, consider a simple distillation column with completely defined ternary feed

containing water, ethanol, and tetrahydrofuran as depicted in Figure 7.8.

C11 (W+ET+THF)

3 (W)

2 (W+ET+THF)

Figure 7.8.: Schematic distillation column with ternary feed containing water (W), ethanol
(ET), and tetrahydrofuran (THF).

The distillation column is operated at 1 bar and consists of 30 stages. The feed stage is 15

counted from the bottom. Water is obtained as bottom product. The desired specifications

on feed and product streams are summarized in Table 7.29. This example comprises more

than 250 process variables. Using the method introduced in Section 3 an optimization

problem with four optimization variables, the condenser duty Q̇C and the three molar

flow rates ṅ2, can be formulated and the desired water purity in the bottom stream is

included as an inequality constraint. In order to obtain the remaining process variables

the distillation column is computed stage-wise starting from the top. In this example,

a feasible distillation column that meets the specifications in Table 7.29 is calculated in

three iterations. The initial values as well as the final values are summarized in Table 7.30

and 7.31 (stream table).
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7.4. Separation of water and ethanol using tetrahydrofuran as entrainer

Table 7.29.: Specifications for the exemplary simple distillation column.

Stream Flow Rate Composition
1 4 kmol/h 0.7 mol/mol W

0.2 mol/mol ET
0.1 mol/mol THF

3 ≥ 0.99 mol/mol W

Table 7.30.: Initial and final values for the optimization variables for the simulation of a
distillation column.

Parameter Initial Value Final Value

Q̇C / kW -53.2 -60.1
ṅ2

W / (kmol/h) 0.0984 0.4167
ṅ2

ET / (kmol/h) 0.8008 0.7995
ṅ2

THF / (kmol/h) 0.4004 0.3998

Table 7.31.: Stream table for a solution of the column depicted in Figure 7.8 which meets
the specifications in Table 7.29.

Stream 1 2 3
ṅ / (kmol/h) 4 1.62 2.38
xW / (mol/mol) 0.7 0.2579 0.9997
xET / (mol/mol) 0.2 0.4948 0.0002
xTHF / (mol/mol) 0.1 0.2474 0.0001

Again, the presented approach is shown to be robust with respect to poor initial values.

In an exemplary case, the initial value for the composition of the top stream is chosen in a

different distillation region than the desired bottom product. However, a feasible solution

is found within five iterations. The composition profiles of the liquid phase in the column

for iterations 0, 3, and 5 are depicted in Figure 7.9. Iterations 1, 2, and 4 are similar to

iteration 0 and 5, respectively, and therefore not shown. The initial and final parameters

values are stated in Table 7.32.
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Figure 7.9.: Composition profiles of the liquid phase in the column for iterations 0, 3, and
5 when using a poor initial value for x2.

Table 7.32.: Initial values and final values for the optimization variables when using a poor
initial value for the composition of x2.

Parameter Initial Value Final Value

Q̇C / kW -69.1 -79.8
ṅ2

W / (kmol/h) 0.1 0.3455
ṅ2

ET / (kmol/h) 0.1 0.8000
ṅ2

THF / (kmol/h) 1.8 0.4000
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7.4. Separation of water and ethanol using tetrahydrofuran as entrainer

Table 7.33.: Stream table for a solution of the column depicted in Figure 7.8 that meets
the specifications in Table 7.29.

Stream 1 2 3
ṅ / (kmol/h) 4 1.55 2.45
xW / (mol/mol) 0.7 0.2235 1.0000
xET / (mol/mol) 0.2 0.5176 0.0000
xTHF / (mol/mol) 0.1 0.2588 0.0000

7.4.2. A distillation-based flowsheet

Figure 7.10 shows a distillation process to separate water from ethanol with the light-

boiling entrainer tetrahydrofuran. Pure THF is added to the process by an additional feed

stream, which is mixed with the feed stream containing water and ethanol. The molar

flow rate of THF that is added should be less than 0.01 kmol/h. The two bottom streams

of column C1 and C2 are supposed to contain water and ethanol with a purity of at least

0.99 mol/mol.

The top stream of column C1 is used as feed stream for column C2 and the top stream

of column C2 is used as recycle stream and mixed with stream 1. The specifications used

here are summarized in Table 7.34. The distillation columns C1 and C2 have 40 stages

each with feed on stage 20. Furthermore, both columns operate at 1 bar.

C1 C21 (W+ET)

7 (THF)

M
2

4 (W)

3

6 (ET)

5

Figure 7.10.: Flowsheet for separating water, ethanol, and tetrahydrofuran.
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7. Numerical results

Table 7.34.: Specifications for the separation of water and ethanol using the light-boiling
entrainer tetrahydrofuran.

Stream Flow Rate Composition
1 3.6 kmol/h 0.75 mol/mol W

0.25 mol/mol ET
7 ≤ 0.01 kmol/h 1 mol/mol THF
4 ≥ 0.99 mol/mol W
6 ≥ 0.99 mol/mol ET

Using the method introduced in Section 3 results in an optimization problem with nine

optimization variables. These optimization variables are the reboiler duties of columns C1

and C2, respectively, as well as the six molar flow rates of the components in streams 3 and

6 and the total molar flow rate of stream 7. Column C1 is calculated downward and column

C2 upward. The initial values for the product streams are obtained by ∞/∞-analysis. A

feasible flowsheet that meets the specifications in Table 7.34 is obtained in 37 iterations.

The initial values as well as the final values are summarized in Table 7.35 and 7.36 (stream

table) and the composition profiles of the liquid phase in each column are depicted in

Figure 7.11. Using ASPEN PLUS R© (Evans et al., 1979) the flowsheet can hardly be

initialized without prior knowledge about the solution. Hence, the presented approach

makes initialization more robust and therefore much easier especially for inexperienced

users.
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Figure 7.11.: Composition profiles of the liquid phase in the two columns. The black lines
indicate the distillation boundaries in the system.

Table 7.35.: Initial and final values for the flowsheet optimization variables.

Parameter Initial Value Final Value
ṅ7 / (kmol/h) 1.0× 10−4 7.46× 10−4

Q̇C,1 / kW -523.3 -10366.7
ṅ3

W / (kmol/h) 0.1031 4.2024
ṅ3

ET / (kmol/h) 0.8731 0.9012
ṅ3

THF / (kmol/h) 0.4438 19.7364

Q̇C,2 / kW -173.0 -79.8
ṅ6

W / (kmol/h) 0.0088 0.0142
ṅ6

ET / (kmol/h) 0.8711 1.5345
ṅ6

THF / (kmol/h) 0.0001 0.0013
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7. Numerical results

Table 7.36.: Stream table for a solution of the flowsheet depicted in Figure 7.10 that meets
the specifications in Table 7.34.

Stream 1 2 3 4 5 6 7
ṅ / (kmol/h) 3.6 26.89 24.84 2.05 23.29 1.55 7.46× 10−4

xW / (mol/mol) 0.75 0.2235 0.1692 1.000 0.1752 0.0092 0
xET / (mol/mol) 0.25 0.5176 0.0363 0.000 0.0001 0.9900 0
xTHF / (mol/mol) 0 0.2588 0.7945 0.000 0.8247 0.0008 1
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CHAPTER 8

Conclusions and perspectives

In this work, process simulation is formulated as an optimization problem. This optimiza-

tion problem includes only a small subset of model equations as constraints and only a

small number of process variables are chosen as optimization variables. Tailored simulation

strategies for the different unit operations, which utilize the remaining model equations,

enable numerically robust computation of the entire set of process variables in case values

for the optimization variables are given. Composition strategies that determine which

model equations serve as constraints and which process variables are incorporated as

optimization variables are presented in detail in Chapter 3 for a flash unit and distillation

columns.

The simulation routine that determines the remaining process variables for a distillation

column involves stage-to-stage calculations based on given values for a particular set of

process variables at one end of the column. In order to proceed upward or downward, no

additional process variables need to be specified on each stage of the column. For the

transition from one stage to the next a fixed-point problem is derived, which is equivalent to

the corresponding MESH equations and can be solved by fixed-point iteration. The fixed-

point problem is mathematically analyzed by applying the Banach fixed-point theorem. As

a consequence, it is possible to choose the values for the input variables for stage-to-stage

calculations in such a way that a unique fixed point exists and convergence towards this

fixed point is guaranteed. Thus, a mapping from input to output variables is guaranteed
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8. Conclusions and perspectives

as well. In particular, minimum energy requirements based on the choice of input variables

for stage-to-stage calculations can be derived. In the numerical examples shown in this

work, the fixed-point iteration convergences within two or three iterations due to a small

Lipschitz constant. Chapter 4 and 5 are devoted to the rigorous mathematical analysis

of stage-to-stage calculations of simple and general columns with an arbitrary number of

feed streams and side-draws and show numerical examples that illustrate the theoretical

results.

The new approach can also be extended to flowsheets comprising more than one

unit operation, as shown in Chapter 6, and enables robust process simulation and easy

initialization of flowsheets even in the presence of recycle streams.

The numerical examples shown in Chapter 7 cover process simulation and optimization

of single distillation columns and distillation-based flowsheets comprising several columns

and recycle streams. Furthermore, we present numerical examples for feasibility studies,

mixed-integer optimization, multi-criteria optimization and compare the performance of

different solver implementations.

Once again we want to stress that many ideas applied in this thesis stem from the

asymptotic limiting cases of distillation columns with infinite reflux ratio and/or infinite

number of stages. As a result, we can combine the Banach fixed-point theorem and

the shooting method for BVPs in order to develop and analyze a new approach for

simultaneous process simulation and optimization of distillation columns using stage-to-

stage calculations.

The presented approach for process simulation and optimization features several sig-

nificant advantages. For distillation-based flowsheets, we can guarantee a mapping from

the input variables to the output variables in a wide range and typically for all physically

relevant choices. Thus, the optimization problem that is formulated for distillation-based

flowsheets operates not only on the set of feasible values for the optimization variables

but also on infeasible ones and optimization and convergence to a feasible solution can be

performed simultaneously without a previous simulation run. Large-scale optimization

solvers do not have to be applied to the arising optimization problems due to the fact

that the number of optimization variables and constraints remains small. Suitable starting

values for most of the optimization variables of the arising optimization problems can be

generated by employing ∞/∞-analysis.
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Another important advantage of the new method presented here is the tremendous

increase in flexibility in process simulation. When applying the classical Newton approach,

it is mandatory to specify as many variables as there are degrees of freedom. In this

classical approach, neither fewer nor more demands on the process are possible, nor is

it possible to set inequality constraints on process variables. The proposed formulation

of process simulation as an optimization problem gives the possibility of including an

arbitrary number of additional equalities and inequalities. This gain in flexibility allows

full exploitation of process limitations and easy process initialization.

As a perspective, the presented ideas could not only be extended to flowsheets with a

large number of distillation units or components, which will be a challenging task, but also

be transferred to other simple or stage-based unit models including splitters, reactors, heat

exchangers, decanters, extraction columns, and absorption columns. Suitable algorithms

that facilitate the calculation of all process variables have to be developed as a prerequisite.

Especially incorporating reactions and LLE calculations in our models seems to be of

special interest and requires sound analysis. Furthermore, the approach could also be

applied in the wide field of dynamic process simulation.
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APPENDIX A

Chemical modeling

This thesis presents a new approach for steady state process simulation and optimization in

chemical engineering with a special focus on distillation-based flowsheets. In this chapter,

we define the central terminology used throughout the thesis and give some more details

on the modeling principles in chemical engineering and the physical property models of

the example systems.

A.1. Terminology

Phase

A phase is a domain within a thermodynamical system within the relevant physical

properties are uniform. Relevant properties include chemical composition, pressure,

temperature, and density. Phases consist of one or multiple substances and we can

distinguish between solid, liquid, or vapor phases. In thesis, only liquid and vapor phases

are relevant.
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A. Chemical modeling

Vapor-liquid equilibrium

Vapor-liquid equilibrium is attained between a vapor and a liquid phase if there occurs no

net flow of heat, mass, or momentum across the phase boundary (Stichlmair & Fair, 1998,

Chap. 2).

Azeotrope

An azeotrope is a point the composition space, where the composition of the vapor phase

and the liquid phase in vapor-liquid equilibrium coincide. Hence, the composition cannot

be altered by distillation. There exist azeotropes for binary mixtures, but also for mixtures

of three components and more azeotropes are known.

Distillation line

If an initial concentration of the liquid phase x0 = (x0
1, . . . , x

0
NC

), where NC is the number

of components, is assumed, the equilibrium vapor concentration y0 can be determined for

given pressure p. The vapor is then assumed to be totally condensed. Thus, a new liquid

with composition x1 = y0 is obtained. The vapor state y1 in equilibrium with this liquid

state x1 is, in turn, determined and so on. Via this procedure a series of liquid stated is

obtained and these points can be joined together to give a distillation line (Stichlmair &

Fair, 1998, Chap. 2).

Distillation boundary

A ternary system can be divided into areas whose distillation lines have different end points.

The distillation line that forms the boundary between these areas is called distillation

boundary .

Equilibrium stage

An equilibrium stage is the region in which two phases, such as the liquid and vapor phase,

establish an equilibrium with each other.
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A.1. Terminology

MESH equations

The equations that model an equilibrium stage are known as MESH equations . The four

letters stand for the different types of equations. Here, the MESH equations are stated for

an equilibrium stage displayed in Figure A.1. We use the notation as introduced within

the scope of this thesis.

F,xF , pF , T F stage n

V n−1,yn−1, pn−1, T n−1 Ln,xn, pn, T n

V n,yn, pn, T n Ln+1,xn+1, pn+1, T n+1

Q̇

Figure A.1.: Schematic of a single equilibrium stage.

• M: Material balances

FxFi + Ln+1xn+1
i + V n−1yn−1

i − Lnxni − V nyni = 0, for i = 1, . . . , NC (A.1)

• E: Equilibrium conditions

pSi (T n)xni γi(x
n, T n) = pnyni , for i = 1, . . . , NC , (A.2)

• S: Summation equations

NC∑
i=1

xni = 1, and

NC∑
i=1

yni = 1 (A.3)

• H: Heat or energy balance

Q̇+ Fhl(xF , T F ) + Ln+1hl(xn+1, T n+1) + V n−1hv(yn−1, T n−1) (A.4)

− Lnhl(xn, T n)− V nhv(yn, T n) = 0
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A. Chemical modeling

A.2. Physical property models of the example systems

A.2.1. Pure component properties

The pure component properties required for the simulation are: vapor pressure, enthalpy

of vaporization, heat capacity at constant pressure of the ideal gas. The models for these

properties are taken from the DIPPR Database (DIPPR Project 801, 2005).

The vapor pressure pSi of the pure component i is modeled with the following correlation:

ln

(
pSi
bar

)
= Ai +

Bi

T/K
+ Ci · ln

(
T

K

)
+Di

(
T

K

)Ei

(A.5)

The parameters Ai–Ei for the different pure components considered in this thesis are given

in Table A.1.

Table A.1.: Parameters for the correlation of the vapor pressure (cf. Equation (A.5)).

Component i Ai Bi Ci Di Ei

Acetone 57.493 -5599.6 -7.0985 6.2237× 10−6 2
Benzene 71.594 -6486.2 -9.2194 6.9844× 10−6 2
Chloroform 134.92 -7792.3 -20.614 0.024578 1
Water 52.853 -6956.0 -5.8022 3.1149× 10−9 3
Ethanol 47.627 -6608.5 -4.9151 0 6
Tetrahydrofuran 42.971 -5292.4 -4.6979 1.3446× 10−17 6

The enthalpy of vaporization ∆hv,i is modeled with the following equation:

∆hv,i
J/kmol

= Ai · (1− Tr)(Bi+Tr(Ci+Tr(Di+Ei·Tr))), (A.6)

where Tr = T
Fi

. In general Fi = Tc,i, where Tc,i is the critical temperature of component

i. The parameters Ai–Fi for the different pure components considered in this thesis are

given in Table A.2.
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A.2. Physical property models of the example systems

Table A.2.: Parameters for the correlation of the enthalpy of vaporization (cf. Equation
(A.6)).

Component i Ai Bi Ci Di Ei Fi

Acetone 42150000 0.33970 0 0 0 508.20
Benzene 45346000 0.39053 0 0 0 562.05
Chloroform 41860000 0.35840 0 0 0 536.40
Water 52495400 0.33799 -0.22365 0.25301 0 647.13
Ethanol 68846922 1.4008 -2.1588 1.2081 0 513.92
Tetrahydrofuran 48843265 1.3655 -3.1467 3.9167 -1.7640 540.15

Finally, the heat capacity at constant pressure of the ideal gas cvp,i of component i is

modeled as follows:

cvp,i
J/(kmol ·K)

= Ai +Bi ·
(

Ci/(T/K)

sinh(Ci/(T/K))

)2

+Di ·
(

Ei/(T/K)

cosh(Ei/(T/K))

)2

(A.7)

The parameters Ai–Ei for the different pure components considered in this thesis are given

in Table A.3.

Table A.3.: Parameters for the correlation of the heat capacity at constant pressure of the
ideal gas (cf. Equation (A.7)).

Component i Ai Bi Ci Di Ei

Acetone 57040 163200 1607 96800 731.5
Benzene 44767 230850 1479.2 168360 677.66
Chloroform 39420 65730 928 49300 399.6
Water 33416 29833 1457.8 -19410 1602.9
Ethanol 39437 149597 511.43 -121432 598.60
Tetrahydrofuran 38953 244350 542.69 -169255 571.39

A.2.2. Vapor-liquid equilibrium

The extended Raoult’s law is used for describing the VLE

pSi (T ) xi γi(x, T ) = p yi, i = 1, . . . , NC (A.8)

where p is the pressure, pSi is the vapor pressure of pure component i, xi and yi are the

mole fractions of component i in the liquid and vapor phase, respectively, and γi is the

activity coefficient of component i. We assume throughout this thesis that Equation (A.8)

has a unique solution.
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A. Chemical modeling

The vapor phase is treated as ideal. For the non-ideality of the liquid phase the NRTL

model is used (Renon & Prausnitz, 1968). The temperature-dependent parameters for the

example systems in this work are given in Table A.4 and A.5.

Table A.4.: NRTL model parameters for the description of the vapor-liquid equilibrium in
the ternary system acetone, benzene, chloroform with τij = aij + bij/(T/K).

Component i Acetone Acetone Benzene
Component j Chloroform Benzene Chloroform
aij 0.9646 -0.1015 0
aji 0.5382 0.4224 0
bij -590.026 306.0663 313.0115
bji -106.4216 -239.9009 -375.4311
αij 0.3 0.3 0.47

Table A.5.: NRTL model parameters for the description of the vapor-liquid equilibrium in
the ternary system water, ethanol, tetrahydrofuran with τij = aij + bij/(T/K).

Component i Water Water Tetrahydrofuran
Component j Ethanol Tetrahydrofuran Ethanol
aij 5.237912 6.32978879 0
aji -2.370148 -0.4677208 0
bij -1063.74 -1278.382 331.607875
bji 658.4101 642.179685 -86.741683
αij 0.2 0.44 0.3

A.2.3. Caloric data for the example systems

The caloric data for the binary system acetone, chloroform at 1 bar which is needed to

derive energy bounds from Section 4.4.2 is given in Table A.6 and A.7. For the ternary

system acetone, benzene, and chloroform at 1 bar the caloric data is depicted in Table A.8

and A.9.
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A.2. Physical property models of the example systems

Table A.6.: Minimum and maximum values of molar liquid and vapor enthalpy for a system
containing acetone and chloroform at 1 bar. The enthalpy of the vapor phase
at 298 K of each component i is set to 0 kJ/mol.

Type Value / (kJ/mol)

maxx∈FNC
l(x) −26.513

minx∈FNC
l(x) −27.212

maxx∈FNC
v(x) 2.7970

minx∈FNC
v(x) 2.3823

Table A.7.: Caloric data needed for the derivation of energy bounds. The values are
computed for the system consisting of acetone and chloroform at 1 bar.

Type Value / (kJ/mol)

maxx∈FNC

∂l
∂x1

(x) −29.379

minx∈FNC

∂l
∂x1

(x) −30.825

maxx∈FNC

∂l
∂x2

(x) −28.514

minx∈FNC

∂l
∂x2

(x) −31.055

maxx∈FNC

∣∣∣ ∂l
∂x1

(x)− ∂l
∂x2

(x)
∣∣∣ 2.3013

Table A.8.: Minimum and maximum values of molar liquid and vapor enthalpy for a system
containing acetone, benzene, and chloroform at 1 bar. The enthalpy of the
vapor phase at 298 K of each component i is set to 0 kJ/mol.

Type Value / (kJ/mol)

maxx∈FNC
l(x) −25.718

minx∈FNC
l(x) −27.468

maxx∈FNC
v(x) 5.0052

minx∈FNC
v(x) 2.3823
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A. Chemical modeling

Table A.9.: Caloric data needed for the derivation of energy bounds. The values are
computed for the exemplary multi-component system consisting of acetone,
benzene, and chloroform at 1 bar.

Type Value / (kJ/mol)

maxx∈FNC

∂l
∂x1

(x) −29.290

minx∈FNC

∂l
∂x1

(x) −31.383

maxx∈FNC

∂l
∂x2

(x) −28.439

minx∈FNC

∂l
∂x2

(x) −39.593

maxx∈FNC

∂l
∂x3

(x) −28.679

minx∈FNC

∂l
∂x3

(x) −32.261

maxx∈FNC

∣∣∣ ∂l
∂x1

(x)− ∂l
∂x2

(x)
∣∣∣ 9.0983

maxx∈FNC

∣∣∣ ∂l
∂x1

(x)− ∂l
∂x3

(x)
∣∣∣ 2.8133

maxx∈FNC

∣∣∣ ∂l
∂x2

(x)− ∂l
∂x3

(x)
∣∣∣ 8.6858
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APPENDIX B

Comments on Assumption 4.3

Let all components be sub-critical at the studied temperature and the pressure p be given.

The interval

T lower < T < T upper (B.1)

gives the temperature range in which the mixture exhibits a VLE. In zeotropic systems

T lower is the boiling point of the lightest-boiling substance or azeotrope, T upper the one of

the highest-boiling substance or azeotrope.

Let the vapor phase enthalpy hvi (T ) of all components i be normalized to 0 at a common

temperature T lower.

If for every component i it holds that

∆hv,i(T
lower) >

∫ Tupper

T lower
clp,idT, (B.2)

then Assumption 4.3 is fulfilled as hli < 0. Thereby, ∆hv,i denotes the enthalpy of

vaporization of component i, and clp,i the heat capacity at constant pressure of the liquid

phase. Typically the enthalpy change induced by the heat capacity (right hand side of

Equation (B.2)) is small compared to the enthalpy change induced by phase transition

(left hand side of Equation (B.2)). Thus, Assumption 4.3 is plausible.
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Chalmers, Göteborg, Schweden

10/2011 - 09/2013 Master of Science in Mathematik
an der Technischen Universität Kaiserslautern

Master Thesis: Chemotherapy Planning: Mathematical Modeling,
Plan Optimization and Quality Robustness

10/2013 - 10/2016 Promotionsstudium in Mathematik
an der Technischen Universität Kaiserslautern
(finanziert von einem Stipendium des Fraunhofer ITWM
und der Technischen Universität Kaiserslautern)

11/2016 - 01/2017 Wissenschaftliche Mitarbeiterin in der Abteilung
Optimierung am Fraunhofer ITWM

179



Die vorliegende Arbeit ist durch die chemische Verfahrenstechnik motiviert: Prozess-
simulation und -optimierung mit Schwerpunkt auf destillationsbasierten Fließbildern. 
In diesem Kontext besteht ein Prozess aus einer gewissen Anzahl von Apparaten, die 
durch Ströme verbunden sind. Eine solche Struktur kann durch ein sogenanntes 
Fließbild repräsentiert werden. Im Allgemeinen sollte ein Prozess so konzipiert 
werden, dass gewisse technische Anforderungen erfüllt werden, z. B. Produktrein-
heiten, Produktausbeute oder maximale Kosten. Die Auslegung eines Prozesses im 
stationären Zustand beinhaltet die Wahl der Apparate in Kombination mit ihren 

Designvariablen für jeden Apparat. Im Rahmen dieser Arbeit gehen wir davon aus, 
dass die Topologie des Fließbilds gegeben ist und wir konzentrieren uns darauf, die 
Designvariablen für jeden Apparat zu wählen. In dieser Arbeit wird ein Ansatz 

-optimierung von destillationsbasierten Fließbildern im stationären Zustand möglich 
macht.
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