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ABSTRACT

Person recognition is a key issue in visual surveillance. It is needed in many security applications such as intruder
detection in military camps but also for gaining situational awareness in a variety of different safety applications.
A solution for LWIR videos coming from a moving camera is presented that is based on hot spot classification to
distinguish persons from background clutter and other objects. We especially consider objects in higher distance
with small appearance in the image. Hot spots are detected and tracked along the videos. Various image features
are extracted from the spots and different classifiers such as SVM or AdaBoost are evaluated and extended to
utilize the temporal information. We demonstrate that taking advantage of this temporal context can improve
the classification performance.

Keywords: Thermal infrared, IR, MWIR and LWIR, warm area localization, human detection, person classifi-
cation, visual surveillance, intruder recognition, temporal context.

1. INTRODUCTION

In this paper, we focus on outdoor applications where persons are to be detected in the environment using a
moving robot equipped with cameras. The applications range from intruder detection in military camps, border
patrol, and ground security of civil complexes1 to victim detection after catastrophes2. In such scenarios, the
thermal infrared band (MWIR or LWIR∗) offers some important advantages. The possibility to detect persons
in complete darkness passively (i.e. without the need of active light sources) is very important in the military
domain, for example. Even in daylight, persons can often be detected easier in this frequency band than in
the visual-optical (VIS) or NIR band, see Fig. 1 for illustration. Another big advantage is that LWIR cameras
can see through dust and fog in the air much better than VIS sensors. Furthermore, victim detection after the
collapse of a building is more effective when using LWIR as dust might lay on the ground and persons could be
covered completely for other imaging sensors.

When inspecting our LWIR videos in the mentioned outdoor applications we found out that in contrast to
indoor scenes there are only sparsely distributed hot spots in the environment. Typical non-human hot spots
are coming from open windows, open doors, or motorized objects. So, in order to solve the person detection and
localization problem, which is unsolved in general, we focus on scenarios with limited number and size of hot
spots in the environment. Examples for such hot spots can be seen in the right part of Fig. 1.

With that focus, a solution for LWIR imagery is presented that is based on a processing chain consisting of
two steps. In the first step, hot spots are detected and localized efficiently in the image with a scale invariant
approach. Afterwards, a hot spot classification is performed in the second step to distinguish persons from
background clutter and other objects. A high rate of true positives (detected visible persons) is to be guaranteed
in the first step with the tendency of rather being prone to false positives (detected background structures) than
false negatives (missed persons). False positives can be rejected afterwards by the classification module but
missed persons are definitely lost. For the second step, the detected hot spots can optionally be tracked in order
to provide temporal information making the classification more stable and reliable (see Section 4).
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∗These two thermal bands are very similar to each other and only differ in dedicated situations that are not relevant

here. Therefore, it does not matter if MWIR or LWIR is used. In practice, LWIR is preferred due to the lower sensor
costs.



Figure 1. Same scene in VIS (left) and LWIR band (right). The person can be discovered easier in LWIR than in VIS.

Since our image data is coming from a LWIR camera mounted on a moving robot, we do not consider
background subtraction for moving object detection. We want to detect moving and stationary persons in close
distance as well as in higher distance with small appearance in the image, where popular approaches using local
image features such as SIFT3 do not work reliably. Different classification algorithms are compared and temporal
context is utilized to achieve optimal results. Various kinds of image features are extracted from the spots and
evaluated for their separability potential. Different methods for features space reduction are implemented and
tested. Finally, classifiers such as Support Vector Machine (SVM) or AdaBoost are compared to each other and
extended to benefit from the temporal information of the tracked spots.

The challenges are covering close and high object distances reliably and being robust against variable back-
ground, weak signal-to-noise ratio (SNR), weak contrast and sensor-specific noise of thermal infrared sensors
as well as occurring motion blur due to camera or object motion. Furthermore, the algorithms have to run in
real-time, so we do not consider approaches using combined sliding window detection and object recognition
such as Histograms of Oriented Gradients (HOG).4

1.1 Related Work

For the presentation of related work we chose papers and articles where thermal infrared (MWIR, LWIR) images
were used. Especially in driver assistance applications, it is popular to use Near Infrared (NIR)5–7 or Far
Infrared (FIR)8,9 cameras. Furthermore, some authors try to fuse image data coming from visual optical (VIS)
and infrared cameras.10,11 Those topics will not be discussed here.

Dai et al.12 propose a layerered representation by separation of foreground and background using a generalized
Expectation Maximization (EM) algorithm. Pedestrians are classified by a Support Vector Machine (SVM) using
shape features and localized by Principal Component Analysis (PCA) using appearance features. Finally, a
graph-matching based algorithm is presented for pedestrian tracking. Zhang et al.13 exploit algorithms for VIS
image data and try to adapt and apply them to IR data. Two descriptors (edgelets and Histograms of Oriented
Gradients (HOG)) and two classifiers (cascaded SVMs and AdaBoost) are evaluated and provide good results.
Jüngling and Arens14 use SURF features to detect and classify human body parts. Persons are detected using
an Implicit Shape Model (ISM). Xia et al.15 introduce a SUSAN keypoint sliding window searching strategy
detecting regions of interest (ROIs). Each region is analyzed using multi-block Local Binary Patterns (LBP)
to describe pedestrians and a cascade boosted classifier to detect them. Li et al.16 propose using a sliding
window approach with a combination of HOG features and geometric characteristics as features, and a SVM as
classifier. Chen et al.17 implemented a multi-level spatial-temporal median filter to extract the background frame
in scenarios with stationary cameras. Background clutter is suppressed using Principal Component Analysis
(PCA). A spatially related fuzzy adaptive resonance theory (ART) neural network is applied to identify ROIs
and within each region, another fuzzy ART neural network is used to detect moving persons. Finally, Sun et
al.18 propose an approach similar to Viola-Jones19 object detection with sliding window, Haar-features, and



AdaBoost classification. Most authors12–17 are using the publicly available OTCBVS benchmark datasets 0120

or 0321 for evaluation. Thus, besides our own datasets, we consider them for our evaluation, too.

The remainder of the paper is organized as follows: In Section 2, the detection of hot spots will be described.
Classification in single images and image sequences will be the topic in Section 3 and 4, respectively. Experimental
results will be presented and discussed directly in the specific section. Finally, the conclusions and an outlook
to potential future work are given in Section 5.

2. HOT SPOT DETECTION

After testing some approaches for hot spot detection based on fixed and adaptive thresholding, we finally decided
for the Maximally Stable Extremal Regions (MSER) algorithm as proposed by Matas et al.22 Along the tested
approaches, it shows the best potential to fulfill the requirements mentioned in Section 1, and we already used
it successfully in other applications23,24 in the near past. When comparing this algorithm with a potential (but
slightly worse) alternative we discovered that there are some LWIR inherent effects that cannot be solved by only
hot spot detection without further considered knowledge about human appearance due to the character of LWIR
imagery and the inherent contrast effects and variabilities when working with real world scenes. In other words,
these LWIR inherent effects are expected to show up also with other hot spot detection algorithms because they
cannot be avoided due to their nature. However, this is not a principal problem due to the construction of the
proposed processing chain in which the second step aims to handle those undesired effects.

In the implemented hot spot detector the MSER results are used to calculate ROIs (bounding boxes) for the
bright image regions. The MSER results for dark image regions are discarded since most LWIR cameras use
bright values for warm image regions. Finally, the calculated bounding boxes are expanded by some border in
order to properly capture also the transition from the hot spot to the darker background. Before the ROIs are
fed into the classification step they are scaled to a fixed size. We use 3 pixels for the border size and 16× 32
pixels for the scaled ROIs.

In our experiments we used two outdoor image sequences: sequence 1 with 4580 LWIR single images and
sequence 2 with 2162 images showing a similar environment with different persons in different situations. Fur-
thermore, we processed the OSU thermal pedestrian database - dataset 01 of the OTCBVS benchmark dataset
collection20,21,25: sequences otcbvs osu 1 to otcbvs osu 10 with 18 to 73 images per sequence, 284 images in
total. The images of sequence otcbvs osu 3 were inverted before the hot spot detection because hot areas are
depicted with dark colors here. Table 1 summarizes the number of correct detections/localizations of persons,
the number of missed person (i.e. visible persons in the image where no hot spot was generated, i.e. undiscovered
persons), the number of bad hot spots ’persons + background’ as well as the number of detections of background
structures. Bad hot spots in the sense of the proposed processing chain (’persons + background’, see above text
about undesired effects) are hot spots of persons with a large amount of additional background stucture due to
contrast reasons. Such hot spots are useless in the context of the proposed processing chain since they are not
learned in the classification. Fig. 2 depicts the detected persons of sequence 1 and sequence 2 for illustration.

As seen in Table 1, there are sufficiently enough person detections for our application. Up to now, it does not
matter, if a person is not detected in every single image. Since our LWIR sensors record 25 images per second
and it is acceptable to produce an alarm with a delay of some hundred milliseconds, the person detection rate is
sufficient for practical operation purposes. However, tracking will be added in future work. The processing time
of MSER is below 8 ms per image.

3. SINGLE IMAGE CLASSIFICATION

The evaluation in Table 1 shows that there is a high amount of false positives in between the detected hot spots.
Hence, a classification module is introduced to separate true and false positives. This module consists of three
submodules: feature extraction, feature reduction, and classification. For each module we tested various standard
approaches with different properties. The classifiers in the classification submodule are learned using a set of
training samples and evaluated using a set of test samples which is disjoint from the training set. Here is an
overview of the implemented and evaluated approaches:



Table 1. Detections and misses of the hot spot detection using MSER.

detected persons missed persons persons + background background detections

sequence 1 380 (61.5 %) 77 (12.5 %) 160 (26.0 %) 1131

sequence 2 570 (83.6 %) 21 ( 3.1 %) 91 (13.3 %) 162

otcbvs osu 1 72 (83.7 %) 14 (16.3 %) 0 ( 0.0 %) 0

otcbvs osu 2 84 (97.6 %) 0 ( 0.0 %) 2 ( 2.3 %) 32

otcbvs osu 3 49 (59.8 %) 32 (39.0 %) 1 ( 1.2 %) 40

otcbvs osu 4 94 (87.8 %) 8 ( 7.5 %) 5 ( 4.7 %) 33

otcbvs osu 5 73 (86.9 %) 1 ( 1.2 %) 10 (11.9 %) 58

otcbvs osu 6 76 (95.0 %) 0 ( 0.0 %) 4 ( 5.0 %) 5

otcbvs osu 7 37 (50.0 %) 36 (48.6 %) 1 ( 1.4 %) 0

otcbvs osu 8 79 (92.9 %) 6 ( 7.1 %) 0 ( 0.0 %) 1

otcbvs osu 9 80 (85.1 %) 13 (13.8 %) 1 ( 1.1 %) 2

otcbvs osu 10 45 (54.9 %) 32 (39.0 %) 5 ( 6.1 %) 6

all otcbvs osu 689 (80.1 %) 142 (16.5 %) 29 ( 3.4 %) 177

Figure 2. Detected persons of sequence 1 (left) and sequence 2 (right).



• Feature extraction:

1. HOG: Histograms of Oriented Gradients (HOG) as proposed by Dalal and Triggs4 are calculated by
analyzing the edge structure of an object. The ROI is subdivided in blocks of 16× 16 pixels with
cells of 8× 8 pixels. In each cell gradient orientations are collected in histograms of 9 bins each and
normalized block-wise using L2-hys-norm. The histograms are concatenated. To apply the algorithm
implementation in the OpenCV library,26 we upscaled the ROIs to 48× 96 pixels.

2. DCT: The ROI is subdivided in blocks and each block is processed with the Discrete Cosinus Trans-
form (DCT). The DCT coefficients for each block are concatenated as proposed by Ekenel et al.27 We
considered block sizes of 8× 8 and 16× 16 pixels.

3. COOC: The number of co-occurrences (COOC) of similar pixel gray-values in fixed offsets are stored
in a matrix28 and evaluated using Haralick features28 such as contrast, correlation, entropy, and many
more.

4. LBP: Local Binary Patterns (LBP) are a unique description of a pixel’s neighborhood. We consider
rotation-invariant uniform LBP29 and local gray-value variance VAR29 calculated either in the whole
ROI (global) or in blocks and cells (local) similar to HOG with blockwise L2-norm.

5. Moments: This is a feature mix containing improved Hu moments,30 central moments, and Haralick
features28 calculated on the original ROI image, the gradient image, and the LBP image.

• Feature reduction:

1. None: It is quite common to not use any feature reduction at all. The benefit of feature reduction is
often pretty small. This means the classification rates do not become significantly better and the time
saved during classification due to smaller feature vector size is added by the necessary transform.

2. PCA: The Principal Component Analysis (PCA) is used for data-driven feature reduction without
considering the class labels of the training set but the variance of all samples. It is assumed that best
class separability is given in the direction where the sample distribution has its highest variance.

3. LDA: The Linear Discriminant Analysis (LDA) is used for data-driven feature reduction considering
the class labels of the training set. While the inner-class variance is to be minimized, the between-class
variance is to be maximized.

• Classification:

1. SVM: Support Vector Machines (SVM) are widely used in machine learning. We use the implemen-
tation provided in OpenCV26 with a radial basis function (RBF) kernel as we achieved better results
compared to a linear kernel. Furthermore, we apply 3-fold cross validation during the learning process
for better generalization.

2. AdaBoost: Boosting is a popular classification meta-algorithm combining many weak classifiers to a
strong one. In most cases, linear classifiers or decision trees are chosen as weak classifiers. We apply
Real AdaBoost31 as implemented in OpenCV.26

3. Random Trees: Random Trees (RT)26 is another meta-algorithm combining weak decision trees by
a voting scheme. The class is chosen with the highest number of votes. It is called random since the
feature subset and the subset of training samples are chosen randomly for each weak classifier. It has
originally been introduced as Random Forest by Breiman.32

More detailed information about the briefly described approaches can be found in the cited papers. In the
evaluation we will focus on SVM and AdaBoost as they appeared to be more stable and robust than RT in our
experiments. We also tried k-Nearest Neighbor (k-NN) and Bayes classifiers but their results have been even less
stable in the experiments than with the classifiers mentioned before, although they outperformed the mentioned
ones in a few test cases. One more reason to consider only SVM and AdaBoost for the evaluation is that we can
plot Receiver Operating Characteristic (ROC) curves for them. ROC curves show the performance of a classifier
by plotting the true positive rate against the false positive rate for a variable decision function value threshold.



Table 2. Area Under Curve (AUC) for Experiment 1.

feature
classifier test

feature extraction
reduct. HOG DCT8 DCT16 COOC LBPG LBPL LBPG+L Moments

NONE
SVM

1→ 2 0.759 0.9886 0.9902 0.9640 0.9549 0.8734 0.8771 0.9943
2→ 1 0.626 0.9871 0.9941 0.9394 0.8939 0.8241 0.8413 0.9846

AdaBoost
1→ 2 0.768 0.9870 0.9739 0.9897 0.9359 0.8725 0.9332 0.9947
2→ 1 0.598 0.9864 0.9716 0.9579 0.9012 0.7795 0.8495 0.9876

PCA
SVM

1→ 2 0.737 0.9829 0.9885 0.9678 0.8968 0.8165 0.8740 0.9862
2→ 1 0.731 0.9273 0.9202 0.9179 0.8699 0.8298 0.8229 0.9800

AdaBoost
1→ 2 0.665 0.9711 0.9575 0.9819 0.8842 0.8109 0.8144 0.9864
2→ 1 0.706 0.9150 0.9050 0.9460 0.8742 0.7048 0.7804 0.9290

LDA
SVM

1→ 2 0.715 0.9181 0.9477 0.8610 0.9393 0.9171 0.9201 0.9675
2→ 1 0.534 0.9085 0.9180 0.8757 0.8787 0.8615 0.9394 0.9347

AdaBoost
1→ 2 0.686 0.7638 0.8788 0.9139 0.9404 0.8893 0.8965 0.9057
2→ 1 0.558 0.7475 0.8251 0.8364 0.8519 0.7952 0.8131 0.8387

The closer the curve approximates to the point (1, 0), which is 100 % true positives and 0 % false positives, the
better is the classifier. Since we have many results to present, they are organized in a table with the Area Under
Curve (AUC) as performance measure. A perfect classifier has an AUC of 1.0, a poor classifier 0.5 (close to
guessing) or less.

Three different experiments have been performed to find out about the stability and robustness of the features
and the classifiers:

1. Manually labeled ground truth data for training and manually labeled ground truth data for testing.

2. Manually labeled ground truth data for training and MSER detection ROIs for testing.

3. MSER detection ROIs for training and MSER detection ROIs for testing.

3.1 Experiment 1: Ground Truth against Ground Truth

Our own two datasets sequence 1 and sequence 2 have been labeled manually for persons and background as
ground truth. Manual labeling of false positives is possible as we search for hot spots which appear brightly
in the image. This should be a better ground truth than randomly chosen false positives as it is common in
visual-optical (VIS) images and videos. In sequence 1 1152 persons and 1664 background objects have been
labeled and in sequence 2 930 persons and 2923 background objects. We evaluated with cross validation by
training with sequence 1 and testing with sequence 2 first, and then training with sequence 2 and testing with
sequence 1. Table 2 shows the results. Besides the different features, feature reduction methods, and classifiers,
the cross validation is entered in column test where 1→ 2 stands for training with sequence 1 and testing with
sequence 2. The classifier performance is evaluated with the Area Under Curve (AUC) coming from the ROC
curves. DCT8 and DCT16 describe DCT features with block size 8× 8 and 16× 16 pixels, respectively. LBPG

are global LBP, LBPL are local LBP, and LBPG+L are both features combined by concatenation.

The table shows that the features choice is strongly influencing the results. HOG are not performing well since
there is nearly no visible texture except of the person contours in our LWIR data. Furthermore, the upscaling
to 48× 96 pixels is very similar to strong image smoothing. Dalal and Triggs4 point out, that smoothing
is significantly decreasing the classification performance. Thus, HOG are not considered anymore for further
experiments in this paper which does not mean that they are unsuitable in general for IR image processing as
seen in other papers.13,16 On the other hand, DCT16 and Moments are performing best which could be the
result of varying image sharpness (blur) in our sequences as seen in Fig. 2. LBPG gives the most stable AUC
values along all feature reduction methods and classifiers. Both feature reduction algorithms do not improve the
performance. LDA is not considered anymore for further experiments as it performs worst. SVM and AdaBoost
provide similar results with a slight advantage for SVM.



Table 3. Area Under Curve (AUC) for Experiment 2.

feature
classifier test

feature extraction
reduction DCT8 DCT16 COOC LBPG LBPL LBPG+L Moments

NONE

SVM

1→ 2 0.9632 0.9542 0.9929 0.9774 0.9336 0.9341 0.9704
2→ 1 0.9729 0.9365 0.9399 0.8756 0.7639 0.7903 0.9556

1→ osu 0.5874 0.6113 0.5592 0.5047 0.3443 0.3455 0.6795
2→ osu 0.7144 0.6248 0.5218 0.6505 0.8821 0.8563 0.6423

AdaBoost

1→ 2 0.9860 0.9550 0.9984 0.9764 0.8620 0.9487 0.9589
2→ 1 0.9331 0.9196 0.9886 0.8464 0.7187 0.8430 0.8833

1→ osu 0.6396 0.6097 0.5891 0.5445 0.3616 0.5108 0.6817
2→ osu 0.6643 0.6996 0.6259 0.6503 0.8658 0.7521 0.6435

PCA

SVM

1→ 2 0.9325 0.9421 0.9627 0.9074 0.8503 0.8846 0.9121
2→ 1 0.8381 0.8482 0.9340 0.8695 0.7855 0.7507 0.9282

1→ osu 0.5345 0.6640 0.3622 0.6710 0.3230 0.3982 0.6878
2→ osu 0.7830 0.8669 0.4961 0.5586 0.5737 0.8685 0.7961

AdaBoost

1→ 2 0.8754 0.9835 0.9911 0.8928 0.8754 0.8547 0.9198
2→ 1 0.8572 0.8379 0.9195 0.8321 0.6643 0.7229 0.8046

1→ osu 0.5861 0.6884 0.4713 0.4955 0.4373 0.4751 0.6267
2→ osu 0.7907 0.6436 0.5682 0.5161 0.6188 0.8142 0.7579

3.2 Experiment 2: Ground Truth against MSER

Besides the aim of achieving good classification results, we also want to find out how biased our dataset is.
Therefore, we evaluate classifiers trained on sequence 1 ground truth against sequence 2 and otcbvs osu MSER
results and classifiers trained on sequence 2 ground truth against sequence 1 and otcbvs osu MSER results.
Since the otcbvs osu dataset has been successfully processed by several authors,16,17 we do not use it for training,
but only for testing. If we get good results on this dataset, too, this indicates good generalization abilities. We do
not consider partial MSER detections in this experiment, yet, but only fully detected persons and background.

The results are visualized in Table 3. Since the AUC values during the evaluation of our sequences are consis-
tently good, the manually labeled ground truth and the MSER detection results seem to be pretty similar. With
Co-occurrence and Moments very good results are achieved. Unfortunately, the evaluation of the otcbvs osu

dataset causes a strong performance decrease. Our datasets are different from the otcbvs osu sequences and
this results in a performance worse than guessing in some cases. However, Moments provide the best trade-off
between the datasets together with DCT. It seems that sequence 2 is a more representative training set than
sequence 1 due to the consistently better AUC values for the evaluation with otcbvs osu. Again, SVM and
AdaBoost perform similar.

3.3 Experiment 3: MSER against MSER

In the final experiment of this section, MSER detection are to be used for training and evaluated with MSER
detections as well. In this experiment we also add partial MSER detections of persons to the training and test
sets. The motivation is to achieve better classifier generalization. We do not consider DCT8 and LBPG+L here
since they did not perform significantly different than DCT16, LBPG, or LBPL.

The AUC values in Table 4 are in most cases better for the evaluation of the otcbvs osu dataset. This shows
that with the new training data set consisting of MSER hot spots of background, persons, and partially detected
persons is less biased than the manually labeled ground truth data. In some cases, PCA performs better than no
feature reduction. This might be due to the curse of dimensionality which is already appearing there are too less
training samples in a too high-dimensional feature space. Feature reduction with PCA can decrease the negative
effects coming from the curse of dimensionality. The best performance is again achieved when using Moments
as features. This brings us to the conclusion that future work should focus on this kind of features when good
generalization abilities are to be guaranteed.



Table 4. Area Under Curve (AUC) for Experiment 3.

feature
classifier test

feature extraction
reduction DCT16 COOC LBPG LBPL Moments

NONE

SVM

1→ 2 0.9380 0.9768 0.8880 0.8914 0.9949
2→ 1 0.8983 0.9131 0.8529 0.9002 0.9331

1→ osu 0.4275 0.6190 0.7444 0.4204 0.6926
2→ osu 0.7636 0.5022 0.7420 0.8153 0.5686

AdaBoost

1→ 2 0.9429 0.9821 0.8826 0.9167 0.9942
2→ 1 0.8357 0.8206 0.8579 0.8902 0.8747

1→ osu 0.3315 0.6104 0.6283 0.3916 0.6655
2→ osu 0.7605 0.6224 0.7196 0.8382 0.7908

PCA

SVM

1→ 2 0.9280 0.9785 0.8366 0.8240 0.9810
2→ 1 0.9215 0.9131 0.8761 0.8684 0.9448

1→ osu 0.3748 0.5357 0.5931 0.3451 0.6509
2→ osu 0.7073 0.5853 0.8176 0.7884 0.7389

AdaBoost

1→ 2 0.8190 0.9830 0.8591 0.7890 0.9899
2→ 1 0.8494 0.9090 0.8227 0.8211 0.8970

1→ osu 0.3759 0.6910 0.4665 0.4366 0.7068
2→ osu 0.8385 0.6973 0.5492 0.6747 0.7810

Table 5. Area Under Curve (AUC) for classification with 11 timesteps of temporal context (history).

feature
classifier test

feature extraction
reduction DCT8 DCT16 COOC LBPG LBPL LBPG+L Moments

NONE
SVM

1→ 2 0.9929 0.9948 0.9777 0.9738 0.9066 0.9051 0.9983
2→ 1 0.9909 0.9955 0.9473 0.9085 0.8371 0.8532 0.9922

AdaBoost
1→ 2 0.9924 0.9807 0.9959 0.9566 0.9056 0.9483 0.9973
2→ 1 0.9924 0.9798 0.9671 0.9287 0.7937 0.8653 0.9899

Table 6. Area Under Curve (AUC) for classification with 21 timesteps of temporal context (history).

feature
classifier test

feature extraction
reduction DCT8 DCT16 COOC LBPG LBPL LBPG+L Moments

NONE
SVM

1→ 2 0.9943 0.9953 0.9854 0.9789 0.9192 0.9178 0.9986
2→ 1 0.9917 0.9957 0.9501 0.9130 0.8396 0.8558 0.9936

AdaBoost
1→ 2 0.9943 0.9840 0.9968 0.9627 0.9147 0.9536 0.9976
2→ 1 0.9940 0.9826 0.9707 0.9380 0.7956 0.8707 0.9913

4. IMAGE SEQUENCE CLASSIFICATION

In this section, temporal information is introduced. This is possible for the ground truth data only since we do
not track the hot spots detected by MSER, yet. Classification with temporal context is implemented quite simple
in this paper: each classifier has a history of n timesteps. As soon as there are more than one classifications for
the same tracked object available, the final class is determined by voting. Actually, this is not affecting the ROC
curves, yet, since they are generated using the decision function values of SVM and AdaBoost. To influence
the ROC curves, too, we calculate the mean decision function value in each timestep along the history for each
classifier.

Table 5 and Table 6 show the results for a history of 11 and 21 timesteps, respectively. For nearly each case a
significant performance improvement is achieved, and a longer history consistently causes better performance as
seen when comparing Table 5 and 6. Highest correct classification rates are reached for DCT and Moments. We
consider these results as very promising. The maximum in the ROC curve is at 99.9 % true positives with 0.095 %



false positives for Moments features. Future work will include more sophisticated fusion of temporal information
such as concatenation of feature vectors coming from different timesteps or the introduction of spatio-temporal
features like LBP-TOP33 or Spatio-Temporal HOG (STHOG).34

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a processing chain for person detection in thermal infrared (LWIR) image sequences
consisting of MSER hot spot detection and subsequent person classification. The proposed processing chain
appears to be a promising approach for person detection, localization, and recognition. Our experiments show
that it works well in real world outdoor scenes providing reasonable detection rates with MSER and very good
classification performance for different features and classifiers along the detected hot spots. Generalization
abilities have been analyzed using the publicly available OTCBVS benchmark dataset for testing classifiers
trained on our datasets.

As described in Section 2, alternatives to or modifications of the MSER algorithm should be researched in
order to optimize the obtained person detection rates. Especially systematic effects disturbing the detection
rates such as merged background and person or missed persons in general are to be studied and improved here.
Additionally, the calculation of the bounding boxes could be done hierarchically to produce a set of bounding
boxes for each maximal image region instead of just calculating one bounding box considering also different
intensity levels of the hot areas. Future work in classification will cover further analysis of features and how to
utilize temporal information.
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