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Abstract: This technical report reviews the state of the art in optical prepro-
cessing for spectroscopic applications. In particular, unconventional spectral
techniques are reviewed that do not use a spectrometer, or make no use of it
in the classical manner. In a theoretical part of this technical report, a vector
space representation is derived to describe spectral processing and necessary
assumptions are outlined. Based on this mathematical concept, optimal optical
filters for spectroscopic applications can be designed. The second part of the
technical report is about the optical hardware of these unconventional spectral
technics.

1 Introduction

The near-infrared NIR spectral range 800−2500nm is very interesting for technical

applications. In contrast to the visible range, a transmission or reflectance spectrum

is related to stretch-and-bend vibrations of covalent bonds in molecules. In detail,

NIR reports on 1st, 2nd and 3rd vibrational overtones, combinations, and echoes of

those that occur in the mid-IR [GL10]. These mechanisms cause broaden, often

overlapping, peaks. On the other hand, the mid-IR range has higher technology

cost.

In addition to the classical spectroscopy, a lot of efforts were done to develop

unconventional methods, which do not use a spectrometer, or not in the classical way

[Bia86b, BBWB08a, MSK+02a, PSB99, DUDL07, FH95a, FH95b, MSL+01a,

HM04a, NAD+98a, CUL05a, SGB11]. The reasons for these developments are

higher signal-to-noise ratio [BBWB08a], easier instrumentation [Bia86b] and faster

data acquisition [MSK+02a]. Every time, when an application is limited by noise,

costs, or speed, these technics can be an option.
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Over the years a lot of keywords were used for merchandising purposes. This is an

overview for the most important acronyms:

• OSP Optical Signal Processing [Bia86b]

• OC Optical Computing [ML05]

• OR Optical Regression [PSB99]

• MOE Multivariate Optical Element [MSK+02a]

• MFC Molecular Factor Computing [DUDL07]

• CP Computational Photography [HKW]

• MOC Multivariate Optical Computation [BBWB08a]

• ISP Integrated Sensing and Processing [ML05]

• HICI Hyperspectral Integrated Computational Imaging [CUL05a]

• PAT Process Analytical Technology [DUDL07] (general topic)

2 Vector Space Representation for Continuous

Light Spectra

The natural character of light spectra is continuous. The natural character of

measured light spectrum is discrete. In between there is a sampling process, which

is referred to as measurement process. The reduction of continuous spectra into

discrete values allows to arrange these as a vector. The vector t = (t1, t2, · · · , tn)⊤
describes a transmission spectrum sampled at n discrete wavelengths.

In the following, it is discussed how this vector representation can be used to

describe an optical filtering process and a filtering process in combination with

an additional camera sensor. A filter f = (f1, · · · , fn)⊤, regardless of its optical

realization, describes a wavelength dependent percental transmission fi ∈ [0, 1].
This transmission describes the percental throughput of intensity, when light passes

this element. The spectrum of the light intensity I0 = (I01 , · · · , I0n)⊤ is modulated

according an element-wise multiplication:

I1 = f ◦ I0 = (f1I
0
1 , · · · , fnI0n)⊤,
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when passing the filter f . In the case of an additional photon sensitive sensor, which

is typically sensitive for multiple wavelengths. The sensor signal s becomes:

s = αf⊤I0 ∼ f⊤I0, (2.1)

and can be described as vector dot product. The factor α is necessary for physical

unit consistency, because the unit of s is not specified here. In literature, s is often

defined as gray value. In this case α is a factor that maps light intensity to grey

value. The target of most of the unconventional spectroscopic technics is to connect

the sensor signal s with a quantity of interest. So far no assumptions were necessary.

2.1 Vector Space Representation and Concentration Changes

Spectroscopy is well suited to measure concentrations of molecules in mixtures.

In this article, the convention is used to name a specimen analyt if concentrations

are of interest and material if the chemical composition is static. Furthermore,

unimportant analyts are named as interferents. The following section discusses

the problem of changing concentrations in spectroscopy [Mor77c] and the use of a

vector representation. The impact of concentration changes to the analyt spectrum

can be modeled by the Beer-Lambert law:

tA(λ) =
I1(λ)

I0(λ)
= e−ǫA(λ)cAl. (2.2)

The continuous transmission spectrum tA(λ) is defined as the ratio of the output

intensity I1(λ) behind the analyt A and input intensity I0(λ), respectively. The

transmission tA(λ) is an exponential function of the absorption coefficient ǫA(λ),
the concentration cA, and the path length l of the light travelling through the volume.

In general, there is no limitation to transmission spectra tA(λ), however, the path

length l of a reflectance spectrum rA(λ) is unknown and must be determined

empirically. In vector space representation, equation (2.2) can be rewritten as:

tA =
I1

I0
= e−ǫAcAl,

where tA and ǫA are vectors. According to the Beer-Lambert law, there is no linear

relationship between a transmission spectrum tA(λ) and a concentration cA. To

use this law in a linear vector space it needs to be linearized. For example, if the

signal s of equation (2.1) shall be proportional to a concentration c and the task

is to determine an adequate filter vector f , this undertaking will fail due to the

nonlinearity of the Beer-Lambert law. However, under the assumption of small
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concentrations c ≈ 0 the Beer-Lambert law can be suitable linearized using a Taylor

approximation of degree 1:

tA(−ǫA(λ)cAl) = e−ǫA(λ)cAl

≈ e−ǫA(λ)cAl|cA=0 + (cA − 0)1
∂e−ǫA(λ)cAl

∂cA
|cA=0

= 1− ǫA(λ)cAl

In this form the transmission spectrum tA(λ) scales linear with changes in concen-

tration cA. Hence, it is possible to use equation (2.1) to find a linear relationship

of signal sA and a concentration cA. This is an approximation and will fail when

concentrations become to high.

Normally, applications do not just deal with one analyt, but a mixture of them. The

Beer-Lambert (2.2) law can be extended for this case. If a second absorber B is

introduced, the overall transmission is the entry-wise product of the transmission

tA and tB .

t = tA ◦ tB = e−ǫAcAl ◦ e−ǫBcBl = e−ǫAcAl−ǫBcBl

For small concentrations this can be approximated to:

t = 1− ǫAcAl − ǫBcBl.

and an useful extension is to use the difference from a reference level:

x = 1− t = ǫAcAl + ǫBcBl (2.3)

In this form x is the absorbance vector as the result of the vector addition of the

absorbance components ǫAcAl and ǫBcBl.

The assumption of small concentrations is quite strict. The same formula (2.3) can

be derived by the use of negative log transmissions:

x = −ln(t) = ǫAcAl + ǫBcBl

Although this is exactly the same result as (2.3), it is not an approximation anymore.

The negative logarithm transformation converts the exponential Beer-Lambert law

into a linear form. However, in practice every channel of a spectrometer must be

transformed according to the negative logarithm separately. Furthermore, you one

to ensure that the spectral width of the bandpass filters is small enough, so only

slightly changes of ǫ(λ) can be guaranteed. In this case ǫ(λ) can be approximated

by a single constant ǫ(λk) for the spectral interval of the bandpass filter [Mor77c].
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Figure 2.1: Vector space representation of sampled light spetra of analyt A and B.

Each sampling wavelength defines one dimension of the vector space. Extracted

from [Mor77c]

In summary, with an approximation for low concentrations it is possible to de-

rive a linear relationship of the concentration c and the absorbance spectrum x.

Arbitrary concentrations can be handled by a linear model, if each channel is trans-

formed according to the negative logarithm. The mixture of two absorbance spectra

can be modeled by an addition of the absorbance vectors. These two properties

proportionality and additivity satisfy the requirements of a linear vector space.
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2.2 Vector Space Representation and Constant Concentrations

Applications using materials with a static chemical composition are quite common.

For Example in remote sensing one task is to perform a spectral unmixing while

the potential components are known. The problem in remote sensing is that each

pixel of a hyperspectral imaging system images more than a single material. With

the linear mixture model[KM02]:

r = arA + brB + · · ·+ n

a measured reflectance spectrum r can be explained by a linear combination of

known spectra {rA, rB , · · · }, with linear coefficients {a, b, · · · } and a noise vector

n. The linear modell can be imagined as checkerboard distribution of multiple

pure materials. In contrast to applications where the concentration of analyts can

change, the chemical composition is fixed. For this reason the spectra of the known

materials can be treated as ground truth, also called endmembers. The reflectance

vector r is a linear combination of other vectors {rA, rB , · · · }. The two properties

proportionality and additivity are satisfied and the requirements for a linear vector

space are fulfilled. With the vector dot product [Mor77c] it is possible, e.g., to

design a filter f , so that the signal sA = f⊤r is proportional to a, describing the

spatial proportion of material A.

3 Optimal Filter Design Rules

The linear vector space theory is used in this section to derive optimal filter designs.

The way how spectra can be represented in a linear vector space dependents on

the application. If concentrations are of interest an analyt vector represents an

absorbance vector xA = −ln(tA) or the approximation xA = ǫAcAl of analyt A.

If reflectance spectra are treated as ground truth, the target vector rA describes a

reflectance vector.

In this section it is not necessary to distinguish between different applications

any longer, because an uniform vector space representation is possible. In certain

circumstances, a filter vector f , however, cannot be directly interpreted as a filter

transmission characteristic. Fore example if the vector xA = −ln(tA) is used

instead of the transmission vector tA, the resulting optimal filter vector f should be

transformed inversely f ′ = e−f , to receive the transmission characteristic for the

optical filter.

The task of optimal filter design is to find a filter f , so that a concentration or

proportion of a target vector a can be determined. The relationship between a
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Figure 3.1: Optimal filter vectors f for different optimum criteria. A measurement

vector m = a + i + n is composed of a target vector a, an interference vector

i and a noise vector n depicted as the standard deviation σ. Vectors shown in a

two dimensional vector space, with each dimension corresponding to a sample

wavelength. Extracted from [Mor77c].
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concentration and a target vector can be defined by the vector dot product.

s ∼ f⊤m,

in which m = a+ i1+ i2+ · · ·+n is the vector addition of the target vector a, the

other interference vectors {i1, i2, i3, · · · }, and a system noise vector n. The filter

f is designed in such a way, that the signal s is proportional to a concentration or

a proportion respectively. The system noise vector n is a random variable which

describes the sum of all involved noise sources, with E{n} = 0 and Cov{n} = σ2I.

The optimal criteria can be defined heuristically, with or without constrains, and by

a signal-to-noise ratio. In the following, different optimal filter vectors are designed

using these optimal criteria. The first case is an optimal filter for a single target a.

The measurement vector is defined as m := a+ n (depicted in Fig. 3.1b). Using

the signal-to-noise ratio [Mor77c],

SNR =
E{f⊤m}

(Var{f⊤m}) 1
2

=
f⊤a

f⊤(Cov{n}f) 1
2

, (3.1)

as optimum criterion, an optimal filter f is found if both vectors f = a point in

the same direction, while the noise vector n is uniform and uncorrelated. The

author[Mor77c] calls this filter the matched filter, because f = a.

If, in addition, an interferent vector i with random length disturbs the target vector,

the optimal filter vector tends away from this interferent (depicted in Fig. 3.1c).

The optimal filter vector then again can be derived by solving the SNR (3.1) for

this case. According to [Mor77c] the solution is

f = (σ2I+ σ2
i ii
⊤)−1a,

with the assumption of white noise and I as identity matrix.

To describe the distribution of the concentration of a known interferent i as white

noise can be problematic. An option to get rid of this problem is to design the

filter vector perpendicularly to the interferents. This is depicted in 3.1d for a

single interferent. In this case, a change of the interferent analyt has no effect to

the resulting signal s. If the filter vector f should be perpendicular to multiple

interferents and the number of interferents is less than the dimension of the vector

space, the target vector a can be projected onto the subspace of these interferents.

Then, f is optained by the difference of a and the projection of a onto this subspace
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[Mor77c]. In detail

f =(I−Φ(Φ⊤Φ)−1Φ⊤)a and

Φ = [i1, i2, · · · ],

with the matrix Φ that organizes the interferents vectors colom wise. Another way

how to obtain a filter vector that is orthogonal to the interferents was introduced by

[Bia86b]. By the Gram−Schmidt process a new orthogonal basis can be constructed

with one direction orthogonal to all interferents. Again, the interferents vectors are

arranged colom wise, but this time the target vector a is added at last

M = [i1, i2, · · · , ip,a]
M = QR (QR-factorization)

f = ql, with Q = [q1, · · · , ql].

This matrix M can be decomposed into an orthogonal matrix Q and an upper

triangular matrix R using the Gram-Schmidt process. The optimal filter is then the

last colom vector qn of the matrix Q.

Beside these analytical motivated methods, also heuristically methods are very

common. In Section 2.1 it was already discussed, that changes in concentration

cause nonlinear changes in the spectrum due to the Beer-Lambert law. In the major-

ity of articles [BBWB08a][MSK+02a][HM04a][NAD+98a][DUDL07][PSB99], a

linear regression approach is chosen, that do not pay attention to this problem.

Often linear regression is combined with a principle component analysis. The linear

regression model [HM04a]

s = f⊤a =
l∑

j=1

fjaj

can be reduced to a vector dot product with regression coefficients fj equal to the

filter vector entries. l is the maximal number of wavelengths and equivalent to the

dimensionality of the vector space.

4 Filter Technology

This section gives an overview of different possibilities how optical filters can be

realized. Only filter design methods are of interest, that allow to produce custom
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filter transmission characteristics. In general, a filter can be placed before or behind

the analyt, filtering the illumination part or the image formation part, respectively.

If the illumination part is filtered, the filter need not fulfill image formation quality

and this enables some methods that are prohibited in the image formation part.

Optical filter technologies:

• Partial glass filter according to Dresler[Ric81]. Multiple standard glas filter

are spatial assembled side by side and in series. The single glass filter

fragments are chosen in such a way, that the resulting filter approximates the

target filter characteristics. This filter is placed in the plane of the aperture.

• Chromatic light dispersion with filter mask [Bia86b]. This kind of filter

works only in the illumination part. Polychromatic light is split up and pro-

jected onto a mask. The intransparent part of the mask absorbs wavelength

dependent light proportions. After remixing the illumination, the light fea-

tures the target spectrum. State of the art are programmable filter mask for

prototyping issues.

• Narrowband laser line illumination [Mor77c]. Laser lines are monochromatic

and can replace single channels of spectrometers.

• Liquid analyt mixture [DUDL07]. A cuvette is filled by multiple analyts of

known spectral characteristics. The mixture can approximate a target filter

characteristic.

• Interference filters [LM08]. A sequence of thin films is applied onto a

substrate. In theory arbitrary target filter characteristics can be design.

• Nano structured plasmons filters [KTE+99]. Structured metal films with

holes and other geometries in nano scale show are wavelength dependent

transparency. The transmission characteristic can be influenced by the

dimensions and the layout of the metal structure.

• Material as Screen for intermediate images [SGB11]. Similar to an analyt

mixture that is used as transmission filter, intransparent materials can be used

in reflectance mode as filter. Either as reflectance mirror in the illumination

part, or as screen for intermediate images in the image formation part.

• Spectrometer with weighted integration time for each channel [BBWB08a].

This is a virtual filter and a spectrometer is still required. According to the

target filter design the integration time is weighted for each channel.
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These methods suffer from the problem of negative coefficients of the target filter

design. This problem can only be solved by the use of two filters, one for the

positive coefficients and one for the negatives. An elegant solution was proposed by

[MSK+02a] who used an interference filter as beam splitter. The transmission char-

acteristic of this interference filter approximates the positive target filter coefficients

and the reflected the negative ones.

5 Conclusion

Unconventional spectroscopic technics can be described in an uniform way, using a

vector space representation. Instead of a spectrometer, only one or a few sensors

are used, together with complex filter transmission characteristics. According to the

application an optimal criteria can be formulated to determine the corresponding

optimal filter. On the hardware side, a lot of technics were developed to realize

arbitrary filter transmission characteristics.
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