CPV Technology Overview Research and Development

A.W. Bett, S. Kurtz*

Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany

*National Renewable Energy Laboratory NREL Golden, USA

Why Concentration Technologies? THE Option for Low Cost on ∉kWh-level

The basic idea and difference to standard PV:

Decouple the area for sunlight collection (F_0) and area for conversion (F_c)

$$C_{geo} = \frac{F_0}{F_c}$$

- → semiconductor (conversion area) is the most expensive
- → use a cheap optic for collection of the sunlight

CPV – a plurality of system solutions that place

Opportunities and Challenges

CPV – Concentrating Photovoltaics A Trial for Classification

LCPV – low concentrating photovoltaics
 Concentration factor: 1 < C < 50 [suns*]
 Concentrator cells: mainly modified Si cells
 Tracking: often 1-axis tracking, but also 2-axis

 HCPV – high concentrating photovoltaics Concentration factor: C > 300 [suns*] Concentrator cells: III-V-based high efficiency multi-junction cells Tracking: precise 2-axis

* 1 sun equals 1000 W/m²

CPV – Concentrating Photovoltaics A System Approach: the Challenge and the Opportunity

CPV – Concentrating Photovoltaics R&D Requirements

Optimize through R&D:

- Performance
- Cost
- Reliability
- Manufacturability
- Ease of shipping, installation, alignment, maintenance

Outline

- Concentrator Solar Cells
- Optics
- Tracking
- Reliability, Testing and Standards
- Energy Payback Time
- CPV System Examples

Efficiencies for Solar Cells

Shockley-Queisser Limit – the Theoretical Limit*

- J_{SC} increases linearly with concentration
- V_{OC} increases logarithmically with concentration
- $\Rightarrow \eta$ increases with concentration
- $\Rightarrow \eta$ increases with number of cells

* Note: 75-80 % of the theoretical limit can be practically realised!

Concentrator Solar Cells

Development of Performances versus Time

Si Concentrator Solar Cells An Example for R&D: Industrial feasible C-MWT Cells

Si Concentrator Solar Cells Industrial Availability

- SunPower sold Si CPV cells off the shelf a decade ago, but made a business decision to stop
- Some companies use one-sun Si solar cells (only for very low concentration)
- NaREC is currently the primary company which includes concentrator Si PV cell in their business model
- PVTEC of Fraunhofer ISE offers pilot sampling
- ⇒ Supply of Silicon concentrator cells remains a problem for this segment of the community

III-V-based Triple-Junction Solar Cell The Industrial Standard Today

- 19 layers
- doping levels: 5*10¹⁶ – 2*10²⁰ cm⁻³
- thicknesses:
 - $0.02-4.0\ \mu m$
- Iayer compositions: binary – quaternary As/P hetero-interfaces
- → Efficiency in production: 36 % - 39 %

rear contact

III-V-based Triple-Junction Solar Cells Growth Technology as for LED and LASER Structures! MOVPE (metal organic vapor phase epitaxy)

III-V-based Triple-junction Solar Cells

Industrial Availability – No ISSUE!

Company Name/Web Link	Location	Comment
<u>Arima</u>	Taipei, Taiwan	Reported achieving >40% cells.
<u>Azur Space</u> <u>(RWE)</u>	Heilbronn, Germany	Reported 36% efficiency; custom designs available.
<u>CESI</u>	Milano, Italy	Datasheet reports efficiency >30%.
<u>Compound Solar</u> <u>Technology</u>	Hsinchu Science Park, Taiwan	Website shows I-V curve with 33.4% efficiency
<u>Cyrium</u>	Ottawa, Canada	Datasheet describes typical > 39% cells
Emcore	Albuquerque, NM, USA	Datasheet describes typical 39% cells and receivers at ~500 suns.
<u>Epistar</u>	Hsinchu, Taiwan	Multi-junction cells in development
IQE	Cardiff, Wales, UK	Has demonstrated state-of-the-art efficiencies
<u>JDSU</u>	Milpitas, CA, USA	Advertises multi-junction concentrator cells on website
Microlink Devices	Niles, IL, USA	Multi-junction cells removed from substrate in development
<u>Quantasol</u>	Kingston upon Thames, Surrey, UK	Multi-junction cells with quantum wells
<u>RFMD</u>	Greensboro, NC, USA	Multi-junction cells in development
<u>Sharp</u>	Japan	Has demonstrated high efficiencies, but has not indicated plans for commercialization outside of supplying cells for its own CPV systems.
Solar Junction	San Jose, CA, USA	Is approaching 40%.
Spectrolab	Sylmar, CA, USA	Datasheet describes minimum average 36% cells and cell assemblies at 50 W/cm ² . Will ship 35 MW in 2009, and plan to ship 100 MW in 2010 (@500X).
<u>Spire</u> (Bandwidth)	Boston, MA, USA	Announced achievement of 42.3% efficiency.
<u>VPEC</u>	Ping-jen city, Taiwan	Multi-junction cells in development

What's Next? R&D for Cost Savings and better Performances Energy Harvesting Efficiency for El Arenosillo, Spain

Optics – a Playground for Creativity

Optics Design Considerations

- Refractive vs reflective
- Add secondary to increase acceptance angle?
- Small vs large elements
- Planar (Fresnel) vs shaped (domed) elements
- Acrylic vs silicone-on-glass vs many other materials
- Short vs long focal length (f number)
- Point focus (MJ CPV?) vs line focus (Si CPV?)
- Filled (solid) optics vs transmission through air
- Use of wave guides
- Use of luminescence for concentration

Examples of Concentrating Elements

Sources: UPM, Daido Steel, Fraunhofer ISE, Sol3G, Solfocus

Trackers and BOS – high-tec or low-tec? But: with Cost Impact!

CPV System Cost Analysis One third of the Cost for Tracker and BOS

Ref: Lerchenmüller et al, 3rd Solar Concentrator Conference, Arizona, 2005

Trackers A Need for Accuracy!

Picture courtesy: I. Luque-Heredia, Spain

Trackers Make your Choice!

- Pedestal vs distributed support
- One axis (for Si CPV?) vs two axis
- Small (individually tracked) vs large elements
- Height
- Circular (carousel: rotate & roll) vs linear (tilt & roll)
- Planar mounting vs staggered mounting
- Open- vs closed-loop tracking control
- Hydraulic vs direct drive

Power Electronics for CPV Applications

- Requirements for CPV inverters:
 - High efficiency, <u>also at nominal power</u>
 - High DC voltage (no DC/DC converter, no transformer)
 - Fast and accurate MPP Tracker (high fill factor)
 - High operating temperature (T_{amb.} > 50 °C)
- Requirements for CPV tracking units:
 - High position accuracy (typ. 0,1° to 1°)
 - No weather sensitivity (wind, clouds, 2nd irr. sources)
 - Robustness and overload capability
- Requirement for both: <u>Reliability</u> and <u>cost</u> <u>effective</u>

Reliability, Testing and Standards A Key for Bankability

Reliability An important Challenge!

Reports of reliability issues include:

- Trackers
- Inverters, data acquisition, etc.
- Longevity may be limited by optics, thermal control of cells, dirt getting into the light path
- Only a handful of companies have > 10 y experience in the field
- Most companies are aggressively applying accelerated testing
- → Most companies are considering "design for reliability" from the start
 → Convincing banks of long-term reliability is key hurdle to growth

Reliability and Testing

- Standards for flat plate PV established
- IEC62108: Concentrator photovoltaic (CPV) modules and assemblies
 - Design qualification and type approval

Climate chamber at Fraunhofer ISE

CPV modules in a heat cycling test

International Standards Efforts For CPV

IEC TC82 WG7 current projects:

- Power Rating
- Safety
- Energy Rating
- Tracker specification
- Acceptance test

UL

Safety

28 © Fraunhofer ISE

Power Rating Order out of Chaos

In the past, companies chose rating conditions:

- Irradiance: 850, 900, or 1000 W/m²?
- Temperature: 25°C cell or 20°C ambient ?
 - → affects €/W, performance ratio, and other metrics

IEC WG7 committee has now tentatively chosen:

Irradiance: 900 W/m²

Test condition:

25°C cell

(same as flat plate)

Operating condition:

20°C ambient

(like California's rating)

Innovation for Our Energy Future

29 © Fraunhofer ISE

Energy Pay Back Time A Case Study

Study on Energy Payback Time for a FLATCON[®] System CPV is a Green Energy!

Ref: Peharz et al, Prog PV Res and Appl., 2005, 13, 627

Examples for CPV Systems

Examples for III-V based Concentrator Systems AMONIX, CA, USA

- C ~ 500x
- Fresnel lens
- Up to 70 kW/pedestal
- Installed:
 - ~ 14 MW Si-based
 - $\sim 2 \text{ MW MJ}$
 - > 40 MW in progress
- Production capacity 30 MW/y (plans to expand)

Examples for III-V based Concentrator Systems Concentrix Solar, Germany

- C ~ 385x
- Fresnel lens
- 6/12/22 kW pedestal
- Glass/glass construction
- Installed:
 - $\sim 2 \text{ MW}$ on sun
 - > 1 MW in progress
- Production capacity 25 MW/y

Examples for III-V based Concentrator Systems EMCORE, New Mexico, USA

- C > 1000x
- Fresnel lens
- Tilt & Roll

 Installed > 1 MW of design on pedestal

Examples for III-V based Concentrator Systems Solfocus, California, USA

- C ~ 650 X
- Multiple reflections within glass
- ~9 kW/pedestal
- Installed:
 - ~ 2 MW on sun
 - > 10 MW in progress
- Production capacity 50 MW/y

Example for Low Concentration System Skyline Solar, California, USA

- Linear focus
- Reflective optics aimed at opposite side
- C ~ 10x
- Si cells
- ~ 150 kW on sun
- Mirrors shaped in automotive factory

Example for Co-generation System Zenith Solar, Israel

- C ~ 800x
- Dense Array with MJC and actively cooled
- ~ 100 kW_{el} + 200 $\mathrm{kW}_{\mathrm{therm}}$ on sun
- Production starts

Summary

- Many options for optics, trackers, and cells to consider in CPV system development
- High-efficiency multi-unction cells enable high-concentration CPV; while low-X CPV reduces use of silicon
- Module efficiencies of 30% are enabling
- Convergence of product development & market emergence provides growth opportunity

Please visit CPV-7 in April, Las Vegas 2011

http://www.cpv-7.org

Thanks you very much for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Andreas Bett

www.ise.fraunhofer.de andreas.bett@ise.fraunhofer.de

Energy Laboratory Innovation for Our Energy Future

40