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� Surface Technology and Photonics

� Defense and Security 
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Employees

120   Scientists and engineers

12   Technicians & 29 supporting
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personnel

130   PhD and Diploma students, 
Research assistants
Guest Scientists

Finances

23    Mio €, from which

11,8 Mio € by orders from industry

Methods and Techniques

Ultrasonic, Eddy Current, Electromagnetics, 
Micromagnetics,  Microwave, x-ray-Radio-
scopie, Tomo-, Laminography, Atomic-Force-
Mikroscopy, Thermography, Acoustic 
Emission,  Nuclear Magnetic Resonance

Saarbrücken Dresden



Business Units

Railway                               SB 
Automotive                          SB
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Automotive                          SB
Aviation, Aerospace            DD
Metal Production, Processing SB
Plant, Installation                SB
Power Plant, Power Line    SB
Piping Systems, Pipelines  SB
Electronics and 
Micro-Nano-Systems           DD
Environment, Life Sciences DD



IZFP Developments for Railroads

Automated systems AURA and UFPE to detect defects in wheels

© Fraunhofer IZFP 6



EMAT Sensors in the rail, Train speed 15 km/h to be increased till up to 30 Km/h

Electro-Magnet

MagnetfeldMagnetic Field

Wheel Surface

Automated system AUROPA to detect defects in wheels

IZFP Developments for Railroads
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Rail



0°TR-Probe

Probe Head Module for Bore Hole Ø 60 mm

45°-Probe
Beam direction: - axial

IZFP Developments for Railroads

Automated systems to detect defects in axles
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45°-Probe
Beam direction: + axial

70°-Probe
Beam direction: + axial

70°-Probe
Beam direction: + circumf.



IZFP Developments for Railroads

Automated system UER to evaluate the stress state of the rim of railroad wheels
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Ultrasonic Techniques to Evaluate Stress States

The acousto-elastic effect
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The strain state influences the propagation 
velocities of ultrasonic waves.
The size of the acousto-elastic effect 
depends on the directions of 
wave propagation and vibration
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L + (2l + λ) (εi + εj + εk) + (4m + 4λ + 10µ) εi

Approximation: 2vL = vii + vL
Hook's Law: εi = 1/E [σi - ν (σj + σk)] 
Young's Modul: E = µ (3λ + 2µ) / (λ + µ)
Poisson ratio: ν = λ/2 (λ + µ)

Ultrasonic Techniques to Evaluate Stress States

Influence of strain or stress state on the longitudinal wave velocity
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Poisson ratio: ν = λ/2 (λ + µ)
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Influence of strain or stress state on the shear wave velocity

Ultrasonic Techniques to Evaluate Stress States
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Situation and Task

Very typical distribution of the stress component σ Length along height of new rail

Typical result:

+ Tensile stress in the head
+ Compressive stress in web
+ Tensile stress in foot area
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+ Tensile stress in foot area
+ stress distribution mainly influenced

by roller straightening condition

Source: A. Brokowski, J. Deputat, WCNDT, 1985



Situation and Task

Assumption

* residual stress averages to zero at any length position
* rail has neutral temperature during final welding

Result

=> there is no stress, except stress σLength induced by temperature change
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=> there is no stress, except stress σLength induced by temperature change

Request
! Evaluation of temperature induced stress
! Evaluation of neutral temperature or stress free temperature

Problem 

- Measurements covering the cross section are at least time consuming
- Strain or stress states superimpose each other, independent of origin

- There is no reliable non destructive technique to evaluate or check the
neutral temperature except during bedding and final welding



Stress State of Tread Area of New Rails

Results of destructive ring-core-technique; MPA Stuttgart
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Principal result:

+ One dimensional 
stress state

+ Principal stress along 
width negligible
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Ultrasonic Approaches and Systems

Idea

The same stress state influences 
the velocities of ultrasonic waves  
differently in size and sign, 
depending on the propagation 

DEBRO-approach and system of the Polish Academy of Science, Warsaw

© Fraunhofer IZFP 16

Source: J. Deputat; ACUSTICA 79 (1993) 161-169

depending on the propagation 
and vibration direction
with respect to 
the principal stresses

Use of different wave types to 
discriminate e.g. the  
microstructural influences



Ultrasonic Approaches and Systems

Different possibilities of ultrasonic applications, tested by IZFP

Longitudinal wave:
+ highest sensitivity

(80MPa / ‰ TOF)
- needs couplant

(water, oil, gel)

SHo and shear wave:
- lower sensitivity 

(150MPa/ ‰)
+ needs no couplant
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Longitudinal wave

SHo wave

Linearly polarized 
shear waves



Ultrasonic Approaches and Systems
Time-of-flight (TOF) of a longitudinal wave propagating between transmitter 
and receiver probe with fixed distance, penetration depth about 3 mm

15200

15220

15240

15260

15280

Rail sample is 
partly roller straightened

ultrasound propagates
-> tread (red)
-> outside of head (blue)

TOF [ns]
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Ultrasonic Approaches and Systems

15260

15280

15260

15280

Continuous measurement of time-of-flight along length of new rail samples 5, 2; 
Sound propagates the tread (red) and the outer side of rail head (blue)

TOF [ns]

Time-of-flight (TOF) of a longitudinal wave propagating between transmitter 
and receiver probe with fixed distance, penetration depth about 3 mm
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Ultrasonic Approaches and Systems

Results of ultrasonic stress analysis
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Stress along length of new rail sample 5 and 2;
σLength in tread area (red) and σLength in outer side of rail head (blue)
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Ultrasonic Evaluation of Stress State of New Rails

Comparison of ultrasonic and ring-core results of stress analysis
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In order to avoid errors caused by local inhomogeneities of the material, the 
stress results should be averaged along a certain part of rail length



Ultrasonic Evaluation of Stress State of New Rails

State

+   There is a quasi one dimensional stress state in new rails with the major
stress component  σLength along the length of rail

+   The stress state varies at different positions along the length of the rail 
mainly because of influences of straightening and cooling conditions 
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mainly because of influences of straightening and cooling conditions 
+    Different ultrasonic and micromagnetic techniques are available to

evaluate the stress σLength along the length

DEBRO Stress Meter
UES                                                          3MA



Important result:

+ Compressive stress σLength
(blue, SL) in tread area

+ Compressive stress σWidth
(red, ST) in tread area

+ Stress σ larger in size
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Situation concerning Rails in the Track

Very typical distribution of the stress component σ Length along height of used rail
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+ Stress σWidth larger in size
than stress σLength

+ no significant change of stress
profiles with increasing load
tons (threshold at about 0.5 Mt)
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Source: P.R. Cheesewright: A Critical Review of Residual Stress Measurement in Rails, 
British Railway Board, Technical Note, TN STM 15, 1980



Situation and Task, concerning Rails in the Track

Very typical distribution of the stress component σ Length along height of used rail

Important result:

+ Compressive stress σLength
in tread area

+ no significant change of stress
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+ no significant change of stress
profile in area of web and food

+ no significant change of stress
profile with increasing number
of load tons

Source: ORE Bericht D 156 / RP 4, 1987



Situation and Task, concerning Rails in the Track

Very typical distribution of the stress component σ Length along height of used rail
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Source: E. Jericho; ETR 46 Heft 10 (1997) 663-666



Stress State of Used Rails, Cut from the Track

Results of destructive ring-core-technique; MPA Stuttgart

Principal result:

+ Two dimensional 
stress state

+ Principal stresses along
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length and width 
+ Compressive stresses 
+ Stress along width

usually larger in size 
than stress along length 
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Stress State of Used Rails

Results of destructive ring-core-technique; MPA Stuttgart
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Principal result:

+ Two dimensional 
stress state

+ Principal stresses along
length and width 
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+ Compressive stresses 
+ Stress along width

usually larger in size 
than stress along length 



Situation and Task concerning Stress Analysis in th e Track

Assumption

* residual stress averages to zero at any length position / not important
* rail has neutral temperature during final welding

Result

=> there is no stress, except stress induced by temperature change / not true
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Request
! Evaluation of temperature induced stress / will not be sufficient  to prevent 
! Evaluation of neutral temperature             / buckling or cracking

Problem
not meaningful

- Measurements covering the cross section are at least time consuming
- Strain or stress states superimpose each other, independent of origin

=>  A new approach is needed



Approach

IZFP suggestion

* Evaluation of total stress state of tread (σWidth and σLength) caused by 
- manufacturing (residual stress; cross section, different along length), by 
- bedding (elastic and anelastic local deformations, cross section), by
- welding ( very local, cross section), by
- traffic ( long ranged stress influence, similar in a range of a few meters,

tread area only), by
- temperature changes (long ranged, tens of meters, cross section)   

© Fraunhofer IZFP 29

- temperature changes (long ranged, tens of meters, cross section)   
* Measurement of rail temperature

- Evaluation of temperature induce stress using thermal expansion coefficient
and temperature base of 20°C;

- Evaluation of Stress state of treat caused by manufacturing, bedding, 
welding and traffic   

* Model buckling safety based on stored energy (stress state), rail size, tie type,
track curvature, etc. as suggested by e.g. A. Kish, G. Samavedam, D. Read



Ultrasonic Approach

IZFP suggestion

* Measurement of SHo time-of-flight (TOF)
in treat area (influence of σWidth and
σLength plus microstructure)

* Measurement of SHo TOF on outer 
side of head
(influence of microstructure)
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(influence of microstructure)
* Measurement of rail temperature
* Evaluation of stress state of tread 
(influence of σWidth and σLength)

* Model buckling safety based on
stored energy (stress state) and
tie type
track curvature
etc as suggested by e.g. A. Kish, 
G. Samavedam, D. Read



Ultrasonic Evaluation of Stress State of Used Rails
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Ultrasonic Evaluation of Stress State of Used Rails
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Relative change of TOF of SHo wave [o/oo] 

SHo wave 
propagates the 
tread of the rail 
head in a surface 
layer of about 6 mm 
of thickness
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Ultrasonic Evaluation of Stress State of Used Rails
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Relative change of TOF of SHo wave [o/oo] 

SHo wave 
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outer side of the rail 
head in a surface 
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Ultrasonic Evaluation of Stress State of Used Rails
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Ultrasonic Evaluation of Stress State of Used Rails

Comparison of ultrasonic and ring-core results of samples of new and used rails 
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In order to avoid errors caused by local inhomogeneities of the material, the 
stress results should be averaged along a certain part of rail length
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3MA system was calibrated using the ring-core result of -248 MPa and taking 
reference values in the vicinity of the ring-core measuring point (pink).
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MicroMagnetic Evaluation of Stress State of Used Ra ils
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After calibration, the 3MA system was used to evaluate the stress σLength in the 
tread at other measuring positions (blue).



3MA system was calibrated using the ring-core results of -168 MPa (left), 
-105 MPa (right) and taking reference values in the vicinities, respectively (pink).
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After calibration, the 3MA system was used to evaluate the stress σLength in the 
tread at other measuring positions (blue).
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3MA system was calibrated using the ring-core results of all the individual rails 
and taking reference values in the vicinities, respectively.

0

100

200

300
E

ig
en

sp
an

nu
ng

en
 

σσ σσ 
3-

M
A

  [
M

P
a]

Schiene 11

Spannungspolynom
ohne Wirbelstrom

MicroMagnetic Evaluation of Stress State of Used Ra ils

© Fraunhofer IZFP 38

Using the one calibration function, the stress values σLength in the tread of the 5 
samples of used rails are evaluated.
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Approach to Evaluate Stress States of Rails in the Track

IZFP suggestion

* Measurement of rail temperature

Influence of temperature

1) Linear expansion coefficient α Fe= 12,1 x 10 -6 / °K and 
Youngs-Modulus of 210 GPa 
=> Temp Change of 10°C causes a change of stress σ Length of about 25 MPa

2) Ultrasonic velocities decrease linearly with increasing material temperature
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Length
2) Ultrasonic velocities decrease linearly with increasing material temperature

=> Temp Change of 10°C causes a relative velocity change o f about 1.2 ‰

and also the acousto-elastic effect causes a change of the shear wave velocity:
=> about 150 MPa cause a change of 1.2 ‰ 

=> rail temperature has to be measured with an accuracy of at least ± 1°C



Approach
Influence of rail temperature on TOF of SHo wave, due to thermally induced 
stress (blue) and due to temperature dependence of sound velocity (red)
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Ultrasonic System for Stress Analysis on Rails

IZFP Version UES; 1997; mounted on cart by DB 
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EMAT Transmitter-receiver 
unit for shear waves 
SHo mode

Ultrasonic System for Stress Analysis

IZFP system, 2008 
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EMAT Frontend und 
PC for 
data acquisition, 
visualization, and 
evaluation



A-Scan (bottom), measured signal 
(yellow) and reference signal (blue), 
curve of correlation function (center) 

IZFP system, 2008 

Ultrasonic System for Stress Analysis
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curve of correlation function (center) 
and max value of correlation 
function (top)
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Ultrasonic Transducer for Stress Analysis

IZFP EMAT´s for SHo wave 
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EMAT SHo Transducer                       Sketch of coil                    Resulting forces on

Arrangement of permanent                 and current (red)               metallic lattice 
magnets                                
View towards the food of transducer



MicroMagnetic 3MA and MicroMach System
Electromagnetic, micromagnetic, magneto-elastic material properties are 
measured and correlated to e.g. with Stress, Rp0,2, Rm, Hardness, Depth
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Contribution of Ultrasonic Rail Stress Analysis 
to Track Maintenance

State 
1) The concept:

- measuring the total stress state of the tread, 
- separate the thermally induced stress by 

measurements of the rail temperature,
- use the mean value of stress results, measured at 

different tread positions along at least two tie spaces
in order to minimize the influence of structural
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in order to minimize the influence of structural
inhomogeneities 

needs to be discussed in detail and accepted.

2)  Ultrasonic systems are developed. The EMAT sensors 
need to be built for the stress analysis according to 
the mentioned concept.
It is recommended to perform measurements at 
individual fixed positions rather than
continuously along the length.
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Contribution of Ultrasonic Rail Stress Analysis 
to Track Maintenance

State 
3)  It will be possible to monitor 

- the stress state and its changes with the traffic load;
- the stress state and change in the entrance/exit area of tunnels and bridges
- the stress state of switches and its change
- the stress state of the track in the vicinity of underpasses
It will be possible to  
- measure and monitor the temperature of the bulk of the rail, 
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- measure and monitor the temperature of the bulk of the rail, 
using a EMAT shear wave sensor as shown.



Contribution of Ultrasonic Rail Stress Analysis 
to Track Maintenance

State 
4)  It seems to be feasible  

- to integrate the EMAT Transmitter – Receiver 
SHo sensors into the head of rail, similarly to the
AUROPA sensors as shown in the figure,
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- to monitor the dynamic change of stress state, taking 
advantage of the measuring rate of the ultrasonic 
TOF measurement of  50 Hz

- to improve existing models for track buckling and uplift 
using the knowledge of the stress state of the track section

- to develop a model for the characterization of the roadbed
condition based on measurements of rail strain/stress state  
and dynamic changes  Source: A. Kish 1996
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