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Abstract: Hyperspectral sensor systems play a key role in
the automation of work processes in the farming industry.
Non-invasive measurements of plants allow for an assess-
ment of the vitality and health state and can also be used
to classify weeds or infected parts of a plant. However, one
major downside of hyperspectral cameras is that they are
not very cost-effective. In this paper, we show, that for spe-
cific tasks,multispectral systemswithonly a fractionof the
wavelength bands and costs of a hyperspectral system can
lead to promising results for regression and classification
tasks.We conclude that for the ongoing automation efforts
in the context of cognitive agriculture reduced multispec-
tral systems are a viable alternative.

Keywords: cognitive agriculture, machine learning, spec-
tral band selection

Zusammenfassung: Hyperspektrale Sensorsysteme spie-
len eine Schlüsselrolle bei der Automatisierung von Ar-
beitsprozessen in der Landwirtschaft. Nicht-invasive Mes-
sungen von Pflanzen ermöglichen eine Beurteilung des
Vitalitäts- undGesundheitszustands und können auch zur
Klassifizierung von Unkraut oder infizierten Pflanzentei-
len verwendetwerden. Ein großerNachteil vonHyperspek-
tralkameras ist jedoch, dass sie nicht sehr kosteneffektiv
sind. In diesemBeitrag zeigenwir, dass für bestimmteAuf-
gabenmultispektrale Systememit nur einemBruchteil der
Wellenlängenbänder und Kosten eines Hyperspektralsys-
tems zu vielversprechenden Ergebnissen bei Regressions-
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und Klassifikationsaufgaben führen können.Wir kommen
zu dem Schluss, dass für die laufenden Automatisierungs-
bemühungen im Rahmen der kognitiven Landwirtschaft
reduzierte multispektrale Systeme eine praktikable Alter-
native sind.

Schlagwörter: Kognitive Landwirtschaft, Maschinelles
Lernen, Auswahl von spektralen Bändern

1 Introduction

1.1 Motivation

The automation of fieldmachinery andworkprocesses has
continuously transformed the farming industry in the last
decades. In recent years, the automation of seeding, crop
maintenance and harvesting has been accompanied with
the task of real-time monitoring of crop state. Central for
this task is the development of sensor systems, that are
able to non-invasively measure the biochemical proposi-
tion of the crop plant online and inline in order to gen-
erate information for selective crop treatment and general
farm monitoring. Artificial intelligence and particular Ma-
chine Learning approaches play a key role in translating
the raw sensor data into usable information. The poten-
tial of cognitive agriculture lies in the reduction of phys-
ically demanding labour as well as increased quality of
fresh produce.

Optical sensor based systems are able to meet these
demands. Hyperspectral imaging plays a central role in
developing optical sensor systems for cognitive agricul-
ture. This camera technology goes beyond color or selec-
tive multispectral imaging systems and provides a system-
atically sampled measurement of the reflectance proper-
ties of a material. Commercially available system focus on
the wavelength range of roughly 400 to 2500nm.

In order to translate the acquired physical property
intomeaningful information, pattern recognition utilizing
machine learning is increasingly used. This requires the
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systematical acquisition of reference data along with ac-
companying field ratings and labmeasurement for ground
truth generation. Consequently a part of the sensor system
is adapted or learned towards themonitoring task at hand.
This paradigm for generating a sensor system is often re-
ferred to as soft-sensor [8]. However, hyperspectral imag-
ing systems are still very cost intensive sensor hardware.
In order for productive use in farm equipment, this system
has to be scaled down to a cost effective system. There-
fore, a development process for reducing the hyperspec-
tral imaging system to amultispectral systemwith task rel-
evant wavelength is desirable.

Wavelength selection has been investigated both from
a theoretical point of view as well as for a plethora of dif-
ferent applications. Including uninformative or redundant
wavelengths can have a negative effect for calibration and
regression tasks [18, 6]. An excellent review and taxonomy
of wavelength selection methods with focus on the field
of food quality inspection is given in [11]. In [10] the fea-
sibility of multispectral imaging in the context of predict-
ing phenolics of tomatoes infield is discussed. Our work is
similar in nature. However, the focus is to examine the fea-
sibility of different classification and regression tasks with
respect to the number of selectedwavelengthswhile point-
ing out differences among the different methods used.

1.2 Contribution

In this paper, we will present a number of different mon-
itoring tasks and show that they can be sufficiently per-
formed using hyperspectral imaging data. We present a
number of strategies to reduce the sensor to a multispec-
tral sensor using data-driven feature selection and mul-
tispectral simulation. We then validate the multispectral
selection by re-performing data modelling in order to test
detection performance compared to using the full spectral
reflectance property, constituting evidence that a reduced
multispectral approach is a viable alternative.

2 Material and methods
2.1 Datasets

For the following study, hyperspectral image recording
from two different crop plant varieties were considered.
1. Barley: Spectral images recorded on barley breeding

plots using a custom build field measurement system
in 2016–2018 for agronomic and nutritional state pre-
diction [7]. For the image recordingaNorskElektroOp-

tikkA/SHySpexSWIR384 (288 spectral channels)was
used.

2. Wine: Spectral images recorded on wine leaves mea-
sured in field campaigns in 2016-2018 using a wine
harvester equipped with hyperspectral camera sys-
tems for detecting vine diseases [9]. For the image
recording a Norsk Elektro Optikk A/S HySpex VNIR
1800 and HySpex SWIR 384 was used.

A VNIR camera covers the visual-near infrared range
from 400nm to 1000nm while a SWIR camera covers the
shortwave-infrared range from 1000nm to 2500nm. For
each dataset, measurement data is calibrated towards a
PTFE spectralon representing a near 100% reflector. Cal-
ibration is performed by subtracting the dark current IDCb ,
measured at closed camera shutter, and dividing by the
signal when the spectralon IWH

b is in the camera view port,
where b denotes the spectral band index.

xb =
Ib − IDCb
IWH
b − I

DC
b

(1)

Therefore the value is restricted to the range of 0.0-1.0.
Each dataset was subjected to image segmentation in or-
der to keep only the pixels which represent plant vegeta-
tion e. g., plant leaves. All other materials like soil, wine
grapes, plant stems, crop ears and fieldmarkingswere dis-
carded by image segmentation done by trained neural net-
work classifiermodels, which is not the focus of this study.
In this study, we will consider the following detection and
estimation tasks. Throughout thepaper,wewill use the ab-
breviation in brackets to refer to the corresponding data
set:
1. Classification: Detection of weed plants vs. barley

plants (C1 barley)
2. Classification: Detection of leaves of virus infected

grapes vs. control leaves (C2 wine)
3. Regression: Estimation of relative days till heading in

barley plants (R1 developmental)
4. Regression: Estimationof potassiumcontent (µg/gdry

weight) in barley plants (R2 nutrition)

The task are selected since when using a hyperspectral
data, they yielded high accuracy in their respective re-
search projects. In this study, wewant to investigate how a
simulated multispectral system with bands selected from
machine learning and feature selection approaches per-
form in comparison.

In the following, we will use X ∈ ℝN×B to denote a
data or predictor matrix, where each row r contains one
reflectance spectrum xr = (xr1, . . . , xrB) with B bands.
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2.2 Preprocessing

Vegetation cover recorded under field condition does not
represent itself as a smooth planar surface but has com-
plex geometrical features. It is known that these geomet-
rical properties modulate the reflectance measurement
in offset and scale [17, 15]. In order to minimize this ef-
fect, preprocessing on the reflectance profile is performed.
In this study we considered the L2-norm correction and
standard-normal variate (SNV) as preprocessing variants:

xSNVr =
xr − x̄r
sr
, (2)

xL2r =
xr
‖xr‖
, (3)

where x̄r is a vector that contains the sample mean x̄r
B times, sr is the sample standard deviation of xr and ‖xr‖
is the L2 vector norm of xr .

2.3 Multispectral reduction and simulation

High-resolution hyperspectral imaging is not a cost-
effective way for the real-time monitoring of crop param-
eters. For this reason, multispectral systems can be de-
signed specifically for the application at hand. The pre-
sented multispectral reduction of the presented hyper-
spectral applications has four steps.
1. A wavelength weighting is calculated with different

methods in order to gain a relevance profile across the
cameras wavelength range.

2. The wavelength weighting profile is used as probabil-
ity density function (pdf) anda randomgenerator gen-
erates 10,000 values according to this pdf.

3. A Neural Gas algorithm [12] is used to perform vec-
tor quantization on this generated data, naturally, re-
gions of high weighting e. g., high sample density are
coveredmore dense then regions of lowweighting and
also avoid selecting adjacent bands.

4. Response of Multispectral camera bands modelled as
Gaussian functions of typical FWHM centered at the
selected wavelengths are simulated.

2.4 Multispectral wavelength selection

The band selection approaches evaluated here are based
on correlation, mutual information [5], class discrimi-
nance [4], radial basis function relevance [1] and PLS coef-
ficients [16].

2.4.1 Band selection: PLS

Partial least squares regression can handle collinear data
and is a suitable tool for selecting relevant predictors. The
underlying description is given by

X = TPT + E (4)

Y = UQT + F, (5)

where X is the N × B matrix of predictors and Y contains
the responses [19]. In general, Y is a N × M matrix with
M columns containing the multivariate responses. For the
tasks considered in this paper, the responses are univari-
ate, i. e., M = 1. Matrices E and F contain residuals that
are assumed to be normally distributed. The scores matrix
T can be expressed in terms of the weighted original vari-
ables

T = XW, (6)

withW ∈ ℝB×ℓ and ℓ being the number of components of
the PLS model.

PLS simultaneously decomposes X and Y in terms of
a scores and a loadings matrix by finding a set of latent
vectors that explain the covariance between X and Y such
that the responses can also be approximated in terms of
the score matrix of X, i. e.,

Y = TQT + G (7)

= XWQT + G. (8)

Finally, the regression coefficients that are used as a
basis for the band selection in this paper are given by

C =WQT. (9)

Model selection needs to be performed in order to de-
cide on the number of columns ofW in Equation 6. Model
selection for a PLSRmeans finding the suitable number of
latent variables ℓ, such that thefinalmodel doesnot overfit
the data. The coefficient of determination (R2) and the root
mean squared error (RMSE) are important metrics to eval-
uate amodel and select an optimal model size. Figure 1 (a)
plots both these metrics. The best predictive model is de-
termined by cross-validation. PLS coefficients for variable
selection have been successfully used to select important
predictors in omics-type data [16]. A ranking of the hyper-
spectral bands can be easily obtained by themagnitude of
the absolute coefficient values.
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Figure 1:Model selection (i. e., selection of an appropriate number
of latent variables) with 5-fold cross-validation (cv) and model cal-
ibration (cal) for potassium regression (R2 nutrition data set). The
number of selected components is ℓ = 9, after which R2cv decreases
and RMSEcv increases.

2.4.2 Band selection: Correlation

Assuming a mean-centred predictor matrix X, correlation
of a band X:,b with the quantitative target vector y (regres-
sion problems) is computed as

rX:,by =
∑ni=1 Xi,byi

√∑ni=1 X2
i,b√∑

n
i=1 y2i
, (10)

yielding a weighting profile for the cameras wavelength
range.

2.4.3 Band selection: Mutual information

Mutual information (MI) quantifies the dependence of two
random variables and can be used for band selection for
regression and classification problems. Let b denote a
band index, then

I(X:,b; y) = ∑
y∈Y
∑
x∈X

p(X:,b, y) log(
p(X:,b, y)
p(X:,b) p(y)

), (11)

measures the joint mutual information between the se-
lected band b and the target vector y. By computing
I(X:,b; y) for all bands a ranking can be obtained. In con-
trast to the selection based on a PLS approach,MI is purely
information-theoretic and does not require to first find a
suitable model.

2.4.4 Band selection: Discrimination

The discrimination value quantifies the ratio of between-
class scatter to the sum of within-class scatter. The ratio

therefore attributes how separable classes are and is de-
rived from Fisher’s linear discriminant [4]. The ratio is cal-
culated as

D(X:,b) =
∑c∈C nc (μ

c
b − μb)

2

∑c∈C ∑r∈R (xcrb − μ
c
b)

2 , (12)

where μcb is themean reflectance value of class c in band b,
nc the number samples in class c and μb the overall mean
reflectance in band b across all C classes.

2.4.5 Band selection: Relevance

For determine the wavelength relevance profile, a radial
basis function network with relevance [1] is trained on the
datasetXusing the following loss function for the network
output y and target t:

E (X,W, λ) = 1
2
∑
r
∑
k
{yk (xr) − t

r
k}

2 (13)

yk (xr) =∑
n
unkϕ (d (vr ,wn, λ)) (14)

d (xr ,wn, λ) =∑
b
λb (xrb − wbn)

2 (15)

A radial basis function network is a two layer neu-
ral network. In the first layer prototypical samples W are
placed in the input space and an activation is calculated
using the Euclidean distance and a Gaussian function ϕ.
In a second layer, a weighted sum is generating the out-
put values. For regression the target is set to the quantita-
tive value, for classification, a 1-out-of-N coding scheme is
applied to generate the target pattern. Since the network
also optimizes the weighting factors λb, these can be inter-
preted as band relevance and are used as weighting pro-
file.

2.4.6 Band placement and multispectral simulation

Each method described above generates a weighting pro-
file across the wavelength range. In order to assess the
hypothetical performance of a multi-band multispectral
system, we need to place typical wavelength band cen-
tered aroundhighlyweightedwavelengths. Theplacement
should cover highly weighted segments but avoid merely
selecting neighbouring wavelength since due to the high
correlation of reflectance in neighbouring wavelengths.
For this purpose, we sampled from a probability density
function, thatmatches theweighting profile, 10,000wave-
length candidates and trained a standard neural gas algo-
rithm [12] on this data. The neural gas places a set of pro-
totypes in the data space in order to minimize the quan-
tization error calculated by the Euclidean distance. After
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convergence was achieved, we used these prototypes as
mid-wavelengths forGaussiankernels set to aFullWidthat
Half Maximum (FWHM) of 30 nm, a typical value for mul-
tispectral camera systems. We generated ten wavelength
candidates. These wavelength prototypes are then ordered
due to the highest weighting and two to ten bands are se-
lected for simulation in descending order of their weight-
ing. Subsequent modelling of this simulated data is done
to check detection performance.

The hypothetical response of a multispectral imaging
system for a reflectance spectrum xr of a band centred at
λm is calculated by

rMSI
rm =

1
∑b gm(λb)

∑
b
xrbgm(λb) (16)

gm(λb) =
1

σ√2π
exp(−0.5(λb − μm

σ
)
2
) (17)

σ = FWHM
2√2 ln 2

(18)

where λb denotes the spectral bands wavelength.

2.4.7 Machine learning setup

In order tomake themodelling performance on hyper- and
multispectral data comparable, the same model types are
used. Among the model types, the best performing type in
combination with the listed pre-processing given by Equa-
tion 2 and 3 is reported. The used methods and hyperpa-
rameters are given in Table 1.

Table 1:Machine learning methods and hyperparameters used in
this study.

Method Citation Hyper-Parameter Used for

MLP [2, 14] Hidden layers: 3 hyperspectral
Optimization method:
Scaled Conjugate
Gradient
Back-Propagation
Hidden layer: 50, 25, 10

multispectral

PLS(R/DA) [20] number of components
(optimized for each task
separately)

hyperspectral
multispectral
band selection

rRBF [13, 3, 1] Base functions: 30 band selection
Optimization method:
Scaled Non-linear
Conjugate Gradient

LDA [4] no hyper-parameters band selection

3 Results

Beforewe proceedwith the performance results of the sim-
ulated multispectral system, we show the regression and
classification performances of the above mentioned tasks
given the full spectrum.

3.1 Hyperspectral performance

The performance for the hyperspectral data was assessed
by means of a PLS(R/-DA) as well as a neural network
based approach and is summarized in Tables 2 and 3. For
the evaluation with PLS and Neural Networks (NN), the
number of latent variableswas determined by 5-fold cross-
validation, equivalent to the band selection procedure de-
scribed above. For simplification we state the best perfor-
mance for the used neural network models under NN.

Table 2: Full-spectrum PLSR and NN 5-fold cross-validated results for
the barley data sets. The R2 nutrition data set is about the estima-
tion of the nutrition content (potassium in µg/g dry weight), the R1
developmental data is about predicting the relative number of day
to heading (HEA).

PLSR NN PLSR NN
Location Target Preproc. R2cv R2cv MAEcv MAEcv

R1 develop. HEA SNV 0.92 0.96 2.53 1.71
R2 nutrition K SNV 0.93 0.94 2179.70 1483.93

Our results for the multispectral reduction that is de-
tailed in the following, indicate that for the classification
and regression tasks considered in this paper multispec-
tral systems are a feasible option.

Table 3: Full-spectrum PLS-DA and NN 5-fold cross-validated results
for the classification data sets C1 barley and C2 wine. Performance
measure: Accuracy (ACC), True-Positive Rate (TP) and False-Positive
Rate (FN).

PLS-DA NN PLS-DA NN
Type Preproc. ACC ACC TP FN TP FN

C1 barley L2 0.86 0.953 0.880 0.161 0.935 0.030
C2 wine SNV 0.90 0.925 0.940 0.161 0.939 0.088
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3.2 Multispectral performance:
Classification tasks

We will first discuss the results on the detection tasks,
i. e., the task of classifying weed plants vs. barley plants
and the task of detecting virus infected grape leaves
vs. control leaves. Figures 3 and 2 show the spectra and
the ten bands that were selected by the different meth-
ods described above. The plots also include the normal-
ized weighting profiles for the different methods. It is im-
portant to note that the selected bands do not necessar-
ily match the local maxima of the weighting profiles. This
is due to the fact that the neural gas algorithm quantizes
the profile such that highly weighted regions are selected.
There are some regions in the spectrum that all threemeth-
ods found to be necessary for the multispectral reduction,
e. g., for the detection of virus infected grape leaves, the
wavelength band around 1550 nm seems to convey crucial
information.

Figure 2: C1 barley results. Reflection spectra of barley vs. weed.
Below the spectra are the different band selection positions based
on PLSR, discrimination and relevance.

Figure 4 shows the performance of a reduced multi-
spectral system with an increasing number of channels.
For all evaluated methods, the wavelength channels are
sorted according to their importance, beginning with the
channel yielding thehighest discriminability. For theweed
vs. barley task, the six channels determined by the dis-
crimination and the relevance approach are sufficient for
a classification accuracy of above 90%.

The results indicate that a carefully designed multi-
spectral system with ten channels could reach the perfor-
mance of a hyperspectral system for certain tasks.

Figure 3: C2 wine results. Reflection spectra of virus infected grape
leaves and control leaves. Below the spectra are the different band
selection positions based on PLSR, discrimination and relevance.

Figure 4: Classification performance of the simulated multispectral
system with an increasing number of channels, starting with the
channels contributing most to the classification task. The perfor-
mance of the full-spectrum NN and PLS-DA is given by HS-NN and
HS-PLS.

3.3 Multispectral performance: Regression
tasks

Figures 6 and 5 show the bands that were selected for the
two different regression tasks, i. e., the task of estimating
the nutrition content (potassium) and the developmental
parameter. For the former task, there is a cluster of selected
bands in the region from 1000nm to 1350 nm, which is in
contrast to the other approaches that select bands that are
more spread out across the spectrum. Figure 7 shows the
cumulative coefficients of determination for the different
methods and for an increasing number of channels. For
the regression of potassium the coefficient of determina-
tion is around 0.94 using only themost important channel
and it is not increasing with additional ones.

It is important to note that in nearly all cases above,
the wavelengths at the boundary of the spectrum were se-
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Figure 5: R1 developmental results. Reflection spectrum of barley.
Below the spectra are the different band selection positions for
the regression of the agronomic parameter based on PLSR, mutual
information, discrimination and correlation.

Figure 6: R2 nutrition results. Reflection spectrum of barley. Below
the spectra are the different band selection positions for the regres-
sion of the nutrition parameter potassium based on PLSR, mutual
information, discrimination and correlation.

lected by the different band selection schemes. However,
as this regions are usually prone to noise, they should be
discarded.

Figure 7: Coefficient of determination of the simulated multispectral
system with an increasing number of channels, starting with the
channels contributing most to the regression task. The R2 of the
full-spectrum NN and PLSR is given by HS-NN and HS-PLS.

4 Conclusion

Hyperspectral sensor systems are vital for the detection of
crop state. It is obvious that certainwavelength bands con-
tributemore to the task at hand than others. This study has
shown that by selecting up to ten most important bands
a hyperspectral sensor system can be reduced to a multi-
spectral one with comparable performance for the various
tasks considered in this paper. The position of the selected
bands is highly task-specific. Different wavelength selec-
tion approaches, even when they converged to similar re-
sults at ten wavelengths, showed considerable difference
when selecting smaller numbers of wavelength. Notably
the widely used method PLS performed the worst in most
applications in selecting the proper wavelengths.

Since the biochemical processes underlying a detec-
tion task are not known or hard to evaluate, the wave-
length selection is based on data analytics and only the
performance of a model trained on selected data shows
how suitable the selection is. For this purpose, a simu-
lation of the multispectral camera system with realistic
wavebands is necessary. This work constitutes evidence
that different wavelength selection approaches lead to dif-
ferent results regarding the selected positions. Therefore,
for a practical application, where the minimal number of
necessary wavebands is aimed for, a number of selection
methods should be considered and tested.

This study also shows the advantage of performing
a hyperspectral measurement campaign first, since from
such a dataset, possiblemultispectral systems can be eval-
uated. A practical approach would be to simulate a num-
ber of off-the shelf cameras and compare them with a cus-
tom build camera system based on optimal wavelength
and then decide for candidate systems for the following
validation campaign.
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