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Abstract

Numerical weather forecasting and climate predictions require enormous
computing power since high resolution and accuracy are necessary to achieve
reliable results. The overall idea of this dissertation on scienti�c computing
is to develop and implement a numerically highly e�cient basic meteorolog-
ical model for parallel environments. Numerical acceleration is achieved by
adaptive multigrid in two ways:

Firstly, the resolution of the �nite di�erence discretization is locally
adapted to the actual requirements of the weather situation. High resolution
is provided only where it is necessary (e. g. strong low pressure areas). Since
the weather situation changes in a time dependent simulation the re�nement
areas have to be adapted. This dynamic adaptation is controlled by a re-
�nement criterion based on the estimation of the local spatial discretization
error and performed fully automatically.

Secondly, multigrid is used to increase the sizes of stable time steps. The
applied semi{implicit time scheme results in a Helmholtz equation, which is
solved by MLAT. The cycling is adapted to the stability requirements of the
actual model problem. In general, one very cheap multigrid cycle su�ces.

The numerical algorithm is portably implemented on parallel environ-
ments by the grid partitioning approach with explicit message passing. A
dynamic load balance algorithm considers neighborhood relationships in or-
der to reduce data transfer.

Keywords: Multigrid, Adaptivity, Helmholtz equation, Parallel Solver,
Shallow Water Equations



Zusammenfassung

Numerische Wettervorhersagen und Klimasimulationen erfordern enor-
me Rechenleistungen; hohe Aufl�osung und Genauigkeit sind notwendig, um
zuverl�assige Ergebnisse zu erzielen. Im Rahmen dieser Dissertation des wis-
senschaftlichen Rechnens wurde ein numerisch hoch{e�zientes meteorologi-
sches Modell f�ur Parallelrechner entwickelt. Numerische E�zienz wird dabei
mit einem auf zweierlei Weise adaptiven Mehrgitterverfahren erreicht:

Zum einen wird die r�aumliche Aufl�osung der �niten{Di�erenzen Diskre-
tisierung an die tats�achlichen Erfordernisse der vorliegenden Wetterverh�alt-
nisse angepa�t. Hohe Aufl�osung wird nur in Gebieten angewandt, wo sie
wirklich notwendig ist (z. B. in starken Tiefdruckgebieten). Da sich die Wet-
terverh�altnisse w�ahrend der Simulation �andern, m�ussen die Verfeinerungsge-
biete angepa�t werden. Diese dynamische Anpassung wird vollautomatisch
von einem Verfeinerungskriterium gesteuert, das auf einer Sch�atzung des
lokalen Diskretisierungsfehlers beruht.

Zum anderen wird Mehrgitter verwendet, um die Gr�o�e stabiler Zeit-
schritte zu erh�ohen. Die semi{implizite Zeitdiskretisierung resultiert in ei-
ner skalaren helmholtz{�ahnlichen Gleichung, die in jedem Zeitschritt mit
adaptivem Mehrgitter (MLAT) gel�ost wird. Der Mehrgitterzyklus ist an den
Stabilit�atsanforderungen des vorliegenden Modellfalls angepa�t.

Das numerische Verfahren wurde mittels Gebietszerlegung und expli-
zitem Datenaustausch (MPI) portabel auf Parallelrechnern mit verteiltem
Speicher implementiert. Ein dynamischer Lastausgleichsalgorithmus ber�uck-
sichtigt Nachbarschaftsbeziehungen, um den erforderlichen Datenaustausch
zu reduzieren.

Schlagw�orter: Mehrgitter, Adaptivit�at, Helmholtzgleichung, Paralleler
L�oser, Flachwassergleichungen
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Zusammenfassung in

deutscher Sprache

Die vorliegende Arbeit ist in englischer Sprache geschrieben, da diese zur
Zeit in wissenschaftlichen Texten bevorzugt wird und damit eine gr�o�ere
Sichtbarkeit erm�oglicht. Im folgenden ist eine Zusammenfassung in deutsch
gegeben.

Wissenschaftliches Rechnen besch�aftigt sich mit den Disziplinen Mathe-
matik und Informatik mit dem Ziel, wissenschaftliche Probleme mit Hilfe
von elektronischen Rechenanlagen zu l�osen.

Im vorliegenden Fall wurde ein hoch{e�zientes Verfahren zur L�osung ei-
nes grundlegenden Modells der Meteorologie | die Flachwassergleichungen
| f�ur aktuelle Parallelrechner mit verteiltem Speicher entwickelt und im-
plementiert. Numerische Beschleunigung wird dabei mit einem auf zweierlei
Weise adaptiven Mehrgitterverfahren erreicht:

Zum einen wird die r�aumliche Aufl�osung der �niten{Di�erenzen Diskre-
tisierung an die tats�achlichen Erfordernisse der vorliegenden Wetterverh�alt-
nisse angepa�t. Hohe Aufl�osung wird nur in Gebieten angewandt, wo es
wirklich notwendig ist (in starken Tiefdruckgebieten, an Wetterfronten oder

�uber unregelm�a�igem Terrain), wogegen es gen�ugt, ruhige Regionen mit aus-
reichend niedrigerer Aufl�osung zu berechnen. Da sich die Wetterverh�alt-
nisse w�ahrend der zeitabh�angigen Simulation �andern (Wetterfronten und
Tiefdruckgebiete ziehen vorbei), m�ussen die Verfeinerungsgebiete angepa�t
werden. Diese dynamische Anpassung wird vollautomatisch von einem Ver-
feinerungskriterium gesteuert, das auf einer Sch�atzung des lokalen Diskreti-
sierungsfehlers basiert. Dabei sind allgemein geformte Verfeinerungsgebiete
m�oglich.

Zum anderen wird Mehrgitter verwendet, um die Gr�o�e stabiler Zeit-
schritte zu erh�ohen. Dazu wurde eine semi{implizite Zeitdiskretisierung ent-
wickelt, f�ur die in jedem Zeitschritt nur eine skalare helmholtz{�ahnliche
Gleichung gel�ost werden mu�. Verwendet man Ergebnisse eines expliziten
Zeitschemas als Anfangswerte f�ur die Iteration dieser Gleichung, so ist die
angestrebte Genauigkeit bereits erreicht; Mehrgitteriterationen werden dann
nur noch durchgef�uhrt um die Stabilit�at des Verfahrens zu gew�ahrleisten.
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ZUSAMMENFASSUNG 13

Anzahl von Rechenoperationen pro Gitterpunkt stellen die Flachwasserglei-
chung bez�uglich der Parallelisierung einen schlimmsten Fall im Vergleich mit
komplexeren insbesondere drei{dimensionalen meteorologischen Simulatio-
nen dar.

Um dieses dynamisch adaptive Verfahren zu entwickeln und zu imple-
mentieren, und die dabei auftretenden Schwierigkeiten zu l�osen, sind eine
Reihe von Kenntnissen aus den WissenschaftenMathematik, Informatik und
Meteorologie n�otig. Diese werden im weiteren genannt. Die meisten dieser
Schwierigkeiten sind bereits f�ur block{strukturierte, adaptive und parallele
Algorithmen bekannt; ebenso sind bereits eine Reihe von L�osungsans�atzen
ver�o�entlicht. Nichts desto trotz mu�ten neue Ideen gefunden und die be-
reits existierenden Ans�atze angepa�t werden, um sie zu einem laufenden
vollst�andig selbst{anpassenden parallelen Programm zusammenzuf�uhren.

Anwendung Als meteorologische Anwendung werden die Flachwassergleichungen
modelliert, welche sowohl Str�omung (Wind) als auch Wellenausbrei-
tung beschreiben, und damit wesentlich komplexer als Standardmo-
dellprobleme sind. Au�erdem wurde das Verfahren auch hinsichtlich
allgemeinerer meteorologischer Modelle entwickelt, weshalb ein block{
strukturierter Diskretisierungsansatz bevorzugt wurde.

Zeitschema Explizite Zeitdiskretisierungen f�uhren bei hohen r�aumlichen Aufl�osun-
gen, wie sie bei adaptiven Verfahren erm�oglicht werden, zu extrem
kleinen Zeitschritten. Um l�angere Zeitschritte zu verwenden, wurde
ein semi{implizites Zeitschema entwickelt. Dieses ben�otigt nur zwei
Zeitebenen und erm�oglicht eine vereinfachte Verwaltung der Verfeine-
rungsstrukturen.

L�oser Das semi{implizite Zeitverfahren kann �uber eine skalare helmholtz{

�ahnliche Gleichung berechnet werden. Diese mu� in jedem Zeitschritt
auf der aktuellen Verfeinerungsstruktur mittels Parallelrechner gel�ost
werden. Dazu bieten sich parallele Mehrgitterverfahren an.

Kriterium Die Modellgebiete, in denen h�ohere Aufl�osung n�otig erscheint, werden
w�ahrend der Simulation automatisch durch ein Verfeinerungskriteri-
um erkannt und angepa�t. Im vorliegenden Fall wird ein rein mathe-
matisches Kriterium angewandt, das auf einer Sch�atzung des lokalen
Diskretisierungsfehlers beruht.

Blockung In Hinblick auf die Anwendung Meteorologie werden die Verfeine-
rungsgebiete durch rechteckige, strukturierte und nicht{�uberlappende
Bl�ocke �uberdeckt, die an den gr�oberen Gittern orientiert sind. Diese
Blockung der Verfeinerungsgebiete erfolgt in einer Weise, so da� die
Gr�o�e und Anzahl der entstehenden Bl�ocke bereits f�ur die Parallelisie-
rung geeignet sind. Dar�uber hinaus sollten einmal entstandene Bl�ocke
so lange wie m�oglich wiederverwendet werden k�onnen.
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Einbettung Die Verfeinerungsbl�ocke werden an ihren R�andern mit Daten des dar-
unterliegenden gr�oberen Gitters versorgt. Da bei zeitlich ver�anderli-
chen Verfeinerungen die L�osungen auf den groben Gittern durch die ge-
naueren Ergebnisse der Verfeinerungen verbessert werden, kann es zu
unerw�unschten Oszillationen an den Verfeinerungsr�andern kommen.
Dies wird durch ein spezielles Interpolationsverfahren vermieden.

Lastausgleich Parallele E�zienz h�angt wesentlich von einer ausgeglichenen Vertei-
lung des Rechenaufwands ab. Dies mu� bereits bei der Blockung der
Verfeinerungsgebiete ber�ucksichtigt werden. Dar�uber hinaus wird im
Lastausgleichs{Algorithmus als Nebenbedingung auch der entstehende
Austausch von Volumendaten reduziert.

Implementierung Zuletzt ist die Implementierung eines solchen komplexen parallelen
Programms sehr aufwendig. Spezielle Datenstrukturen wurden ent-
wickelt, um die n�otigen Informationen �uber die einzelnen Verfeine-
rungsbl�ocke zu verwalten, deren Anzahl und Gr�o�e sich dynamisch

�andern. Die Bl�ocke werden den einzelnen Knoten des Parallelrechners
dynamisch zugeteilt, welche entsprechend den ver�anderlichen Nach-
barschaftsbeziehungen Daten austauschen. Dabei wurde konsequent
asynchroner Datenaustausch eingesetzt, um �Uberlappung von Rech-
nung und Kommunikation zu erm�oglichen und um bestm�ogliche par-
allele E�zienzen zu erreichen. Das Verfahren ist in etwa 10 000 Pro-
grammzeilen der Computersprache

'
C` implementiert.

Besondere Sorgfalt wurde auf die Kombination von Adaptivit�at und
Parallelismus vor dem zeitabh�angigen Hintergrund gelegt. Der Austausch
von Volumendaten, der bei r�aumlichen Verfeinerungen allgemein statt�n-
det, zerst�ort den Rand{Volumen{E�ekt der Gitterzerlegungsmethoden und
kann die parallele E�zienz adaptiver Mehrgitterverfahren beschr�anken. Aus
diesem Grunde wird die Anzahl der Initialisierungen und Umverteilungen
der Verfeinerungsbl�ocke reduziert. Es wird versucht, die Verfeinerungsbl�ocke
so lange als m�oglich beizubehalten, und die Verfeinerungsstruktur im Ver-
lauf der Simulation eher anzupassen, als in jedem Schritt neu zu erzeugen.
Dar�uber hinaus wird Volumenaustausch verringert, indem die Verfeinerungs-
bl�ocke und die zugeh�origen tragenden gr�oberen Bl�ocke vorzugsweise dem
selben Rechenknoten zugewiesen werden.

Die Bedingung wurde aufgehoben, unabh�angig von der Anzahl der ein-
gesetzten Rechenknoten das exakt selbe Ergebnis zu erzeugen. Die Blockung
des Verfeinerungsgebiets wird f�ur die vorhandene parallele Umgebung op-
timiert. In dieser Abh�angigkeit werden mehr oder weniger Punkte, die ur-
spr�unglich nicht durch das Verfeinerungskriterium gekennzeichnet wurden,
in die Verfeinerungsbl�ocke miteinbezogen. Dadurch kann das Rechenergebnis
geringf�ugig variieren.
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Aufgrund des hohen Potentials lokal adaptiver Verfahren, Rechenzeit zu
sparen, �nden zur Zeit eine Reihe von Forschungsprojekten in diesem Be-
reich statt (siehe Abschnitt 2.5). Dennoch wurde bisher noch kein tats�achli-
cher Durchbruch adaptiver Verfeinerungen in meteorologischen Simulatio-
nen erreicht. Die vorliegende Arbeit f�ugt Adaptivit�at und Parallelismus f�ur
eine Simulation mit semi{implizitem Zeitschema zusammen und wird als
ein wichtiger Schritt in Richtung der Anwendung von parallelen adaptiven
Verfeinerungen in der numerischen Wettervorhersage betrachtet.
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Chapter 1

Introduction

In summary, then, scienti�c computing
draws on mathematics and computer science

to develop the best ways to use computer systems
to solve problems from science and engineering.

Citation from: G. Golub and J. M. Ortega,
Scienti�c Computing. An Introduction with Parallel Computing,

Academic Press, 1993, p. 3 .

Numerical weather forecasting and climate predictions require enormous
computing power to solve partial di�erential equations prescribing mete-
orological and physical processes where high resolution and accuracy are
necessary to achieve reliable results for medium and long{range predictions.
Six of the twenty most powerful computer systems in the world are dedi-
cated to weather research1. All of them are parallel architectures with the
number of nodes ranging between 116 and 1024 .

However, to exploit the high computing power provided by parallel com-
puters, existing codes are adapted to parallel computers and new parallel
algorithms are developed. Since it is an expensive waste to run numerically
ine�cient algorithms on parallel machines, the requirement for modern al-
gorithms is numerical and parallel e�ciency.

The overall idea of this dissertation on scienti�c computing is to develop
and implement a numerically highly e�cient basic meteorological model
for parallel environments. Numerical acceleration is achieved by adaptive
multigrid in two ways:

Firstly, the resolution of the �nite di�erence discretization is locally
adapted to the actual requirements of the weather situation. High reso-
lution is provided only where it is necessary (e. g. strong low pressure areas,
weather fronts, steep orography). Calm regions are calculated with su�cient

1June 1998, Dongarra, Meuer, and Strohmaier [26]



18 CHAPTER 1. INTRODUCTION

lower mesh size. Since the weather situation changes in a time dependent
simulation (weather fronts and cyclones move and evolve), the re�nement
areas have to be adapted during the simulation. This dynamic adaptation
is controlled by a re�nement criterion based on the estimation of the local
spatial discretization error and performed fully automatically. Very general
re�nement areas are supported. In this way, the number of grid points can
be essentially reduced.

Secondly, multigrid is applied to increase the sizes of stable time steps.
For that a semi{implicit time scheme is developed, which results in a scalar
Helmholtz{(like) equation. Using predictions from an explicit time scheme
as initial values for this Helmholtz{(like) equation the required accuracy
is already achieved. Multigrid iteration then is performed only for stability
reasons and the cycling is adapted to the stability requirements of the actual
model problem. In general, one very cheap multigrid cycle with a small
number of coarse grids su�ces. This is very desirable in a distributed parallel
environment. In this context multigrid is used as an adaptive stabilizer
rather than as a solver as hitherto.

The numerical algorithm is portably implemented on parallel environ-
ments by the grid partitioning approach with explicit message passing. Fig-
ure 1.1 shows the acceleration due to the algorithmic improvements and
parallelization. The run time measurements of the meteorological model,
which solves the Shallow Water Equations with fully dynamically adaptive
local re�nements, were performed on an IBM SP2 . For a model problem,

sequential

parallel

x 85
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explicit adaptivesemi-implicit

Pa
ra
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21 min 16 s 10 min 43 s

18 min 44 s
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Figure 1.1: Algorithmic and parallel acceleration

which is described later in detail, the simulation with a semi{implicit time
scheme is about two times faster than the reference computation with a
purely explicit time scheme and smaller time steps. The local re�nements
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�nally lead to a drastic improvement by a factor 16 in total in this case.

Parallelization of the dynamically adaptive and semi{implicit method
accelerates the simulation by a factor 2.9 on 4 nodes and 5.7 on 16 , which
results in a computation 85 times faster than the explicit sequential model.
The further increase in speed from 4 to 16 nodes shows that the adaptive
method is scalable in general. With the mentioned algorithmic improve-
ments, however, the computational load for the Shallow Water Equations
becomes very small in comparison to the parallelization overhead. Because
of the small number of 
oating point operations per grid point the Shallow
Water Equations are a worst case problem with respect to parallelization
compared to more complex or even three{dimensional meteorological simu-
lations.

In order to develop and implement this dynamically adaptive and parallel
model di�erent matters of the disciplines mathematics, computer science,
and meteorology are combined in order to solve the di�culties listed below.
Most of them are already known to appear in block structured adaptive and
parallel methods, and some solution approaches have been reported (some
references are provided). Nevertheless, a number of new ideas had to be
developed and the existing approaches were partly further improved and
partly tailored for the presented method in order to bring them together to
a running fully self{adaptive parallel implementation.

Application Concerning a meteorological application, the time dependent Shallow
Water Equations (2D) are implemented; they form the dynamic core
of numerical weather simulations and are often used as a basic me-
teorological model (e. g. Barros [8], McBrian [52] and Williamson et
al. [84]). This hyperbolic system includes advection and wave prop-
agation and is more complex than standard exercise problems and
thus more di�cult to calculate with adaptive re�nements and to par-
allelize. The high propagation speed of the waves gives reason for a
semi{implicit time scheme. However, the design of the adaptive model
�t even to more advanced meteorological systems of equations. The
discretization is based on structured grids, which are commonly used
in meteorological simulations, because they allow more computational
optimizations compared to unstructured grids.

Time Scheme High spatial resolutions, which become available with local re�ne-
ments, cause extremely small time steps with explicit schemes. A
semi{implicit time scheme is applied therefore to calculate the fast
waves implicitly and to reduce the time step limitations. Whereas a
semi{implicit three{time{level scheme is already known (Haltiner and
Williams [34]), a semi{implicit (non{semi{Lagrange) time scheme with
only two time levels had to be developed. Especially with dynamically
adaptive re�nements two{time{level schemes are advantageous, since
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this facilitates the administration of the re�nement structures. The
stability of the semi{implicit scheme is theoretically analyzed.

Solver For the computation of the semi{implicit time discretization a scalar
Helmholtz{(like) equation has to be solved e�ciently on a grid with
local re�nements with a parallel computer. This is performed by a par-
allel multigrid algorithm; multigrid can handle local re�nements very
naturally (e. g. Bai and Brand [6] and Joppich and Mijalkovi�c [43]),
and by applying multigrid as smoother rather than solver, the coarse
grid problem (Hempel and Sch�uller [36]) of parallel multigrid is solved.

Criterion The regions where higher spatial resolution is bene�cial have to be
detected automatically by an appropriate re�nement criterion dur-
ing the simulation. A purely mathematical criterion is applied that
is based on an estimation of the local truncation error of the model
equations (Stoer and Bulirsch [74], Bai and Brand [6], and Berger
and Oliger [14]). Since the mesh size adapts only in space, the lo-
cal truncation error with respect to space of the discretization of the
Shallow Water Equations is estimated2. Not only the solution of the
model equations is prone to oscillate at the re�nement boundaries, the
boundaries themselves tend to oscillate between two grid points of the
coarse grid in fully dynamically adaptive simulations. Special care is
taken to keep the boundaries of the re�nement areas stable.

Blocking With regard to the application the re�nement areas are designed as
uni�cation of rectangular and structured aligned blocks. The blocks
are non{overlapping and oriented to the global grid in order to be
used e�ciently within the multigrid algorithm for the semi{implicit
time scheme. However, the points speci�ed by the criterion de�ne
irregularly shaped re�nement areas in general. These areas have to be
arranged in blocks (including occasionally few additional grid points)
to create the current re�nement structure (compare Lemke [47]).

With dynamically adaptive re�nements it is important to use the
blocks as long as possible. Initialization of new blocks not only costs
local memory copies, but also introduces additional (volume) commu-
nication in a parallel environment. Therefore, continuity in time of the
re�nement structure is very important, and the re�nement structure
should be adapted rather than created fully anew in each adaptation
step.

Nesting When integrating the model equations on a locally re�ned grid, the
blocks of the re�nement structure have to be embedded into the global

2The Helmholtz{(like) equation, which results from the implicit evaluation of some
of the terms of the Shallow Water Equations, is solved for stability purposes only. Its
truncation error is not a suitable re�nement criterion.
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grid. In a two{way interaction the boundary values of the re�nements
are supported by the global grid, whereas the global grid is improved
by the interior �ne grid values (Berger and Oliger [14] and Zhang et
al. [85]).

For time dependent problems care has to be taken to avoid oscilla-
tions and instabilities of the solution at the re�nement boundaries,
especially for hyperbolic equations, which have no inherent di�usive
and smoothing property as do parabolic equations (Grell, Dudhia, and
Stau�er [31]).

Load Balance Parallel e�ciency substantially depends on load balance. Whenever
the re�nement structure changes during simulation, a re{mapping of
the blocks to the computational nodes is performed (e. g. Ritzdorf
and St�uben [63] and Elbern [27]). Not only grid points have to be dis-
tributed as equally as possible, also the amount of transferred data and
neighborhood relationships should be considered (B�ohm and Specken-
meyer [16]). For this reason, load balancing is already taken into
account when blocking the points that are detected to be re�ned in an
adaptation step.

Implementation Last but not least, the implementation of such a complex parallel
model is rather demanding. The re�nement blocks, their number and
sizes, and the computing nodes to which they are mapped change
during simulation. The processors exchange messages, which vary in
origin, destination, length, and content. Data structures have to be de-
veloped to administrate this information when designing the adaptive
model for parallel computers.

A number of software libraries exist to support grid oriented paral-
lelizations with adaptive mesh re�nement (e. g. CLIC: Hempel and
Ritzdorf [35], RSL: Michalakes [57], LPARX/KELP: Baden [5], and
P++/AMR++: Lemke, Witsch, and Quinlan [46]). However, par-
allelization is performed directly with the explicit message passing
interface MPI without use of a special communication library. The
main reason is e�ciency: the numerical algorithm is very e�cient and
with the low number of 
oating point operations of the Shallow Wa-
ter Equations the data transfer must be highly optimized as well to
achieve reasonable speed{ups on up{to{date parallel computers. The
adaptive model is therefore designed for asynchronous communication
to reduce synchronization and enables concurrent execution of com-
munication and computation.

Special care is taken to combine adaptivity and parallelism in this time{
dependent frame. The volume data communication, which appears in gen-
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eral in adaptive methods, destroys the boundary{volume e�ect of grid par-
titioning parallelization approaches and saturates the parallel e�ciency of
adaptive cycles when solving increasing problem sizes (compare Ritzdorf and
St�uben [63]). Therefore, the number of new initializations and re{mappings
of re�nement blocks are reduced, and the re�nement structure is kept con-
tinuous in time as far as possible. Moreover, the exchange of volume data
between coarse grid and re�nement is reduced by introducing neighborhood
conditions in the load balancing algorithm.

The requirement to reproduce the same results when changing the num-
ber of engaged computational nodes was released to optimize the number
and sizes of the re�nement blocks. The points that are additionally included
in the re�nement block may di�er and the results can vary slightly.

The model is implemented in about 10 000 lines of the computer language
`C' to administrate the complex problem of changing re�nement structures
in a distributed parallel environment.

Due to the high potential of adaptive methods in saving computing time,
much research is currently being done in this area even in combination
with parallel computers (Section 2.5 \Related Work"). However, no real
breakthrough of dynamically adaptive local re�nements for meteorological
applications on block structured grids has been achieved yet. The work pre-
sented in this paper, which combines adaptive multigrid and parallelism for
a semi{implicit simulation, has to be regarded as an important step towards
the application of adaptive multigrid in meteorological simulations.

The outline of this paper is as follows: Chapter 2 presents an overview
of the meteorological application and the methodical aspects of adaptive
multigrid and parallel computing used in this work. The Shallow Water
Equations are derived from basic conservation laws and theoretically ana-
lyzed. Their ranges of dependence provide some insight into the behavior of
their analytical solutions, which is fruitfully used when stabilizing the semi{
implicit time scheme. As there is comprehensive literature about adaptive
multigrid and parallel computing, only the essential ideas of these subjects
are mentioned as far as they are relevant to the completeness of this paper
(references for details are given in the sections).

The conceptual design of the adaptive method is given in Chapter 3 .
A semi{implicit two{time{level discretization is developed and its stability
is analyzed. The resulting Helmholtz{(like) equation of this time scheme
is iterated by a multigrid algorithm that is adapted to provide stability.
The introduction of local re�nements along with the estimation of the local
spatial truncation error as re�nement criterion, the partitioning by hyper-
grids, and the nesting of the re�nement blocks by blending are presented.
At the end of this chapter, parallelization aspects such as load balancing,
asynchronous communication, and parallel algorithms are discussed.
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In Chapter 4 some details of the implementation of the adaptive method
are documented. Data structures used to manage information for the chang-
ing re�nement blocks and work units as basic computational units for coarse
grain parallelization are presented.

The selected model problem arti�cial cyclone is given in detail in Chap-
ter 5 . The adaptive method is validated by comparing the results with a
non{adaptive highly resolved simulation and an available analytical solution.
Explicit and semi{implicit time stepping are compared and the bene�ts of
adaptivity and parallelism are measured in run times.

Finally, Chapter 6 summarizes this paper and gives an outlook with
respect to the usage of the adaptive method for more operational and three{
dimensional meteorological models.
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Chapter 2

Overview

2.1 About Meteorological Applications

Today's weather predictions have a quality of about 0.95 for one{day fore-
casts (24{hour predictions). This is considerably better than the 0.80 at-
tained in the late sixties (Meyers [56]1). This essential increase2 is a result of
higher spatial resolutions as well as of improved models and more accurate
initial data.

Still higher resolutions are desirable; they not only provide more ac-
curate predictions, but also resolve more small{scale features over complex
terrain or of an evolving weather system (Baillie, Michalakes, and Sk�alin [7]).
However, when increasing the resolution in all three dimensions, the com-
putational demands increase dramatically by O(n4) , with n denoting the
number of grid points of a grid dimension. Stability constraints enforce
smaller time steps when decreasing the spatial mesh size.

One way to increase the resolution is to use more powerful machines. In
1992 a breakthrough in parallel computing for numerical meteorology was
achieved by the parallelization of the operational Integrated Forecasting
System (IFS) of the European Centre for Medium Range Weather Forecasts
(ECMWF) in Reading (G�artel, Joppich, and Sch�uller [30]). This system
is still running with an improved degree of parallelism to provide a global
10{day weather forecast every day.

In the meantime, a number of other weather models have been paral-
lelized for distributed memory computers (e. g. MC2: Thomas et al. [81],
HIRLAM: Sk�alin and Bj�rge [69] and MM5: Michalakes [58]) and most of
the currently developed new generation of comprehensive weather predic-
tion models is already designed for parallel machines (e. g. Sch�attler and
Krenzien [68]).

1The quality is measured by correlation coe�cients for the 500 hPa{level.
2The increase is essential, which becomes obvious when considering the misses to the

perfect correlation of 1.0 (reduced from 0.2 to 0.05).
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As high end parallel computers are already being used in numerical
weather prediction and because it is extremely di�cult and expensive to
exploit the performance of even faster systems (e. g. Cassirer et al. [22]),
research on fast and parallel algorithms is still important.

A very promising idea in this context is therefore to adapt the resolution
locally to the actual requirements. This is already being done to some extent:
Global models predict the weather of the whole world with a typical spa-
tial resolution between 30 km and 100 km, whereas regional models provide
higher resolution and a more detailed forecast for designated regions (e. g.
for Germany or for Europe). Since regional weather forecasts for the next
few days are globally in
uenced, global simulations are necessary in order
to provide boundary data for regional medium{range weather predictions.

Although global and regional models simulate weather and also climate
with very similar methods, their di�erent computational domains have algo-
rithmic consequences. Because global simulations are performed on a sphere,
spectral models (Orzag [59] and Machenhauer [50]) are often applied, which
are well suited for this domain in combination with large scales and periodic
boundary conditions. A drawback of spherical discretizations along longi-
tudes and latitudes is the singularities at the poles and the unintentionally
high resolution in their surroundings.

For regional simulations grid point models with easier to handle �nite{
di�erence discretizations based on Cartesian grids are usually used. Prob-
lems with spherical anisotropies can be e�ectively solved by using a rotated
coordinate system, so that the computational domain is su�ciently far from
the poles. Moreover, grid point approaches have an inherent locality, which
is advantageous for simulating local phenomena and also with regard to par-
allel computers (grid partitioning). Because of this advantage global grid
point models based on triangular grids are also currently being developed
(Majewski [51]).

Moreover, it is also desirable to adapt the mesh size locally within global
and regional models and to provide high resolution only where it is bene�cial
in order to save computational costs elsewhere. This can be done with static
re�nement areas that are known and de�ned prior to the simulation (e. g.
for regions of special interest or with complex orography) or even dynami-
cally, by adapting the resolution to the requirements of the evolving weather
situation (e. g. for weather fronts or cyclones). Since the weather is being
simulated itself and is not known beforehand, the regions that require high
resolution have to be detected by a suitable mathematical or meteorological
criterion and adapted automatically during simulation.

A one{way interaction, which is the boundary support for the �ne grid
with coarse grid data, is sometimes su�cient for static re�nements. With
dynamically adapted re�nements, however, two{way interactions are neces-
sary, where the more accurate results of the �ne grids also have a feedback
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on the coarse grid. This prevents the solutions on the �ne and coarse grids
from diverging from each other, which would hinder the release of the re�ne-
ment regions, once they have been introduced. Moreover, with a two{way
interaction a locally more accurate simulation can improve global accuracy
and the overall quality of the forecast.

Especially with dynamic local re�nements higher resolutions and more
accurate predictions become available at lower computational costs.

The structure of commonly used regional weather prediction models im-
plies constraints for parallelization with respect to data decomposition and
load balance. Comprehensive meteorological models consist of two main
parts: the dynamics and the physics.

In the dynamics, the partial di�erential equations describing 
uid motion
are integrated. Advection and gravity pressure balance are integrated from
time step to time step with various alternatives for the time scheme. With
(fully) explicit Eulerian3 schemes the sizes of the time steps are limited
by the fastest moving waves, which are the gravity waves (in hydrostatic
models). To save computing time split{explicit schemes are often applied
where the slower advection is integrated with larger steps and the gravity
waves by small time steps. Another alternative is to compute the gravity
waves implicitly, which resolves the time step limitation; only large time
steps are performed. Such a time scheme is called semi{implicit and is
applied for the adaptive method presented in this paper.

However, also with semi{implicit time schemes the time step sizes are
still restricted for stability rather than accuracy, and semi{implicit semi{
Lagrange schemes, which do not limit the time steps for stability, become
popular (Staniforth and Côt�e [73] and Bates [10]). Both semi{implicit Eu-
lerian and semi{implicit semi{Lagrangian schemes require the solution of a
Helmholtz{(like) equation for every time step. Much of the design of this
paper is therefore usable for semi{Lagrangian schemes as well.

The physics is the second main part of weather forecast models. It
comprises the physical processes like radiation, precipitation, evaporation,
etc. Usually the physics are computed after the dynamics and complete
a full time step of the model. Since the physical processes are strongly
coupled in the vertical direction (e. g. radiation and rainfall are almost purely
vertical processes), grid decompositions for parallelization in this direction
are avoided. By partitioning the grid only horizontally, existing sequential
physics packages can be re{used and, moreover, a high degree of parallelism
can be achieved for this part of the simulation.

Typically, the physics require about one{third of the computational costs
of the dynamics, but much higher costs arise depending on the complexity
of the physical models. Furthermore, the costs vary considerably depending

3non{Lagrangian
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on the di�erent physical processes that are simulated for the local weather
simulation (e. g. convection (ascending and descending air) arises only lo-
cally). This is a serious di�culty for parallel computers, since imbalances
of computational work are introduced. Dynamic mapping algorithms have
been developed for this reason (e. g. Elbern [27]).

In contrast to the physics, the dynamics have essential horizontal de-
pendencies. With horizontal grid partitionings, data transfers must take
place on parallel systems with distributed memory. In this paper we will
concentrate on the dynamics part. On the one hand, it is the basis of full
weather prediction models; on the other hand, it is algorithmically more
demanding in combination with parallel systems (as usually only horizontal
partitionings are applied).

Basic model equations of the dynamics in three space dimensions are
the Primitive Equations (e. g. Kwizak and Robert [44]). However, since
the motion of the atmosphere is predominantly horizontal, simpli�ed two{
dimensional models often serve as reasonable model problems. Model equa-
tions describing two{dimensional atmospheric 
ow are the Shallow Water
Equations, which are presented in detail in Section 2.2 .

2.2 The Shallow Water Equations

The Shallow Water Equations (SWE) are considered model problem for me-
teorological applications. They form the dynamic basis of comprehensive
weather prediction models and are often used as a �rst approach when de-
veloping and implementing new numerical weather prediction models (e. g.
Cassirer, Hess, Jablonowski, and Joppich [21]) and also for benchmarks on
parallel computers (e. g. McBrian [52]) . The SWE already describe me-
teorological phenomena (advection, Rossby{waves and gravity waves) that
have to be considered when designing new algorithms for numerical weather
simulations. Essential characteristics like accuracy and stability can be in-
vestigated (e. g. in combination with adaptive re�nements).

Nevertheless, the SWE require essentially less e�ort and computer power,
when implementing and performing validation and test calculations in com-
parison to three{dimensional weather models. They are also simple enough
to allow theoretical investigation like the representation of domains of de-
pendence and in
uence (Section 2.2.2), stability analyzes (Section 3.1.3), or
even the comparison with analytical solutions in some cases (Section 5.1) .

The name of the SWE comes from hydrodynamics, since they describe
the 
ow and the waves of water in case the depth of water is small compared
to the radius of curvature of its surface (Stoker [75], e. g. they are used to
model breaking waves at shallow beaches).

Considering the atmosphere as an incompressible 
uid and assuming
the hydrostatic law (2.3) (which is a good approximation for large{scale
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motions, Haltiner and Williams [34]) the SWE are a �rst approximation to
atmospheric 
ows. In this sense the atmosphere is regarded as shallow with
respect to its extension around the globe.

In this paper the SWE are applied in time{dependent and nonlinear form
with two space dimensions and in spherical coordinates. Formulated as in
Equation (2.7) they describe the following three phenomena:

� Gravity Waves
These are in general fast waves that propagate mediated by the gravity
force due to variations in hydrostatic pressure in the atmosphere. They
are the equivalent of water waves. Although they play a role in the
so{called geostrophic adjustment process (Randall [61]), their in
uence
in weather forecasts is small. Therefore they are generally considered
disturbing oscillations (meteorological noise), when they propagate in
numerical weather models.

� Advection
This describes the motion of the atmosphere (wind). Advection is
generally much slower than the speed of the gravity waves.

� Rossby Waves
These are large{scale waves caused by the varying Coriolis force de-
pending on latitude. Very important in global weather models, they
are of minor interest in local and small{scale motions.

In Table 2.1 the main synoptic pressure levels and their average heights
(Meyers [56]) are listed. Also included are the velocities of the corresponding
gravity waves according to Formula (2.14). The high velocity of the gravity
waves and their minor in
uence on the weather have to be considered when
discretizing the SWE (Sections 2.5 and 3.1.1).

The 500 hPa{level has an outstanding position, since about half of the
mass of air of the atmosphere is below and half above. Nevertheless, we will
concentrate later in Chapter 5 on the more extreme levels with 850 hPa and
200 hPa .

pressure [hPa] height [km] wave speed [m/s]

100 16.0 396
200 12.0 343
300 9.0 297
500 5.5 232
700 3.0 172
850 1.5 121

Table 2.1: Main pressure levels and speed of gravity waves
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In Section 2.2.1 the SWE are derived from conservation laws and the
hydrostatic approximation. A more mathematical insight into the behavior
of the solutions of the SWE is presented in Section 2.2.2 .

2.2.1 Derivation

For the systematic completeness of this paper the SWE are derived from
the laws of conservation of mass and momentum and with the assumption
of the hydrostatic law (compare Courant and Friedrichs [24]) .

Let x and y be the horizontal coordinates and z the vertical coordinate
of a Cartesian coordinate system. The water extends from the bottom z=0
to the free surface z=~h , so ~h is a function of x and y and the time t . With
the velocity components u , v , and w of the coordinates x , y , and z the
continuity equation reads

ux + vy + wz = 0 (2.1)

and the conservation of momentum states

�
du

dt
= �px

�
dv

dt
= �py (2.2)

�
dw

dt
= �pz � g � ;

with pressure p and acceleration of gravity g . Constant density � is assumed.

The hydrostatic law

p = g � (~h� z) (2.3)

states that p depends only on the height of the column of water above. This
can be shown to be a good approximation for shallow water (Stoker [75]) .

With Equation (2.3) the pressure gradients px , py , and pz become in-
dependent on z and with Equation (2.2) also the horizontal velocities u and
v , in case they were independent on z at some initial state. The verti-
cal acceleration dw

dt
becomes zero. The �rst two equations of System (2.2)

then formulate the �rst two equations of System (2.5) for the geopotential
h = g ~h .

Equation (2.1) is integrated over the height of the column of water

0 =

Z ~h

0
(ux + vy + wz) dz = ~h (ux + vy) +w

���z=~h

z=0
; (2.4)

and with the kinematic conditions

w
���
z=0

= 0 and w
���
z=~h

=
d~h

dt
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the third equation of System (2.5) follows

@u

@t
+ u

@u

@x
+ v

@u

@y
+
@h

@x
= 0

@v

@t
+ u

@v

@x
+ v

@v

@y
+
@h

@y
= 0 (2.5)

@h

@t
+ u

@h

@x
+ v

@h

@y
+ h

�
@u

@x
+
@v

@y

�
= 0 :

This system is called the time dependent SWE in convective formulation for
the geopotential h .

Sometimes, the SWE are used in linearized form assuming constant val-
ues for the coe�cients of the derivatives. In one dimension the linearized
system reads

@u

@t
+ u0

@u

@x
+
@h

@x
= 0

@h

@t
+ u0

@h

@x
+ h0

@u

@x
= 0 ; (2.6)

with constant u0 and h0 . Theoretical investigations like linear stability
analyzes can be performed with this simpli�ed system.

In the meteorological context the Coriolis force and the acceleration due
to orography are also included in the SWE. The Coriolis force results from
the rotation of the earth and is of essential importance for large{scale atmo-
spheric 
ow. The Coriolis parameter f=2
 sin' is de�ned by the angular
velocity 
 = 2�

86400s of the earth and the latitude ' . With hs denoting the
orography (or the height of the bottom of the water) and with the Coriolis
force the SWE in Cartesian coordinates are written

advectionz }| { Cor. f.z }| { grav. termsz }| {
@u

@t
+ u

@u

@x
+ v

@u

@y
� f v +

@(h+ hs)

@x
= 0

@v

@t
+ u

@v

@x
+ v

@v

@y
+ f u +

@(h+ hs)

@y
= 0

@h

@t
+ u

@h

@x
+ v

@h

@y
+ h

�
@u

@x
+
@v

@y

�
= 0 ;

(2.7)

in which the terms prescribing advection, Coriolis force, and gravity waves
are indicated.

2.2.1.1 Spherical Coordinates

For regional area models the SWE are solved on a rectangular section of the
globe that is bounded by two longitudes and two latitudes. System (2.7) is
transformed into spherical coordinates �2 [0; 2�] , '2 [��; �] , and the radius
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of the earth a . Details of the transformation are provided in Section A.1 .
On the rotating sphere the Coriolis force is described in good approximation

by the Coriolis terms
�
f + u tan'

a

�
v and

�
f + u tan'

a

�
u (see Haltiner and

Williams [34]). The full system of equations as applied and implemented in
this work then reads

@u

@t
+

u

a cos'

@u

@�
+
v

a

@u

@'
�
�
f +

u tan'

a

�
v +

1

a cos'

@(h+ hs)

@�
= 0

@v

@t
+

u

a cos'

@v

@�
+
v

a

@v

@'
+

�
f +

u tan'

a

�
u+

1

a

@(h+ hs)

@'
= 0

@h

@t
+

u

a cos'

@h

@�
+
v

a

@h

@'
+

h

a cos'

�
@u

@�
+
@(v cos')

@'

�
= 0 :

(2.8)

2.2.1.2 Relation to the Euler Equations

It should be mentioned here that the SWE are equivalent to the Euler
Equations for polytrophic gases with adiabatic exponent 
 = 2 , see Equa-
tion (2.9) . To see that, the pressure ~p = 1

2g
~h2 and the density ~% = ~h are

introduced. The SWE (2.5) can then be formulated

ut + uux + vuy = � ~px
~%

vt + uvx + vvy = � ~py
~%

(2.9)

~%t + (~%u)x + (~%v)y = 0 ;

where ~p= 1
2g~%

2 holds.

The speed of sound of the Euler Equations (2.9), ~a=
q

d~p
d~% , is equal to

the speed of the gravity waves of the SWE as given in Equation (2.14).

2.2.2 Characteristic Surfaces

With regard to the discussions in Sections 3.1 and 3.2 the theory of charac-
teristics is applied to the SWE. For a more general discussion of this theory,
which is valuable especially for hyperbolic initial value problems, we refer
to Sauer [65] or Hirsch [39] .

2.2.2.1 Ranges of Dependence and In
uence

The characteristics give useful information about the behavior of partial
di�erential equations, especially for hyperbolic systems such as the SWE.
Deteriorations and discontinuities (shocks) propagate along them, and they
de�ne domains of dependence and in
uence.
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In three dimensions (two space and one time dimension) the charac-
teristics are characteristic surfaces. For their derivation a smooth plane
t= t(x; y) with continuous derivatives r = tx and s= ty is assumed. Inner
derivatives of a function f(t; x; y) with respect to the plane t are derivatives
in direction to the tangents of the plane; in x{ and y{direction: �f

�x
=fx+r ft

and �f
�y
= fy+s ft , respectively. The partial derivative ft is called an outer

derivative.
Transformation of System (2.5) to inner derivatives results in a linear

system for ut , vt , and ht

(u r + v s� 1)ut + r ht = u
�u

�x
+ v

�u

�y
+
�h

�x

(u r + v s� 1) vt + s ht = u
�v

�x
+ v

�v

�y
+
�h

�y
(2.10)

h r ut + h s vt + (u r + v s� 1)ht = u
�h

�x
+ v

�h

�y
+ h

�
�u

�x
+

�v

�y

�
:

In case there are given values for u , v , and h on the plane, the inner deriva-
tives and the right hand side of Equation (2.10) are also determined. If

R :=

�������
u r + v s� 1 0 r

0 u r + v s� 1 s
h r h s u r + v s� 1

������� = 0 (2.11)

is not true, the outer derivatives ut , vt , and ht are given, which provide
constraints for the solution of the partial di�erential equation in the neigh-
borhood of t .

However, in case Equation (2.11) holds, the outer derivatives can exist
only, if also

V :=

�������
u r + v s� 1 0 u �u

�x
+ v �u

�y
+ �h

�x

0 u r + v s� 1 u �v
�x

+ v �v
�y

+ �h
�y

h r h s u �h
�x

+ v �h
�y

+ h( �u
�x

+ �v
�y
)

������� = 0 ;

(2.12)
which poses a condition for the values u , v , and h on the plane t , and
represents the fact that solutions to the partial di�erential equation evolve
along planes with R=0 . 4

Equation (2.11) is a partial di�erential equation of the �rst order; its so-
lutions are the characteristic surfaces. For the SWE there are three di�erent
real solutions, which is the mathematical background as to why the SWE
in Formulation (2.5) are classi�ed as hyperbolic. The solutions are

u r + v s� 1 =

(
0

�ph (r2 + s2)
: (2.13)

4The conditions R = 0 and V = 0 can be used to solve a hyperbolic equation on a
coordinate system based on the characteristics. In two space dimensions this was carried
out (Hess [37]) for the steady potential 
ow problem.
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A linearization by keeping u , v , and h constant provides a linear approx-
imation for the characteristic surfaces. The �rst solution of Equation (2.13)
degenerates into a line in the direction of the advection with dx

dt
= u and

dy
dt

= v ; the other two solutions de�ne a cone with dx
dt

= u �
p
h rp

r2+s2
and

dy
dt

= u�
p
hsp

r2+s2
. Hence,

�
dx

dt
� u

�2

+

�
dy

dt
� v

�2

= h : (2.14)

This result means, that disturbances propagate with the speed
p
h=

q
g~h

relative to the advection5.

In Figure 2.1 the characteristic cone of a point P is displayed, and the
corresponding linear approximations of its domain of dependence and zone of
in
uence are shown for the preceding and succeeding time step. The domain

level n-1

P

Zone of Influence of P (u,v)

Domain of Dependence of P

time

x

y

level n+1

level n

Figure 2.1: Domain of dependence and zone of in
uence

of dependence of a point P is the region of the initial values (or values of the
precedent time level6) that contribute to the solution in P . It is limited by
the characteristics that de�ne the maximal speed of propagation within the
hyperbolic system. Points outside this region can not in
uence the solution
in P . Conversely, the zone of in
uence of P is the region that is in
uenced

5Since
p
h is higher in the crest of the wave than in the trough, waves tend to break

in shallow water as experienced at the beach.
6In case the partial di�erential equations are solved as a sequence of boundary value

problems as in our case.
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by the value in P . It is also bounded by the characteristic surfaces; points
outside this region do not depend on the value in P .

With regard to the discretized SWE the domain of dependence of P
consists of a number of grid points of the previous time level as displayed
in Figure 2.1 . This result is important for the numerical solution of the
hyperbolic system (see Section 3.2). All information that P depends on
physically should be supported by the numerical scheme.

2.2.2.2 The Initial Value Problem

When solving partial di�erential equations it is essential to formulate a well
posed problem7. From the mathematical point of view a global shallow water
model can be classi�ed as a hyperbolic initial value problem with periodical
boundary conditions, which is well posed.

In operational environments the result of global simulations is often used
as boundary data for local models. However, when prescribing all variables
(h , u , and v in case of the SWE) as Dirichlet values for the local model
an over{determined problem results, and no solution exists in general (e. g.
Sauer [65]). Consequently, local models are usually nested into global mod-
els. The values of the global model are introduced in a smooth way in a
boundary region that has a width of several grid points. Such a nesting
procedure is applied in this work for the local re�nements and presented in
Section 3.3.3 in detail.

When embedding a local model into a global model in this way the local
model can be considered as part of the global model, especially if a two{way
interaction is applied, so that the combined problem stays well posed.

2.3 Adaptive Multigrid

For a detailed description of multigrid techniques we refer to Brandt [17],
Joppich and Mijalkovi�c [43], and Trottenberg, Oosterlee, and Sch�uller [82].
Here only the rough idea is mentioned, details are given only as far as they
are necessary for this paper.

A number of iterative solvers (e. g. Jacobi, Gauss{Seidel, SOR) elimi-
nate high frequency error components very e�ectively, while low frequency
components are reduced at a much lower rate. Within multigrid algorithms
these solvers are used as smoothers to eliminate the high frequency error
components, while low frequency components are transferred to a coarse
grid. The coarse grid has considerably fewer grid points than the origi-
nal �ne grid, and these low frequency components can be eliminated more
e�ciently there.

7A mathematical problem is called \well posed" if a unique solution exists, and if it
depends on the given initial and boundary conditions in a continuous way.
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Moreover, because these low{error components of the �ne grid have
higher frequencies with respect to the coarse grid, these error components
can usually be reduced in the same way as on the original �ne grid. High
frequencies (with respect to the coarse grid) are smoothed again, and the
remaining low frequencies are transferred to an even coarser grid. This
procedure results in a recursive algorithm with several levels of coarse grids.

The idea of Full Multigrid (FMG) is worth mentioning, although it is not
used in this paper: Coarse grid approximations of the solution are used in
order to �nd reasonable initial values for the �ner grids. These initial values
are improved by multigrid iterations that use the coarse grids again. This
method has an interesting property for an elliptic boundary value problem as
Problem (2.15): After only one FMG{iteration the algebraic error is in the
order of the discretization error (under some assumptions, see Brandt [17]).
Since this accuracy is supposed to be su�cient in most cases, an optimal
order O(n) algorithm (n denote the number of grid points) results for the
solution of the problem.

In Section 2.3.1 a two{level scheme is presented that forms the basis of
multi{level iterations. The discretization on two grids with di�erent mesh
sizes makes it possible to estimate the local truncation error in space. This
error can be used to formulate a re�nement criterion to de�ne regions of
the computational domain where higher spatial resolution is appropriate,
see Section 2.3.2 . The combination of multigrid and local re�nement is very
natural; two{level and multilevel schemes need only be slightly adapted
(Section 2.3.3).

2.3.1 Full Approximation Scheme (FAS)

In order to formulate a two{level Full Approximation Scheme (FAS) an
elliptic Dirichlet boundary value problem is de�ned on a rectangular two{
dimensional domain G=[0; 1] � [0; 1] by

Lu = f in
�
G

u = g in @G ;
(2.15)

where L is a (not necessarily linear) second order operator, f is a smooth
right hand side and g are the boundary values. To solve this problem nu-
merically it is discretized on a grid

Gh =
n
(xi; yj)

���xi = i�x; yj = j�y; 0 � i � Nx; 0 � j � Ny; i; j 2 IN
o

:

The subscript h= (�x;�y) = (1=Nx; 1=Ny) de�nes the mesh sizes in both
directions and Nx and Ny the number of intervals in x{ and y{direction,
respectively.
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(1) Pre{Smoothing uh := S�1(uh; Lh; fh) on
�
Gh

(2) Computation of Residuals rh := fh � Lh uh on
�
Gh

(3) Restriction rH := IHh rh on
�
GH

(4) Update Right Hand Side fH := LH ÎHh uh + rH on
�
GH

(5) Solve Coarse Grid Problem uH := L
�1

H fH on
�
GH

(Apply Multigrid Cycle)

(6) Calculation of Increments eH := uH � ÎHh uh on
�
GH

(7) Prolongation eh := IhH eH on
�
Gh

(8) Addition of Correction uh := uh + eh on
�
Gh

(9) Post{Smoothing uh := S�2(uh; Lh; fh) on
�
Gh

Table 2.2: Full approximation scheme (FAS), two{grid scheme

The discretized problem reads:

Lh uh = fh for uh 2
�
Gh

uh = gh for uh 2 @Gh ;
(2.16)

where Lh , fh , and gh are discretizations of L , f , and g , respectively.
�
Gh

denotes the inner points and @Gh the boundary points of Gh .
A basic two{grid FAS scheme is formulated for Problem (2.16) in Ta-

ble 2.2 . The sign `:=' de�nes assignments in the algorithmic sense rather
than mathematical equalities or de�nitions. With standard coarsening (H=
2h) the coarse grid GH has half as many intervals as Gh . Steps (1){(9) are
discussed in detail:

(1) (Pre{Smoothing) The high frequency error components are reduced
by applying a smoothing operator S 8. The superscript �1 de�nes the
number of smoothing steps to be performed.

(2) (Computation of Residuals) The residuals of the �ne grid values are
calculated. They represent for the most part the remaining low fre-
quency error components that have not been e�ectively damped by

8For Laplace, Poisson, or Helmholtz equations often red{black Gauss{Seidel iterations
are used.
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the smoothings.

(3) (Restriction) The residuals are transferred to the coarse grid GH ap-
plying a grid transfer operator IHh . Usually, an averaging of neighbor-
ing �ne grid values is performed to transfer the low frequency com-
ponents correctly. Examples for IHh are full weighting (FW) and half
weighting (HW)9. In stencil notation:

(FW )

IHh =
1

16

2
64 1 2 1
2 4 2
1 2 1

3
75
H

h

resp.
(HW )

IHh =
1

8

2
64 1
1 4 1
1

3
75
H

h

:

(4) (Update Right Hand Side) The right hand side of the coarse grid equa-
tion is calculated. The coarse grid operator LH is an approximation
of Lh , and usually the stencil of Lh is used

10; however, it is applied on
ÎHh uh , a restriction of the �ne grid function uh . The standard choice
of ÎHh is simple injection (INJ).

This right hand side fH is calculated in this way rather than using a
restriction ÎHh fh of the original problem. This represents the fact that
the coarse grid is used to calculate the original problem (2.16) with
the accuracy of the �ne grid. This divergence can be used to de�ne a
re�nement criterion as discussed in Section 2.3.2 .

(5) (Solve Coarse Grid Problem) The coarse grid equation has to be solved,
which is essentially cheaper than solving the original �ne grid prob-
lem, since the coarse grid has about four times fewer grid points (with
standard coarsening, H = 2h) and a direct solver might therefore be
applicable. However, it is not necessary to solve the coarse grid equa-
tion exactly to achieve good convergence rates within the two{level
scheme for the �ne grid equation. The coarse grid equation can also
be treated in the same way as the original �ne grid problem using an
even coarser grid. This idea results in a recursive multigrid FAS with
several levels of coarse grids.

(6) (Calculation of Increments) The increments of the coarse grid values
that result from the solution (iteration) of the coarse grid equation are
calculated. These values represent the coarse grid correction.

(7) (Prolongation) The coarse grid correction is transferred to the �ne
grid. Only increments are interpolated to the �ne grid (and not the
coarse grid values itself) to prevent large interpolation errors. The

9In combination with red{black Gauss{Seidel smoothers HW can be optimized to half
injection (HI).

10An alternative is a Galerkin operator de�ned by the Galerkin condition LH=IHh LhI
h
H

with IHh and IhH being adjoint to each other.



2.3. ADAPTIVE MULTIGRID 39

transfer operator IhH de�nes the interpolation from the coarse to the
�ne grid. For bi{linear interpolation the stencil reads

IhH =
1

8

3
75 1 2 1
2 4 2
1 2 1

2
64
h

H

:

(8) (Addition of Correction) The transferred corrections are added to the
�ne grid values.

(9) (Post{Smoothing) A number of �2 smoothing steps S are carried out
to reduce high error components that may have been introduced by
the interpolation of the coarse grid correction.

Obviously uH tends to uh in case of convergence, although there is no
direct assignment as uH = ÎHh uh within the FAS.

This two{level FAS as well as multi{level schemes can be parallelized by
grid partitioning (see Section 2.4.3).

2.3.2 Local Discretization Error as Re�nement Criterion

The local truncation error in space can be estimated by comparing the dis-
cretizations of the boundary value problem on the two grids Gh and GH .

The right hand side of the coarse grid equation of Step (5) of the FAS
can be written

fH = LH ÎHh uh+ rH = LH ÎHh uh+ IHh (fh�Lh uh) = �hH + IHh fh ; (2.17)

introducing �hH , the relative local discretization error of GH and Gh ,

�hH = LH ÎHh uh � IHh Lh uh : (2.18)

This value represents the improvement of the accuracy of the discretiza-
tion on grid Gh relative to GH . If an asymptotic expansion for the local
discretization error �H of the discretization on grid GH of the continuous
problem of Equation (2.15) is assumed, �H can be extrapolated using �hH .

A re�nement criterion with a purely mathematical background11 is yield
that limits the local discretization error �hH due to

j�H j < ccrit : (2.19)

The points which do not ful�ll the Criterion (2.19) are marked to be re�ned.
An example is given in Figure 2.2 (left), where a critical region is indicated

11The physical or meteorological background of an application can also provide re�ne-
ment criteria, e. g. the gradients of the solution.
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by a thick bent line. The points that should be re�ned are indicated by
dots.

However, in most cases it is not obvious how to de�ne ccrit in order to
achieve a maximal increase in accuracy by minimal sizes of the re�nement
region. A reasonable choice for ccrit is presented in Section 3.3.1 along with
the application of the re�nement criterion (2.19) to the two{dimensional
time{dependent SWE (2.7).

2.3.3 Multilevel Adaptive Technique (MLAT)

The re�ned grids are de�ned in this paper (due to Bai and Brandt [6]) with
a re�nement ratio of 1 : 2,, and the �ne grid lines are aligned to the global
grid (in the re�nement area coarse grid lines coincide with grid lines of the
re�nement patches)12.

In Figure 2.2 (left) the points selected by a re�nement criterion lead to
the re�nement area, that is hatched in the picture. The resulting re�ned
grid is displayed in Figure 2.2 (right). In general, the re�nement may have
a very irregular shape.

The idea of the Multilevel Adaptive Technique (MLAT) is to realize a
re�ned grid as a composed grid GH consisting of a global grid GH and a
grid Gh with smaller mesh size that is called local re�nement. The �ne
grid is placed on the global grid to increase the resolution locally and the
accuracy locally as well as globally13.

The global grid GH has two functions simultaneously:

� At grid points outside the local re�nement, the coarse grid is used to
calculate the solution as if no re�nement existed.

� At grid points inside the local re�nement the solution is calculated
on the �ne grid. The points of the coarse grid are used to increase
the rate of convergence of the multigrid iteration and to solve the
corresponding coarse grid equation within the FAS.

The problem to be solved on the composed gridGH = GH[Gh is (here,
H denotes the mesh size of the global grid in contrast to h in System (2.16) )

12Other approaches are arbitrary rotated re�nement areas (e. g. Berger and Oliger [14]);
di�erent re�nement ratios are possible as well.

13Another philosophy of local re�nement is not to put additional re�nement patches on
a global grid, but to reduce the global �ne grid Gh to those parts where high resolution is
really necessary. The coarse grid that was formerly used in the multigrid context only to
reduce low error components now becomes visible where no re�nement exists and carries
the solution there (e. g. McCormick [54]).
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Lh uh = fh for uh 2
�
Gh

uh = IhH uH for uh 2 @Gh

uH = ÎHh uh for uH 2 �
GH \ �

Gh (2.20)

LH uH = fH for uH 2 �
GH n ( �GH \ �

Gh)

uH = gH for uH 2 @GH :

System (2.20) is closed and can be solved with the MLAT algorithm that
is presented in Table 2.3 . In contrast to the FAS, the update of the right
hand side in Step (4) is now restricted to points where the required �ne grid

values are available. For the other points (
�
GH n ( �GH \ �

Gh) ) the usual
discretization of f is applied in order to solve the coarse grid problem in
step (5) . Another divergence from the FAS is the interpolation of the inner
boundaries @Gh of the re�nement in Step (9). The interpolation operator
IIhH usually is of a higher order (bi{cubic), since function values and not
only increments are interpolated, and because discretization order and rate
of convergence could be a�ected otherwise.

Figure 2.2: Re�nement area (left) and corresponding re�ned grid (right)

However, this bi{cubic boundary interpolation was skipped when using
MLAT in the context of the time dependent SWE. The details of how MLAT
is actually applied in this paper are given in Section 3.3.4 .

2.4 Parallel Programming

During the last decade parallel computers have become a cutting{edge tech-
nology of high{performance and scienti�c computing (e. g. St�uben [77]).
Whereas single processors have almost reached their maximal theoretical
computational performance, that is limited by physical reasons (speed of
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(1) Pre{Smoothing uh := S�1(uh; Lh; fh) on
�
Gh

(2) Computation of Residuals rh := fh � Lh uh on
�
Gh

(3) Restriction rH := IHh rh on
�
GH \ �

Gh

(4) Update Right Hand Side fH := LH ÎHh uh + rH on
�
GH \ �

Gh

(5) Solve Coarse Grid Problem uH := L
�1

H fH on
�
GH

(Apply Multigrid Cycle)

(6) Calculation of Increments eH := uH � ÎHh uh on
�
GH \ �

Gh

(7) Prolongation eh := IhH eH on
�
Gh

(8) Addition of Correction uh := uh + eh on
�
Gh

(9) Boundary Interpolation uh := IIhH uH on @Gh

(10) Post{Smoothing uh := S�2(uh; Lh; fh) on
�
Gh

Table 2.3: Multilevel adaptive technique (MLAT)

light, elementary charge), increasing performance is still achieved by devel-
oping parallel computers. Up to thousands of single processors are combined
in parallel systems. These parallel architectures can be classi�ed into Sin-
gle Instruction Multiple Data (SIMD) machines and Multiple Instruction
Multiple Data (MIMD) machines, depending on whether single or multiple
instruction streams are used.

SIMD systems perform the same instruction at the same time, but ap-
plied to di�erent data. They can be programmed using array constructs
that are supported by special compilers. Vector computers can be regarded
as a particular SIMD class. Each processor of a MIMD system, on the other
hand, performs its own instructions on di�erent data. The data organiza-
tion of MIMD machines can be shared, where each processor has accesses
to a common global memory, or distributed, where each processor is pro-
vided only with its own local memory. In the latter case the processors are
logically connected by data transfers in the form of messages. Distributed
memory architectures allow parallel systems with a much higher number of
processors, whereas shared memory systems are limited in size because of
hardware and e�ciency reasons.

This paper concentrates on MIMD architectures with distributed mem-
ory and the application of the explicit message passing programming model.
This is a more general approach than shared memory programming, and can
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be applied to a much greater variety of numerical algorithms. It provides
maximal computational performance and portability; however, it is the most
expensive and di�cult parallelization approach.

In Section 2.4.1 basic characteristics of parallel algorithms are discussed.
For explicit message passing the Message Passing Interface (MPI) (see Sec-
tion 2.4.2) is the current standard that guarantees portability for many
available parallel platforms. Parallelization of multigrid algorithms is e�ec-
tively done by grid partitioning. An example is provided in Section 2.4.3 .

2.4.1 Characteristics of Parallel Algorithms

For modern numerical algorithms parallelism has become a very important
characteristic in addition to numerical e�ciency. Basic measures for parallel
algorithms are parallel speed{up Sp and parallel e�ciency Ep , de�ned as

Sp :=
T1
Tp

and Ep :=
Sp
p

; (2.21)

where p is the number of processors, and T1 and Tp are the solution times
of the parallel algorithm calculated with one and with p processors, respec-
tively. Using T1 as reference time in Formula (2.21) neglects the fact, that
sometimes a faster sequential algorithm exists. High parallel e�ciencies can
not be seen as a good result, however, if they are achieved by parallelizing a
numerically slow algorithm. Therefore for a fair comparison the time T best

of the fastest available sequential algorithm should be used instead of T1 .

However, when calculating a large problem it is sometimes not possible to
solve it with only one processor and to measure T1 (or T

best) at all (because
of memory or time restrictions). The following approximations for Sp and
Ep can be used in these cases:

~Sp :=

pP
i=1

T i
calc

max
i=1;:::;p

(T i
calc + T i

comm)
and ~Ep :=

~Sp
p

; (2.22)

where T i
calc and T i

comm denote the execution times for calculation and com-
munication of processor number i , respectively, i = 1; : : : ; p .

~Sp and ~Ep are only rough approximations, because in general paralleliza-
tion introduces additional algorithmic and software overhead, and because
usually not all calculation of an algorithm can be executed in parallel. The
sequential fraction � 2 [0; 1] of an algorithm limits the maximal speed{up
according to Amdahl's Law

Sp � 1

�+ 1��
p

� 1

�
: (2.23)
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This seems to be a severe restriction of parallelism; however, Amdahl's Law
does not take into account that with a larger number of processors larger
problems can also be solved.

In general it is not possible to distribute the computational work equally
among the computational nodes. The load imbalance of a parallel algorithm
limits parallel e�ciency, since it leads to sequential parts or at least to parts
with a reduced degree of parallelism. It should be balanced therefore as well
as possible among the available processors. The load balance factor

�p =
T average
calc

Tmax
calc

; (2.24)

with T average
calc = 1

p

Pp
i=1 T

i
calc and Tmax

calc =maxi=1;:::;p T
i
calc can be used to esti-

mate the parallel e�ciency ~Ep . If T
i
comm is negligible in Equation (2.22);

~Ep = �p (2.25)

results. Since the maximal execution time Tmax
calc determines the execution

time of the whole parallel application, the maximal computational load is
to be minimized.14

Parallel algorithms need to have special qualities in order to use the
computational performance of parallel computers as well as possible and to
achieve high parallel speed{ups and e�ciencies.

� The communication load of a parallel algorithm is given by the number
and sizes of the messages to be transmitted during the algorithm. It
obviously should be minimized. An important factor of a parallel
system is the relation between the performance of communication and
the performance of computation. The time for bu�ering messages
before and after transmits can not always be neglected and contributes
to the parallel overhead.

� The granularity of algorithms de�nes the portions of computational
work between the communication steps. Message exchanges not only
cost time but also synchronize the processes. This leads to extra wait-
ing times in case there are di�erent load imbalances in the computa-
tional steps of an algorithm. Coarse granularity and large portions of
work facilitate parallelization with good parallel e�ciencies.

� The scalability of an algorithms describes the e�ect of an increas-
ing number of processors on the parallel performance. There are two
points of view:

14Sometimes the ratio between minimal and maximal execution time is used as the load
balance factor. However, the resulting value is less important.
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{ The increased number of processors can be applied to a �xed
problem size. Scalability then expresses how much faster the
problem can be solved, as de�ned by parallel e�ciency and speed{
up.

{ The other possibility is to increase the problem size according
to the number of processors so that the portion of work on each
processor stays constant. Of course, with increased computer
power larger problems can be solved. This is an essential quality
of parallel algorithms.

In this paper we concentrate on the �rst point of view and always
compare the parallel adaptive algorithm with a reference problem of
�xed size in order to show the acceleration of the simulation due to
parallelism and adaptivity.

2.4.2 Explicit Message Passing | MPI

In the explicit message passing programming model the data interchanges
are explicitly inserted by calls of communication subroutines. The Mes-
sage Passing Interface (MPI) (Message Passing Interface Forum [28]) is the
current standard interface15.

Explicit message passing (by use of MPI) has two main advantages:

� It is the most portable parallel programming approach. It is possible
to run MPI programs on most currently distributed memory parallel
machines with an MPI interface. Even clusters of workstations can be
used (a corresponding implementation of MPI already exists, however
the lower communication performance reduces the parallel e�ciency).
Moreover, experience shows that explicit message passing runs very
e�ciently on shared memory parallel platforms.

� It is the fastest and the most general parallelization approach. In
comparison to the data parallel programming model a larger class
of numerical algorithms can be parallelized. Because of the direct
control of the communication of the parallel system, in general coarser
granularity and lower communication load can be achieved.

The disadvantage of explicit message passing is that it is a very di�cult and
time{consuming way of parallelization.

The most important functionality of MPI (besides initialization) is the
sending and receiving of data. Di�erent modes for sending and receiving
exist. The standard is the blocking mode that is initiated by calling the sub-
routines MPI Send and MPI Recv of the parallel interface MPI. In blocking

15Other portable interfaces are Parallel Virtual Machine (PVM) (Sunderam et al. [78])
and Parallel Macros (PARMACS) (Calkin et al. [20]).
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mode the data is copied from or into its memory bu�er before the subroutine
returns. In this way the bu�er can be reused immediately after the call for
the next communication that takes place. When receiving a message the
processor is blocked until the message the processor is waiting for arrives.
Not only waiting time is lost, also special care has to be taken to avoid
deadlocks.

The subroutines of the non{blocking mode MPI Isend and MPI Irecv

only initiate communications without completing them. Special subroutines
such as MPI Wait or MPI Test can be used in order to test whether messages
have arrived, or to wait at a later stage of the algorithm. Between initiation
and completion of the messages other computation or communication tasks
can be performed (of course the message bu�er must not be accessed in this
case). Not only is the interleave of computation and communication sup-
ported16, more general communication pattern can be used (two examples of
algorithms with non|blocking communication are given in Section 3.4.3).
Of course, the complexity of the parallel algorithm is increased.

Besides sending and receiving much more functionality exists in MPI,
e. g. there are global operations such as broadcasting or reducing data.

2.4.3 Grid Partitioning

For multigrid algorithms the grid partitioning parallelization approach is
well suited. The global grid is subdivided and distributed among the pro-
cessors; an example is given in Figure 2.3 . A grid with 9� 9 points is

=)

Figure 2.3: Grid partitioning, overlap width 1

partitioned into 2�2 subgrids. Points of the boundaries between the sub-
grids (inner boundaries) are distributed to all adjacent subgrids. This is
not necessarily the case, but it has advantages in combination with local
re�nements and multigrid (see Section 3.3).

The subgrids are extended by one grid line at the inner boundaries and
form overlap areas (indicated by hollow points in the �gure). In this way

16On some machines (e. g. IBM SP2) it is possible to transfer data in the background
concurrently to computations using designated communication processors.
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grid operations (e. g. smoothing steps) can be applied on each processor
in parallel. After one or more grid operations (depending on the overlap
width) the overlap regions are updated by data exchanges. The coarse grids
of multigrid algorithms can be partitioned in the same way, so that corre-
sponding parts of the �ne and coarse grids reside on the same processor.
Inter{level exchanges (i. e. restriction and prolongation) are then performed
without additional communication.

In Hess and Joppich [38] a multigrid algorithm that is parallelized by
grid partitioning is applied to a Helmholtz equation. The comparison to an
algorithm with Fast Fourier Transformation and Gauss Elimination that is
parallelized by a transposition strategy shows good numerical and parallel
performance of (parallel) multigrid for reasonable large problem sizes.

The computational work of grid operations increases with the total num-
ber of grid points, whereas only lower{dimensional boundary data has to be
exchanged. Because of the boundary{volume e�ect, coarse granularity at
low communication load is achieved for large partition sizes. However, if
the sizes of the partitions are small, the portion of work of the grid oper-
ations may become small in comparison to the communication overhead of
the boundary exchanges.

Small partitions are a problem especially for parallel multigrid algorithms
if the small coarse grids are partitioned for the same high number of pro-
cessors as the �ne grid. A remedy for this is the so{called agglomeration;
at certain coarse levels all data is gathered to one or a smaller number of
processors. The sizes of the partitions of the coarse grids are increased, and
the coarse grid correction can be calculated with a reduced communication
load for the boundary exchanges. Afterwards the coarse grid results are
redistributed again. This procedure a�ects load balancing, some of the pro-
cessors are not engaged in computations of the agglomerated coarse levels;
however, the imbalance is small if the agglomerated grids are small.

2.5 Related Work

In this section some other work on adaptive methods for numerical simula-
tions is mentioned. Because of the attractiveness of adaptive re�nements in
general and especially in meteorology, comprehensive research is currently
being done in this area. However, only selected references are given in the
following with no claim to completeness.

Static re�nements have already become operational in meteorological
weather forecasts in di�erent scenarios. The Deutscher Wetterdienst (DWD)
runs a global weather prediction model and uses its results to support bound-
ary values for two regional models with higher resolutions (e. g. Sch�attler and
Krenzien [67]) in today's operational mode. However, as in most cases, there
is only a one{way interaction from the global grid to the regional model; the



48 CHAPTER 2. OVERVIEW

more accurate results from the regional models are not used to improve the
global forecast.

Comprehensive models with two{way interaction also exist (e. g. Grell,
Dudhia, and Stau�er [31] and Sathye et al. [64]), where the feedback from
the re�nement prevents the solutions on the related grids from diverging
from each other. Since the simulations on the related grids must run syn-
chronously in this case, two{way interactive simulations are usually per-
formed within one model, which is a demanding concern for parallel software
engineering.

Other approaches of static re�nement in meteorology exist as well (e. g.
Staniforth and Côt�e [73] present a model where the resolution of a global
grid is increased for the desired region by a continuously decreasing mesh
size).

The situation is completely di�erent for dynamically adaptive simula-
tions. In most cases the user has to specify the re�nement areas and their
dynamic movement in advance of the simulation. However, since the infor-
mation where the re�nement areas are needed is rarely available before the
simulation, interest in truly adaptive mesh re�nement is growing (Baillie,
Michalakes, and Sk�alin [7]).

As early as 1984 Berger and Oliger [14] published a fundamental pa-
per on Adaptive Mesh Re�nement (AMR) for hyperbolic partial di�erential
equations. Numerical experiments in one and two dimensions with moved
and arbitrarily rotated rectangular grids were presented. The applied model
equations were simple (basically the scalar advection equation), and the re-
�nements were restricted to only a small number of large blocks in selected
model scenarios.

Nevertheless, based on this paper the �rst (as claimed by the authors)
truly dynamically adaptive simulation of large{scale atmospheric 
ows was
published in 1987 by Skamarock, Oliger, and Street [70] . One of the two
reported model problems is a barotrophic cyclone where a rectangular re-
�nement block is tracking the cyclone controlled by a Richardson{type es-
timation of the truncation error. However, the re�nement is restricted to
only one block and the applied nesting of the re�nement block was not
performing fully satisfactorily. Oscillations and discontinuities at the re�ne-
ment boundaries restricted the model to fully explicit time schemes. Based
on these early studies research on adaptive re�nements continues until the
present. Recent results are (1997):

Berger and LeVeque [15] published results of wave propagation; generally
shaped local re�nements are introduced into a two{dimensional, boundary{
�tted, and logically rectangular grid. Although only results for the advection
problem have been reported, an extension to the Euler Equations and for
three dimensions is intended.

Fulton [29] presented an adaptive model for hurricane track prediction
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that is based on a simple scalar vorticity conservation model. The adaptive
re�nement method is very restricted: Nested rectangular blocks of a given
number and size are adjusted to the center of the vortex. Adaptive multigrid
based on Bai and Brandt [6] (MLAT) is applied to solve the Poisson equation
for the streamfunction in this paper.

With regard to re�nements on distributed parallel computers Micha-
lakes [58], who parallelized a regional weather model with local re�nements
based on the Penn State/NCAR MM5 with the RSL communication library
(Michalakes [57]), has to be mentioned. For this three{dimensional forecast
system reasonable parallel performance is reported for a simulation including
two nested (however static) re�nement blocks.

Sometimes the Shallow Water Equations are simulated with triangu-
lar meshes and �nite element discretizations. In contrast to atmosphere
models with structured re�nement blocks a number of parallel and adap-
tive methods with �nite element discretizations exist for marine simulations
(e. g. Bastian [9] and Behrens [12]). The unstructured grids facilitate the
discretization of the shores.

Finally, there are also very di�erent approaches in adaptive meteorologic
simulations, e. g. G�ottelmann [32] developed an adaptive global shallow wa-
ter model based on wavelets on the sphere.

In comparison to the approaches with block structured re�nements that
are mentioned above, the dynamically adaptive simulation that is presented
in this paper is applied to the SWE17 with general and fully automati-
cally controlled re�nement areas. Moreover, a semi{implicit time scheme is
implemented and the model is parallelized for distributed memory parallel
systems. With this combination the model goes far beyond the limits of the
other known approaches.

17The advection equation is much simpler than the SWE, since no gravity waves occur.
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Chapter 3

Conceptual Design

This chapter presents details of the concepts that are used and combined in
the dynamically adaptive model.

In Section 3.1 the applied time and space discretization is introduced. A
semi{implicit time scheme is developed to increase the sizes of stable time
steps that can be e�ciently integrated by solving a scalar Helmholtz{(like)
equation. The space discretization is based on rectangular grids bounded
by longitudes and latitudes as are common for regional weather models.
Stability is theoretically investigated by a Von Neumann method applied to
a simpli�ed one{dimensional version of the SWE.

It is not necessary to solve the Helmholtz{(like) equation exactly. Sec-
tion 3.2 introduces the general idea of using multigrid as stabilizer and adapt-
ing the cycling to the stability requirements that arise from the implicit
treatment of the fast gravity waves.

The central part of the chapter is Section 3.3 that describes the design
of the local re�nements. A computationally e�cient estimation of the local
truncation error of the model equations is applied as an a{priory re�nement
criterion, in which it is taken into account that re�nement takes place only in
space. The detected re�nement area is partitioned into blocks by recursive
coordinate bisection in combination with the use of hypergrids. In this way
the number of initializations of new re�nement blocks is reduced. MLAT
iterations are applied to the Helmholtz{(like) equation on the re�ned grid.

Parallelization concepts are given in Section 3.4 . The administration of
the block structure in the explicit message passing parallel environment is
presented. The load balancing algorithm computes a mapping of the re�ne-
ment blocks to the available computational nodes in which coarse{�ne neigh-
borhood relations are considered as side conditions to reduce the required
amount of communication. In order to achieve best parallel performance
asynchronous communication is applied to reduce synchronization and to
enable the concurrent execution of computation and communication. Ex-
emplary parallel parts of the dynamically adaptive algorithm as the applied
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parallel MLAT algorithm conclude this chapter.

3.1 Discretization

3.1.1 Semi{Implicit Time Discretization

With local re�nements, high resolutions become available, and the size of
stable time steps is extremely limited when using explicit time schemes due
to the Courant{Friedrichs{Levy (CFL) criterion. Therefore a semi{implicit
Eulerian1 two{time{level discretization was developed. The fast gravity
waves are calculated implicitly, whereas advection and Coriolis force are
evaluated in an explicit way. In this way the time step size is no longer
restricted by the fast gravity waves, but only by the generally much slower
advection. The stability criterion becomes less severe and larger time steps
available. By calculating advection and Coriolis terms explicitly the implicit
system of equations can be reduced to a scalar Helmholtz{(like) equation
and solved e�ciently by a multigrid algorithm.

In contrast to the semi{implicit Leap{Frog method with three time levels
in Kwizak and Robert [44], a two{time{level scheme is developed here.2

Especially with local re�nements, two{time{level schemes are advantageous.
The re�nement structures of only two time levels have to be administered,
which reduces overhead and memory requirements. Moreover, the number
of additional interpolations is reduced.

Figure 3.1 symbolizes the semi{implicit two{time{level scheme. Integra-
tion is performed from time level n to n+1 . The advection and Coriolis
terms are integrated by a two{step Lax{Wendro� scheme (e. g. Hirsch [39])
with use of an auxiliary time level n+ 1

2 . For the gravity terms the implicit
Eulerian scheme is applied.

implicit gravity terms

advection and Coriolis terms

n n+1/2 n+1

explicitexplicit

Figure 3.1: Semi{implicit two{level time discretization

The time discretization is presented in detail in the following. For sim-
plicity the discretization is given for the SWE in Cartesian coordinates (2.7) ,
the discretization of the equations in spherical coordinates is straightfor-
ward. The formulas are provided in the appendix, Equations (3.1) { (3.6)
correspond to (A.4) { (A.9).

1meaning non{(semi){Lagrangian
2Semi{implicit semi{Lagrangian schemes with two time levels have been already inves-

tigated in Bates [10] and in Temperton and Staniforth [79].
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For the �rst half{step values of the auxiliary level n+ 1
2 are calculated.

un+
1
2 = �un � �t

2

�
ununx + vnuny � fvn + hnx + hsx

�
vn+

1
2 = �vn � �t

2

�
unvnx + vnvny + fun + hny + hsy

�
(3.1)

hn+
1
2 = �hn � �t

2

�
unhnx + vnhny + h (unx + vny )

�
;

the bars on values denote averages of surrounding grid points as de�ned in
Equation (3.8 ). These averages provide the stability of the Lax{Wendro�
scheme.

The �rst half{step still includes the gravity terms. This provides better
accuracy especially for the model problem of Section 5.1, where the pressure,
which is caused by gravity, and the inertia moments are in equilibrium.

To reduce interpolation and roundo� errors the time scheme is formu-
lated in the following for the increments from time level n to n+1

�u = un+1 � un

�v = vn+1 � vn (3.2)

�h = hn+1 � hn :

For the second half{step of the two{step Lax{Wendro� scheme, at �rst the
increments including only advection and Coriolis terms are calculated using
the values of the auxiliary time level n+ 1

2

�uadv = ��t
�
un+

1
2 u

n+ 1
2

x + vn+
1
2 u

n+ 1
2

y � f vn+
1
2

�

�vadv = ��t
�
un+

1
2 v

n+ 1
2

x + vn+
1
2 v

n+ 1
2

y + f un+
1
2

�
(3.3)

�hadv = ��t
�
un+

1
2 h

n+ 1
2

x + vn+
1
2 h

n+ 1
2

y

�
:

In this way the second half{step including the implicit gravity terms can be
formulated

�u = �uadv ��t
�
hnx + � (�h)x + hsx

�
�v = �vadv ��t

�
hny + � (�h)y + hsy

�
(3.4)

�h = �hadv ��t hn
�
unx + � (�u)x + vny + � (�v)y

�
;

where the homotopy parameter � can be used to select di�erent time schemes
for the gravity terms. In detail:

� =

8><
>:

0 : explicit Eulerian scheme (unstable)
1=2 : Cranck{Nicholson (2nd order)
1 : implicit Eulerian scheme (1st order, highly damping)
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The explicit Eulerian scheme (�= 0) is known to be unstable. Numerical
experiments show that also the Cranck{Nicholson scheme (�= 1

2) is unstable
in combination with the two{step Lax{Wendro� scheme for advection (at
least when applied to the central space discretization of Section 3.1.2).

The implicit Eulerian scheme (� = 1) is conditionally stable in combi-
nation with the Lax{Wendro� scheme for Coriolis force and advection (the
stability analysis of Section 3.1.3 con�rms the results of the numerical exper-
iments). It is of �rst order accuracy only and highly damping. Applied to
the gravity terms the damping e�ect is a very good feature: The overall ac-
curacy of the solution of the SWE in the meteorological context depends at
most on advection and Coriolis force. The high frequency gravity waves are
considered disturbing oscillations and with the use of the implicit Eulerian
scheme they are e�ectively damped out (compare Hirsch [39] and Haltiner
and Williams [34]). In the following we will restrict ourselves therefore to
the case �=1 .

For an explicit reference time scheme the gravity terms are integrated
with the two{step Lax{Wendro� scheme as the advection and Coriolis terms
(providing second order accuracy over all).

�uexp = �uadv ��t
�
h
n+ 1

2
x + hsx

�
�vexp = �vadv ��t

�
h
n+ 1

2
y + hsy

�
(3.5)

�hexp = �hadv ��t hn
�
u
n+ 1

2
x + v

n+ 1
2

y

�
:

System (3.4) is implicit (for �=1), since derivatives of �u , �v , and �h
appear in the right hand side. To solve this system e�ciently, the �rst two
equations are derivated with respect to x and y , respectively, and inserted
into the third equation. In this way a Helmholtz{(like) equation for �h
results

�r2�h+
�h

�t2 hn �2
= (3.6)

=
�hadv

�t2 hn �2
+
r2(hn + hs)

�
� unx + � (�uadv)x + vny + � (�vadv)y

�t �2
;

where r2 denotes the Laplacian. This scalar equation can be solved very
e�ciently with a multigrid algorithm even on a re�ned grid. Note that in
this discretization the coe�cient of �h , 1=�t2 hn �2 , is variable in space.3

Nevertheless, we will call this coe�cient the Helmholtz constant and conse-
quently the Helmholtz{(like) equation (3.6) a Helmholtz equation from now

3This time scheme corresponds to version no. 3 of the three{level schemes compared
in Barros [8] (Coriolis force explicit, nonlinear mass{divergence implicit).
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(1) Calculate values of auxiliary time level n+ 1
2 with Eq. (3.1)

(2) Calculate advection and Coriolis force of the increments, Eq. (3.3)

(3) Calculate Helmholtz constant and right hand side of Eq. (3.6)

(4) Solve Helmholtz equation (3.6)

(5) Calculate increments �u and �v with Eq. (3.4)

(6) Complete time step with Eq. (3.2)

Table 3.1: Semi{implicit time discretization

on for simplicity. When using multigrid it is not necessary to perform a
linearization and to �x the Helmholtz constant.

Once the Helmholtz equation has been solved, the increments �u and �v
can be evaluated. The computation of the total time scheme is displayed
in Table 3.1 . The algorithm consists of 6 steps that are arranged in pre{
solving, solving, and post{solving (separated by horizontal lines).

3.1.2 Space Discretization

The space discretization is based on a structured spherical grid. Equa-
tions (A.4) { (A.9) (respectively (3.1) { (3.6) ) are discretized on a Cartesian
grid Gh of the spherical coordinates � and ' .

Gh=
n
(�i; 'j)

����i= i��; 'j=j�'; 0� i�N�; 0�j�N'; i; j2 IN
o

;

N� and N' denote the number of intervals in �{ and '{direction, respec-
tively. The subscript h of Gh can be read as multi{index (��;�') de�ning
the mesh sizes in both directions4.

The values for u , v , and h of the time levels n and n+1 reside on the grid
nodes (Arakawa{A grid, non{staggered grid). This simpli�es restriction and
prolongation of multigrid especially with local re�nement.

At the boundary @Gh Dirichlet values are assumed (but consider the spe-

cial nesting method in Section 3.3.3); at interior points
�
Gh �rst and second

derivatives are discretized symmetrically; e. g. the Laplacian r2 in spher-
ical coordinates (Equation (A.3) ) is discretized using a �ve{point stencil.

4For local area models the spherical coordinates can be rotated in a way so that the
poles of the rotated system are far away from the local area. In that case (almost) no
anisotropies occur.
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Applied to a point (i; j) it looks like this:

r2 =
1

��2 a2 cos2 'j

2
664

�j+ 1
2

1 �(2 + �j+ 1
2
+ �j� 1

2
) 1

�j� 1
2

3
775 ; (3.7)

with �j� 1
2
=

�
��

�'

�2

cos'j cos'j� 1
2

:

The values of the auxiliary time level n+ 1
2 reside exceptionally in between

the grid{points as displayed in Figure 3.2 . In this way the time step re-
striction with regard to the explicit two{step Lax{Wendro� scheme is given
by the CFL condition 1 , which is larger by a factor of

p
2 than it would be

without this exception (compare Hirsch [39]). For the semi{implicit scheme
an analysis for the sizes of stable time steps is given in Section 3.1.3 .

u, v, h  on time level n+1/2

u, v, h  on time levels n and n+1

Figure 3.2: Space discretization

The averaged values �u , �v , and �h that introduce additional dissipation
to stabilize the Lax{Wendro� scheme are de�ned as (e. g. for �u)

�un
i+ 1

2
; j+ 1

2

=
uni+1; j+1 + uni+1; j�1 + uni�1; j+1 + uni�1; j�1

4
: (3.8)

The discretization is the same on all re�nement levels. No special dis-
cretization at the boundaries of the re�nement areas is necessary (see Sec-
tion 3.3.3).

3.1.3 Stability Analysis

The combination of the two stable time schemes (Lax{Wendro� and implicit
Eulerian or Cranck{Nicholson) does not guarantee stability. Moreover, the
stability of the combined schemes also depends on the applied space dis-
cretization. A linear Von Neumann stability analysis is applied for a two{
dimensional simpli�ed version of the SWE, therefore, to derive the stability
constraints.
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For a Von Neumann stability analysis the semi{implicit time discretiza-
tion is applied to the simpli�ed linear system (2.6) . The �rst half{step
results in

u
n+ 1

2

i+ 1
2

=
1

2

�
uni+1 + uni

�� � u0
2

�
uni+1 � uni

�� �

2

�
hni+1 � hni

�
(3.9)

h
n+ 1

2

i+ 1
2

=
1

2

�
hni+1 + hni

�� � u0
2

�
hni+1 � hni

�� � h0
2

�
uni+1 � uni

�
;

where �= �t
�x

. The second semi{implicit half{step:

un+1
i = uni � � u0

�
u
n+ 1

2

i+ 1
2

� u
n+ 1

2

i� 1
2

�
�

� � �

2

�
hn+1
i+1 � hn+1

i�1
�
� � (1��)

2

�
hni+1 � hni�1

�
hn+1
i = hni � � u0

�
h
n+ 1

2

i+ 1
2

� h
n+ 1

2

i� 1
2

�
� (3.10)

� � �h0
2

�
un+1
i+1 � un+1

i�1
�
� � (1��)h0

2

�
uni+1 � uni�1

�
:

When inserting the �st half{step into the second one System (3.10) can be
formulated

A

 
un+1
i

hn+1
i

!
= B

 
uni
hni

!
; (3.11)

the coe�cients of A and B are given in the appendix (Equation (B.1) ).
Introducing Fourier harmonics eIi' of phase angle '2 [��; �]

uni = UneIi'

hni = HneIi' ; I2 = �1 ;

and de�ning the iteration matrix G= A�1B, the Equation (3.11) can be
written  

Un+1

Hn+1

!
= G

 
Un

Hn

!
: (3.12)

The matrix G depends on the phase angle ' and prescribes the growth of
the Fourier harmonics in time. Scheme (3.11) is stable if the amplitudes Un

and Hn of the harmonics do not grow. This is guaranteed, if the spectral
radius of G is smaller or equal to 1 for all '2 [��; �] .

The eigenvalues of G are numerically evaluated for di�erent values of
u0 , h0 , � , and � . The results of the stability analysis are:

1. For �=1 (implicit Eulerian) the scheme is conditionally stable. Time
steps with up to �=0:7=u0 are within the stability region and show
stable results, whereas instability occurs for little longer steps (inde-
pendently on h0). For this value of � and for gravity wave speeds

p
3
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and 10 times faster than advection (h0=10u0
2 and h0=100u0

2) the
moduli of the eigenvalues of G are displayed in Figure 3.3 (left and
right) in dependence on ' . The moduli are smaller than 1 throughout,
which shows stability.
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Figure 3.3: Eigenvalues for implicit Eulerian scheme (�=1)

2. In case �= 1
2 (Cranck{Nicholson) the moduli of the eigenvalues become

larger than 1 even for much smaller time step sizes. For the same
values of � and h0 as before the corresponding norms are displayed in
Figure 3.4 . The time scheme is unstable, it is therefore not possible to
combine the Cranck{Nicholson scheme for the gravity terms with the
Lax{Wendro� scheme for the advection (at least not for the applied
space discretization)
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Figure 3.4: Eigenvalues for Cranck{Nicholson scheme (�= 1
2)

These results con�rm numerical experiments. For � = 1
2 the integration

becomes unstable after a few time steps, and for �=1 stability is achieved
for �<

p
2=u0 only.

Instability due to the nonlinearity of the SWE was not detected to be a
problem when applying the implicit Eulerian scheme for the gravity waves.
With its strong damping, additional horizontal di�usion is not necessary.
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3.2 Multigrid as Stabilizer

Another way multigrid is used in an adaptive sense besides local re�nement
is developed in the following. The general idea is to apply multigrid as stabi-
lizer rather than solver; the cycling is adapted to the stability requirements
of the model problem that mainly depend on the speed of the gravity waves
in the shallow water model.

In most cases the time steps of meteorological models are limited be-
cause of stability; larger steps could provide su�cient accuracy. This is
the motivation of the implicit calculation of the gravity waves within the
semi{implicit time scheme of Section 3.1.1 .

The limitation of stable time steps due to the CFL criterion has a math-
ematical background. Hirsch [39] writes:

The CFL stability condition . . . expresses that the mesh ratio
�t=�x has to be chosen in such a way that the domain of de-
pendence of the di�erential equation should be contained in the
domain of dependence of the discretized equations.

This means that in the example in Figure 2.1 on Page 34 the values of the
grid points in the interior of the domain of dependence must contribute to
the solution in P . Conversely, if only the values of neighbor points of P
are used (within an explicit scheme), the domain of dependence must not
exceed the area de�ned by these points. Implicit schemes usually depend on
all points of the computational domain and thus unconditional stability can
result. However, since in our case the time step sizes are still limited because
of the explicit discretization of the advection, unconditional stability for the
gravity waves is not necessary.

Moreover, the semi{implicit time scheme is transformed for computa-
tion into a scalar Helmholtz equation. If the results from an explicit time
scheme are used as initial values5, the accuracy of the explicit scheme is al-
ready provided. The Helmholtz equation has to be iterated only to provide
stability.

This idea is di�erent to the way parabolic equations are solved with
multigrid, in which calculations on the coarse levels are used to save com-
putation on the �nest grid (Brandt [19]). This is possible since parabolic
problems tend to become smooth in time and converge to a steady state.
The complexity of local phenomena of the solutions of hyperbolic equations

5In other words, the explicit scheme is used as a predictor, whereas an iteration of the
Helmholtz equation can be considered a correction. As initial values the explicit results
for the second Lax{Wendro� step (Equation (3.4) for �= 1) can be used. However, to
avoid the introduction of high frequency errors by the explicit evaluation of the gravity
terms as initial values, it is preferable to use the increments excluding the gravity terms of
Equation (3.3) instead (Brandt [18]). Numerical experiments showed little improvement
of accuracy.
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(as the SWE) however is constant in time in general (e. g. for the model
problem in Section 5.1), and the �ne grid can only be temporally and locally
reduced (as with dynamic local re�nements).

In Figure 3.5 the domains of dependence with respect to the advection
and to the faster gravity waves are displayed. The time step size is adapted
in such a way that the domain of dependence of the advection is included
within a distance of one grid point. An explicit time scheme that evaluates
the two neighbor points of P can therefore be applied in a stable way. For
the faster gravity waves, however, information on distant grid points has to
be included.

domains of dependence
P

delta x
2 delta x
4 delta x

for advection only
for advection and waves

Figure 3.5: CFL criterion on coarse grids

This can be done by point relaxations (e. g. Gauss{Seidel or SOR). How-
ever, within one iteration of an usual 5{point stencil, information passes only
one grid point. Therefore, seven iterations are necessary to transport any
information from the outer points in Figure 3.5 to P . Moreover, it is not
sure whether seven iterations su�ce. The averaging of values within point
relaxations reduces the in
uence of the outer points on P after this mini-
mal number of relaxations.6 Figure 3.5 presents the situation of the model
problem of Section 5.1 in case of fast gravity waves, numerical experiments
show that nine Gauss{Seidel iterations are necessary and su�cient.

The use of coarse grids in a multigrid algorithm accelerates this transport
of information, on a grid with mesh size 2�x it is twice as fast and even
faster with coarser grids. Therefore, the coarse grids are still important to
reduce the number of operations on the �nest level, in which the number
of coarse grids and the number of applied smoothing steps are optimized to

6Actually, this is the reason why single{grid relaxations show slower convergence with
increased mesh size (h{dependent convergence rate). With a higher number of grid points
the boundary values are transported to the center more slowly.
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achieve minimal computational costs for the execution of one time step with
the semi{implicit scheme.

Since the time step size is de�ned by the speed of advection, the multigrid
cycling is adapted to the ratio of gravity waves and advection. The bene�ts
of this method are presented in Section 5.2 , where a comparison with a
common solution strategy takes place.

The idea to iterate only for stability is especially valuable with respect
to parallelism, because a smaller number of coarse levels is necessary. This
solves the coarse grid problem of parallel multigrid.

3.3 Adaptive Local Re�nements

In the following the aspects of adaptive local re�nement concerning this
paper are mentioned. Here, a local re�nement is de�ned as uni�cation of
rectangular and structured aligned blocks as is common for MLAT and al-
ready described in Section 2.3.3 .

In Figure 2.2 (left, Page 41) a computational domain is covered by a grid
GH with mesh size H . A critical region is indicated by a thick bent line.7

To adapt the re�nement areas dynamically during simulation a computa-
tional re�nement criterion has to specify critical points where higher spatial
resolution is appropriate. These points are indicated by dots in the �gure.
The shaded re�nement area results, that may have very irregular shape in
general. Good results are obtained by the re�nement criterion presented in
Section 3.3.1 that is based on an estimation of the local truncation error of
the model equations.

After the critical points are determined, they are arranged in a number
of rectangular blocks to create the block structured re�nement. Usually the
blocks contain a few grid points in addition to the critical points. This can
be more e�cient than introducing a higher number of blocks and additional
overhead with it. Block structures with one and four blocks corresponding
to the example of Figure 2.2 are indicated by thick lines in Figure 3.6 (left
and right). This block{structured de�nition of re�nements has two main
advantages in comparison with re�nements based on unstructured grids:

1. Rectangular structured blocks allow a high degree of computational
optimization and performance. Moreover, since meteorological simu-
lations are usually based on structured grids therefore, the incorpora-
tion of existing modules (e. g. for physical processes) into the adaptive
method is facilitated. The same discretization (applied to di�erent
mesh sizes) can be used on �ne and coarse grids.

2. The re�nement blocks can be distributed to the available processors as
grid partitions for parallelization. In this way the parallelization has

7In a meteorological application this could be a (part of a) weather front.
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Figure 3.6: Re�nement block structure I

much coarser granularity as it would have if each block was computed
in parallel individually.

The rectangular re�nement blocks and the global coarse grid have corre-
sponding properties (actually, re�nement blocks are implemented by the
same data structure as the partitions of the global grid, see Section 4.1.1 ).
Several levels of re�nement can be introduced straightforward in a recursive
way.

A suitable blocking algorithm that also takes continuity of the block
structure and load balancing into account is presented in Section 3.3.2 .

To integrate the model equations the re�nement structure is supported
with boundary data from the global grid. However, special care is taken to
avoid oscillations at the re�nement boundaries in time dependent simula-
tions (e. g. Skamarock, Oliger, and Street [70]). The embedding procedure
called nesting is considered a major di�culty for simulations with block{
structured dynamically adaptive re�nements. In Section 3.3.3 theoretical
analyzes are performed and two di�erent approaches are discussed.

An additional interaction of coarse and �ne grids results from the so-
lution of the semi{implicit time scheme on the locally re�ned grid with
multigrid. The application of MLAT for the given environment is presented
in Section 3.3.4 .

Table 3.2 presents an overview of the time loop of the dynamically adap-
tive simulation. At the very beginning of the simulation a re�nement struc-
ture is created, in later time steps the re�nement is adapted. Then the
explicit parts of the time discretization and the Helmholtz constant and
the right hand side of the Helmholtz equation are calculated on all levels
(Steps (1){(3) of Table 3.1). If the semi{implicit time scheme is applied,
a MLAT{cycle is performed on the locally re�ned grids (Step (4)). There-
after the time step is completed (Steps (5){(6)), and the two{way interactive
nesting is performed.
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Adaptive Time Loop

::::::

while
::::::

time
:::

<
:::::

end8>>>>>>>>>>>>>>>>>>>>>>>>>>>:

adaptation of re�nement
pre{solve all levels

::

if
:::::::::::::::

implicit=true8:multigrid cycle

post{solve all levels
re�nement nesting

Table 3.2: Adaptive time loop

3.3.1 Re�nement Criterion

A re�nement criterion based on the local discretization error �H for an el-
liptic boundary value problem is introduced in Section 2.3.2 .

Unfortunately, this criterion is not applicable to the Helmholtz equation
of the implicit time scheme. Numerical experiments showed good results
for static re�nement (if the re�nement areas were created only at the be-
ginning of the simulation and not adapted further on), but when dynamic
adaptation is realized, the re�nement areas change very frequently (almost
randomly) from time step to time step. This is understandable since the
Helmholtz equation is solved for stability and because of the implicit treat-
ment of the gravity waves only. Advection and accuracy is dominated by
the explicit terms of the SWE. Therefore, it is appropriate to estimate the
local discretization error to these explicit terms and to use this estimation
for a re�nement criterion.

Berger and Oliger [14] applied a re�nement criterion based on the local
truncation error on hyperbolic partial di�erential equations. An estima-
tion for the local discretization error is determined by integrating the model
equations with di�erent resolutions and applying a Richardson extrapola-
tion. One time step is performed with size �t and mesh size �x and two time
steps with sizes �t

2 and �x
2 . If time and space discretization are of the same

order of accuracy, the extrapolation is straightforward. Limiting the maxi-
mal local discretization error in every time step is an appropriate criterion
to achieve higher global accuracy (compare Stoer and Bulirsch [74] for ordi-
nary di�erential equations). The re�nement criterion of Berger and Oliger
is tailored to the actual situation of this paper. Because of the semi{implicit
time scheme, re�nement in time does not take place (see Section 3.3.4), the
time step size is constant for all grid levels and it depends on the smallest
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mesh size. Therefore only the local discretization error in space is used for
the re�nement criterion. Moreover, it is not clear how to apply the double
integration idea of Berger and Oliger to the semi{implicit time scheme in an
e�cient and stable way (within MLAT the coarse grids are used to calculate
the coarse grid correction).

In this paper the local discretization error in space for a simpli�ed ex-
plicit time scheme is determined in Section 3.3.1.1 for a re�nement criterion.
Since this value can be evaluated without loss of e�ciency before the im-
plicit integration of the SWE, an a{priory criterion can be formulated that
predicts the appropriate re�nement area for the following time step. If the
re�nement area is enlarged by one grid point on all sides, it is guaranteed
that a critical weather phenomenon does not advect outside the re�nement
during the current time step (one grid point su�ces, since the CFL crite-
rion restricts the advection to less than one grid point per time step). The
minimal size of a re�nement area is therefore 3 times 3 points.

Since the decision whether to introduce or to keep a local re�nement
block at mesh size h

2 is based on coarser grids with mesh sizes h and 2h ,
high oscillations on the �nest grid (meteorological noise) can not a�ect the
re�nement criterion. It does not seem to be a problem that the criterion is
less accurate because it is evaluated on the coarser grids.

In Section 3.3.1.1 the discretization error is estimated; in Section 3.3.1.2
the re�nement criterion is applied to the system of the SWE, and threshold
values are chosen in a way to control the global accuracy of the model
equations.

3.3.1.1 Local Spatial Discretization Error

For a computationally e�cient a{priory re�nement criterion the local dis-
cretization error with respect to space of the explicit Eulerian scheme is
used. It is shown that this value is a good estimation for the corresponding
local spatial discretization error of the two{step Lax{Wendro� scheme.

For the semi{implicit time discretization the local discretization error is
more expensive to approximate. Therefore the re�nement criterion based on
the local discretization error for the explicit Eulerian scheme is also used for
the semi{implicit scheme. Numerical experiments show very good results.

For simplicity the following derivation is given for the one{dimensional
linearized equations (2.6). A central space discretization of the explicit
Eulerian scheme yields
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hn+1
i � hni
�t

= � u0
hni+1 � hni�1

2�x
� h0

uni+1 � uni�1
2�x

un+1
i � uni
�t

= � u0
uni+1 � uni�1

2�x
� hni+1 � hni�1

2�x
: (3.13)

Assuming hni and uni to be the exact analytical solutions of Equation (2.6)
at time step n and grid point i , and assuming su�cient smoothness, the
development in Taylor series gives

hn+1
i = hni +�t(ut)

n
i +

�t2

2
(utt)

n
i +O(�t3) (3.14)

hni�1 = hni ��x(ux)
n
i +

�x2

2
(uxx)

n
i �

�x3

6
(uxxx)

n
i +O(�x4) :

Substitution of these series in Equation (3.13) yields

ht � u0 hx � h0 ux = � �t

2
htt + u0

�x2

6
hxxx + h0

�x2

6
uxxx +O(�t2;�x3)

ut � u0 ux � hx = � �t

2
utt + u0

�x2

6
uxxx +

�x2

6
hxxx +O(�t2;�x3) ;

(3.15)

where the right hand sides are the local discretization errors of the scheme.

The explicit Eulerian scheme with central space discretization is of con-
sistency order 1 in time and 2 in space. The terms ��t

2 htt and ��t
2 utt

prescribe negative viscosities. Since they amplify disturbances, the explicit
Eulerian scheme is unstable, as is well known. Nevertheless, this scheme can
be used for the re�nement criterion, since stability is not important here.

Since the resolution is adapted only in space and not in time, a suitable
re�nement criterion has to detect the local discretization error depending
on the spatial resolution only. It can be seen that the local discretization
errors in space depend on third derivatives of the solution; however, these
derivatives are not evaluated directly. Using Richardson extrapolation, the
local spatial discretization errors are e�ciently estimated by computing the
right hand sides of the explicit Eulerian scheme (3.13) on two corresponding
grids with mesh sizes h and 2h (actually, it is su�cient to calculate the
di�erences of the corresponding values, which is already the desired result
up to a constant factor).
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For the two{step Lax{Wendro� scheme, which is actually applied for
advection, additional terms appear in the local discretization error:

ht � u0 hx � h0 ux = � �t

2
htt + u0

�x2

6
hxxx + h0

�x2

6
uxxx +

+ u20
�t

2
hxx + u0 h0

�t

2
uxx +

+ u20
�t�x2

24
hxxxx + u0 h0

�t�x2

24
uxxxx +O(�t2;�x3)

ut � u0 ux � hx = � �t

2
utt + u0

�x2

6
uxxx +

�x2

6
hxxx +

+ u20
�t

2
uxx + u0

�t

2
hxx + (3.16)

+ u20
�t�x2

24
uxxxx + u0

�t�x2

24
hxxxx +O(�t2;�x3):

In contrast to before, here the terms �t
2 hxx and

�t
2 uxx represent positive

viscosities that stabilize the scheme. These terms, and the others that de-
pend on the temporal discretization only, need not be used for the re�nement
criterion, as �t is not adapted. The coe�cients of the fourth derivatives in
space depend on �t and �x2 . If the CFL criterion �t��x=u0 is taken
into account, these coe�cients can be seen as of higher order O(�x3) and
can be ignored, too. The remaining terms are identical to those used for
the explicit Eulerian scheme that can therefore be used to estimate the local
discretization error in space.

For the semi{implicit time scheme with the implicit evaluation of the
gravity terms the situation is more complicated. Nevertheless, the re�ne-
ment criterion based on the explicit time discretization works very well for
the semi{implicit scheme as well, as numerical experiments show.

This re�nement criterion is e�ciently evaluated, because a cheap time
scheme is used to estimate the local discretization error of the actually ap-
plied discretization.

3.3.1.2 Threshold Values

The re�nement criterion j�H j<ccrit (Equation (2.19) ) is generalized to the
systems of the SWE by applying it to the local discretization error of each
component separately and by combining the resulting values. Consequently,
a threshold value for each component of the system has to be de�ned.

In Figures 3.7 , 3.8 , and 3.9 the estimated local discretization errors �hh ,
�uh , and �vh of h , u , and v , respectively, are displayed. They correspond to
the model problem in Figure 5.1 (top), and are evaluated on a global grid
with the �nest resolution that is used for the adaptive simulation. Note that
�hh is small in the center of the cyclone. Without the consideration of �uh
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Figure 3.7: Local discretization error of h

and �vh for the criterion the resulting re�nement area would be a hollow ring
around the vortex.

In our case the velocity components u and v of the SWE are of the same
physical quality, and a common threshold value can be used. The applied
re�nement criterion reads

rcrit :=
j�hH j
chcrit

+
j�uH j
cu;vcrit

+
j�vH j
cu;vcrit

< 1 ; (3.17)

where �hH , �uH , and �vH denote the local discretization errors of the prognostic
variables on a coarse grid, and chcrit and cu;vcrit are the threshold values for h
and for u and v , respectively. Recall that the decision whether to re�ne or
not is based on computation on the already existing coarse grid with mesh
size H .

A general idea to attain reasonable threshold values is presented in the
following: The accuracy of non{adaptive models is determined by the reso-
lution of the global uniform grid; in this paper the major objective of local
re�nement is to achieve the order of this accuracy at computationally lower
costs. The results of an adaptive model must be comparable to the results
of a model that uses the maximal resolution globally.

In order to achieve this, the local discretization error of the adaptive
simulation is limited in every time step by the maximal local discretiza-
tion error of the uniform model with the highest resolution (as displayed in
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Figure 3.8: Local discretization error of u
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Figure 3.9: Local discretization error of v
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Figures 3.7 , 3.8 , and 3.9). If the local accuracy necessary at a grid point
is already achieved with lower resolution, a re�nement of this point is not
necessary. If the accuracy is worse, the point is selected until the highest
resolution is applied.

To determine the maximal absolute values of the local discretization
errors, it is su�cient to execute one time step of the model with the desired
resolution. The resulting value for rcrit is displayed in Figure 3.10 .

0

0.2

0.4

0.6

0.8

1

ref. crit.

Figure 3.10: Re�nement value rcrit

Since the re�nement criterion is second order in space, it is approximately
four times larger when evaluated on the next coarser grid. This means
that values larger than 0.25 in Figure 3.10 de�ne points where the highest
resolution is necessary. Values smaller than 0.25 indicate points where the
re�nement value of the coarse grid is smaller than 1, and where no re�nement
according to Criterion (3.17) takes place. The isolines 1

4 ,
1
16 ,

1
64 , and

1
256 of

rcrit are displayed in Figure 3.11 . They estimate the re�nement boundaries
of the model problem in Figure 5.1 (top).

Another problem occurs for simulations with dynamically adaptive re-
�nements: The boundaries of the detected re�nement areas tend to oscillate
in time, the local re�nement increases and decreases by one boundary point
alternatively in each adaptation step. A similar phenomenon also appears
when solving ordinary di�erential equations with adaptive step size; it can
be controlled by limiting the size of the next step to 1.5 times the previous
step. According to this idea, the decrease in the re�nement area is controlled
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Figure 3.11: Isolines of re�nement value rcrit

1 < rcrit : re�nement necessary

� < rcrit � 1 : do not alter re�nement
rcrit � � : re�nement not necessary

Table 3.3: Re�nement criterion

by a reduced threshold � as given in Table 3.3. In case a grid point is already
included in the re�nement, it is marked to be re�ned already if rcrit exceeds
� but not 1 (� = 0:1 is found to be a good value). However, also points
where a re�nement is de�nitely not necessary (rcrit � �), can be included
in a re�nement block because of the blocking algorithm (see Section 3.3.2).

3.3.2 Dynamic Blocking

Once the critical points have been determined by the re�nement criterion,
they are arranged in rectangular blocks. To prevent the appearance of a
large number of very small blocks, a small number of grid points that have
not been selected by the re�nement criterion can be included additionally.
Small blocks increase computational and communication overhead, since
additional work is introduced at the block boundaries in general, and because
data exchanges have to take part in the update of the overlap areas in parallel
systems (see Section 2.4.3).

An appropriate partitioning algorithm, where the acceptable number of
unnecessarily re�ned blocks and the resulting block sizes is tunable by a
threshold value, is given in Section 3.3.2.1 .

However, two more things have to be considered when blocking the re-
�nement area.

� The dynamic adaptation of the re�nement area introduces initializa-
tion (copies), interpolations, and volume communication whenever the
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blocks of the re�nement structure change; therefore, local adaptations
of the re�nement areas must not change the whole re�nement struc-
ture.

� For parallelization a good load balance and an equal distribution of the
re�nement grid points is important. In general a perfect balance can
not be achieved with block structured re�nements; however, a creating
blocks with a limited maximal size facilitates the determination of a
su�ciently good balance.

Because of these two constraints, the blocking algorithm is applied on pre{
partitioned blocks that are de�ned by hypergrids (see Section 3.3.2.2).

3.3.2.1 Recursive Coordinate Bisection

For the blocking of the critical points an algorithm based on recursive co-
ordinate bisection is applied that is given in Table 3.4 . Steps (1){(4) more

(1) Determine the minimal covering block

(2) Calculate blocking quality

(3) If this quality is acceptable then �nish

(4) Else subdivide the block and restart with (1) for both parts

Table 3.4: Recursive coordinate bisection

precisely:

(1) The minimal block containing all selected points is determined by the
minimal and maximal x{ and y{coordinates of the critical points. As
an example the resulting block for the scenario of Figure 2.2 (left) is
displayed in Figure 3.6 (left).

(2) The ratio of the number of critical points to the total number of points
included in the blocks is computed. This ratio is a measure of the
quality of the block structure.

(3) If this ratio exceeds a tunable threshold value, the number of unneces-
sarily included points is considered as acceptably small, and the actual
block is accepted for the current re�nement structure8.

(4) If there are still too many unnecessarily included points, the block is
subdivided into two smaller blocks at the center of its longer side. The
algorithm is applied in a recursive way on both new blocks.

8Because of the limited minimal size of the re�nement blocks, it is assured that the
recursion terminates for all threshold values less than or equal to 1 .
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In our example a re�nement structure consisting of four blocks as dis-
played in Figure 3.6 (right) may result. The threshold value is determined in
a way that achieves a good compromise between the number of unnecessary
points and the number of blocks created.

3.3.2.2 Blocking by Hypergrids

To reduce the number of new initializations of new blocks and to limit
the maximal block size, the re�nement area is partitioned by a pre{de�ned
hypergrid prior to the application of the recursive coordinate bisection algo-
rithm to the resulting partitions.

If the coordinate bisection algorithm is applied straightforwardly, it often
happens that a small adaptation of the re�nement area results in a very
di�erent block structure. This may cause many initializations and high
computational and communication overhead during a dynamically adaptive
simulation.

Two examples of hypergrids that de�ne four and sixteen default parti-
tions are indicated by thick lines in Figure 3.12 (left and right). The ap-
plication of Algorithm 3.4 results in the displayed block structures. In this

Figure 3.12: Blocking by hypergrids

way, local adaptations of the re�nement area result in only local changes of
the block structure. Most of the blocks can generally be reused in the next
time step.

Moreover, the resulting blocks have a maximal size that limits load im-
balances when the blocks are distributed to the processors for paralleliza-
tion. The hypergrid has to be optimized for the parallel system and the
application. Many and smaller blocks facilitate good load balancing; how-
ever, additional work for computation and communication is introduced. As
for coarse grid agglomeration (introduced in Section 2.4.3) it might be faster
to calculate a small block on only one processor. Such tuned sub{optimal
load balancing can be considered �ne grid agglomeration.
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Another advantage of the hypergrid technique is that the computation
of the blocking can be performed in parallel.

3.3.3 Nesting the Re�nement Areas

The re�nement blocks have to be supported by the embedding coarse grids
with values at the boundary of the re�nement structure. This embedding is
performed every time step during simulation. Conversely, the coarse grids
are updated by the more accurate data of the re�nement. This two{way
interaction is carried out in dynamically adaptive models to prevent the
solutions of the corresponding �ne and coarse grids form diverging from
each other in time. Without the update of the coarse grids it would not be
possible to reduce the re�nement areas again.

The solutions of coarse and �ne grids are calculated simultaneously. In
this context the re�nement procedure can be regarded as a coupling problem,
where a partial di�erential equation9 is solved separately on di�erent grids,
and after every time step the grids are coupled together. If there are several
levels of re�nement, several stages of nesting become necessary, too.

In the following two di�erent nesting approaches are presented in detail.
Theoretical studies in Section 3.3.3.1 show that a straightforward second
order discretization of the SWE as commonly applied within MLAT (for
re�ned boundary value problems, see System 2.20) is not stable. To pre-
vent the introduction of oscillations, special discretizations at the re�nement
boundaries (e. g. based on a �nite volume discretization with control volumes
as indicated in Figure 3.13) are necessary. However, numerical experiments
have not shown satisfactory results especially when adapting and moving
the re�nements dynamically.

The second approach is based on a blending of coarse and �ne grid
values that are multiply computed on both grids in an overlap area (see
Section 3.3.3.2) for details. No special discretization is necessary at the
boundaries of the re�nement, and even di�erent model equations can be
solved on the grids and coupled together in smooth transition.

3.3.3.1 Discretizing the Boundary

The idea of this approach is to discretize the boundaries of the re�nement in
a special way, preferably using �nite volume techniques with control volumes
as indicated in Figure 3.13 with hashed lines10. This is necessary, since
straightforward second order discretizations are not stable, which is shown
by a stability analysis with the matrix method in the following.

9Not necessarily the same partial di�erential equation, since in general it is possible to
use di�erent models for di�erent resolutions in the simulation.

10This idea leads to composite grid stars as in McCormick [54] .
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Figure 3.13: Control volumes of �nite volume discretization

For simplicity the one{dimensional advection equation is used as a model
problem for the stability analysis (advection is included in the SWE)

@u

@t
+ a

@u

@x
= 0 ; (3.18)

with Dirichlet boundary conditions

u(0; x) = f(x); 0 � x � 1
u(t; 0) = g(t); t > 0 :

After a discretization in time a system of ordinary di�erential equations
results

du

dt
= Su+ q ; (3.19)

where the vector u contains the unknowns ui = u( i
n
) , i = 1; : : : ; n�1 on

a grid with n intervals, and the vector q contains boundary values. The
structure matrix S de�nes the discretization of Equation (3.18) in space.

The following statement is true (Hirsch [39]):

The analytical solution of system (3.19) remains bounded, if
the real parts of the eigenvalues of S are negative or zero. If 0
is an eigenvalue, it must be simple.

If the analytical solution of System (3.19) is not bounded, it is not pos-
sible to discretize it in time in a consistent and stable way. Therefore the
eigenvalues of S can be used to investigate space discretizations with respect
to stability. A space discretization satisfying Hirsch's condition is called sta-
ble.
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At �rst a non{re�ned central discretization of Equation (3.19) is consid-
ered

dui
dt

= � a

2�x
(ui+1 � ui�1); i = 1; : : : ; n�1 ; (3.20)

with boundary conditions

u0(t) = g(t)
un+1(t) = h(t)

; t > 0 :

In matrix notation Equation 3.20 can be written

du

dt
= � a

2�x

0
BBBBBBBBBB@

0 1

�1 0 1

�1 0
. . .

. . .
. . . 1

�1 0

1
CCCCCCCCCCA

0
BBBBBBBBB@

u1

...

un

1
CCCCCCCCCA
+

0
BBBBBBBBB@

a
2�x

g(t)

0

...

0

� a
2�x

h(t)

1
CCCCCCCCCA

: (3.21)

The eigenvalues of the structure matrix S(3:21) of Equation (3.21) are purely

imaginary and in pairs di�erent (the eigenvalues are 2 I cos
�

j�
n+1

�
, j =

1; : : : ; n , Lomax [49]), therefore Discretization (3.20) is stable.

Based on this result for uniform meshes discretizations with local re-
�nements are examined in the following. In Figure 3.14 a one{dimensional
re�ned grid is displayed. The unknowns ui , i=1 : : : ; 11 are numbered with
i and x denotes their x{coordinates. The discretizations of the re�nement

0

0 1 2 3 4 5 6

7/16

7 8 9 10 11 12

x

i

5/8 6/8 7/81/8 2/8 3/8 4/8 19/165/16 11/16

Figure 3.14: One{dimensional re�ned grid

boundary points u2 and u10 are especially critical.
A straightforward central �nite di�erence discretization as commonly

applied for adaptive boundary value problems that can be solved by MLAT
(compare System 2.20 and Table 2.3) is
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du1
dt

= � a

2�x
(u2 � u1)

du2
dt

= � a

2�x
(u4 � u1)

dui
dt

= � a

�x
(ui+1 � ui�1) ; i = 3; : : : ; 9 (3.22)

du10
dt

= � a

2�x
(u11 � u8)

du11
dt

= � a

2�x
(u12 � u10) :

Note that the re�nement boundaries u2 and u10 are discretized in the same
way as the coarse grid points u1 and u11 , and the points u3 and u9 are not
used. The structure matrix S(3:22) is

S(3:22) = � a

2�x

0
BBBBBBBBBBBBBBBBBBB@

0 1
�1 0 0 1

�2 0 2
�2 0 2

�2 0 2
�2 0 2

�2 0 2
�2 0 2

�2 0 2
�1 0 0 1

�1 0

1
CCCCCCCCCCCCCCCCCCCA

;

the corresponding eigenvalues are numerically calculated and displayed in
Figure 3.15 . Two eigenvalues with positive real parts exist; Discretiza-
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Figure 3.15: Eigenvalues of second order �nite di�erence discretization



3.3. ADAPTIVE LOCAL REFINEMENTS 77

tion (3.22) is unstable. The same is true for larger examples with di�erent
sizes of grids and re�nement areas.

This shows that a special discretization of the re�nement boundaries is
necessary. An example involving the values u3 and u9 for the boundary
discretization is

du2
dt

= � a

�x

�
u3 � u1 + u2

2

�
du10
dt

= � a

�x

�
u11 + u10

2
� u9

�
; (3.23)

with structure matrix S(3:23) ,

S(3:23) = � a

2�x

0
BBBBBBBBBBBBBBBBBBB@

0 1
�1 �1 2

�2 0 2
�2 0 2

�2 0 2
�2 0 2

�2 0 2
�2 0 2

�2 0 2
�2 �1 �1

�1 0

1
CCCCCCCCCCCCCCCCCCCA

:

The eigenvalues are presented in Figure 3.16 . Only one single eigenvalue is
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Figure 3.16: Eigenvalues of composite grid star discretization

0, all others are purely imaginary. With a suitable time scheme, stability
can be achieved with this space discretization.

This result is not only true for the special grid of Figure 3.14 . In many
other cases with larger global grids and larger re�nement areas no instable



78 CHAPTER 3. CONCEPTUAL DESIGN

cases could be found. (No proof | the analytical calculation of the eigen-
values | was found). Nevertheless, Discretization (3.23) is a very good
candidate for a stable discretization.

Based on these results, the SWE (2.7) were discretized on a re�ned grid
in a straightforward generalization in two space dimensions. Although Dis-
cretization (3.23) is consistent of �rst order only, almost global second order
accuracy was achieved in numerical experiments with static re�nements.

With adaptive dynamic re�nements, however, the situation becomes
more complicated. When the grid is adapted, the re�nement areas change.
Points of the re�nement boundary become points in the interior of the new
re�nement area or points of the coarse grid outside the re�nement. In both
cases grid point values resulting from a �rst order discretization were used
to initialize points in a homogeneous second{order discretization. Spurious
oscillations appeared in numerical experiments when the re�nements were
dynamically adapted, and the accuracy of the global solution was a�ected.

It is not clear whether this is a �rst order { second order problem only.
Also with more elaborate re�nement boundary discretizations (e. g. with
conservative discretizations of higher order as in Hundsdorfer et al. [41])
the boundary values are used to initialize interior re�nement points with a
di�erent homogeneous discretization.

But even if the oscillations can be reduced, a severe disadvantage occurs
with special re�nement boundary discretizations: The implementation costs
increase substantially. Each side (left, right, upper and lower) of the block
structured re�nement has to be discretized separately, and the same is true
for the four corners. Moreover, with higher order discretizations in space,
not only the boundary itself has to be discretized in a special way, but
possibly also the points adjacent to the boundaries of the re�nement.

Also the multigrid transfer operations (i. e. restriction and prolongation)
to compute the semi{implicit time scheme might require an elaborate adap-
tation at the re�nement boundaries.

In a number of numerical experiments with di�erent boundary discretiza-
tions the implementation costs were experienced as a severe drawback of this
nesting approach. With regard to more complicated model equations than
the SWE it was decided to apply the blending interpolation approach for
nesting as described in the next section.

3.3.3.2 Blending Interpolation

The blending approach of re�nement nesting is published by Zhang et al. [85]
and has been implemented in the Canadian model MM5 (Grell, Dudhia, and
Stau�er [31]) . This approach is adapted to the situation in this paper11 and
described in the following.

11In the model MM5 the mesh re�nement ratio is 1 :3 and staggered grids are used.
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The general idea is to introduce an area where �ne and coarse grids
overlap and values for both grids are computed. The resulting coarse and
�ne grid values are blended according to

'b = �'c + (1� �)'f ; � 2 [0; 1] ; (3.24)

where ' is any prognostic variable, and the subscripts b , c , and f denote
blended, coarse grid, and �ne grid values, respectively. The value � de�nes
the mixing ratio; � decreases smoothly from 1 to 0 from the coarse grid
boundary of the blending area to its �ne grid boundary.

In Figure 3.17 a blending area with a width of four �ne grid points is
shaded. In this area the coarse grid values are interpolated (with bi{linear

i=2

i=0
i=1

i=3
fine grid boundary

coarse grid boundary

overlap region

i=4

Figure 3.17: Blending area with width 4

or bi{cubic interpolations) to the mesh size of the �ne grid and the blending
according to Equation (3.24) is performed. For the two{way interaction
the solution of the �ne grid including the new blended �ne grid values is
restricted to the coarse grid.

The mixing ratio � depends on the distance from the outer boundary of
the nesting and is indicated by the value i in Figure 3.17. Formula (3.25)
for � was found to work very well.

� = cos2
�
i

n

�

2

�
; (3.25)

where n is the thickness of the blending area (for the actual implementation
n=4 applied). The graph of Equation (3.25) is given in Figure 3.18 .

This blending approach provides a very smooth transition from the
coarse to the �ne grid. Moreover, the consecutive grids stabilize each other
in the blending area.
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Figure 3.18: Graph of the mixing ratio �

� High frequency erroneous oscillations on the �ne grid can not be re-
solved on the coarse grid and are damped with the interpolated values
at the �ne grid boundaries.

� High frequency erroneous oscillations on the coarse grid do not appear
on the �ne grid and are similarly damped by the restrictions from the
�ne grid.

An important advantage of this approach is that no special discretization
of the model equations is necessary. Also di�erent discretizations can be
applied without additional implementation costs incorporating the adaptive
re�nements. Even the computation of di�erent models depending on the
re�nement level and on the corresponding mesh size becomes possible.

In general re�nement structures with a number of blocks the determi-
nation of the distance i of a �ne grid point from the outer boundary of the
blending area can be very tedious. An example is shown in Figure 3.19 .

On the left side a re�nement structure consisting of 3 blocks including
the shaded blending area is displayed. The central block is indicated by
dashed lines12. Thin lines show the distance in number of grid points from
the outer boundary as in Figure 3.17 . The right side of Figure 3.19 shows
a three{dimensional graph of the distance from the outer boundary for the
central block.

The algorithm to determine the distance i is rather technical; only the
rough idea is presented here: At �rst all points of a block are initialized
with the distance i from the block boundaries without regard to adjacent
re�nement blocks. Then i is increased for each neighbor block and for all

12For boundary sections with adjacent re�nement blocks no nesting takes place and the
blending area is used to exchange the �ne grid boundary values.
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Figure 3.19: Nesting for irregular domains

points in the intersection of the two blocks according to the formula

dist(P;
[
k


k) = max
k

(dist(P;
k)) ; (3.26)

where P is a grid point and 
k ; k 2 IN , is the sequence of blocks containing
P .

It is not clear how to guarantee conservativity with blending interpo-
lation. However, for local models conservativity is less important than for
long{term global simulations (Zhang et al. [85]) . Moreover, for dynamically
adaptive methods this seems to be a minor problem, since critical areas
should be kept inside the re�nement area, where they do not disturb the
nesting at the re�nement boundaries13.

3.3.4 The Helmholtz equation with Local Re�nements

For the semi{implicit time discretization the Helmholtz equation (3.6)14 has
to be solved on re�ned grids. The discretized Helmholtz equation is written

Lh uh := (�r2
h + ch) uh = fh ; (3.27)

where ch is the Helmholtz constant, fh the right hand side, and the dis-
cretized increment of the geopotential �h is denoted uh in this section. The
subscript h is the mesh size.

As mentioned before, the Helmholtz constant ch is not actually a con-
stant value, but it is pointwise variable given by ch=1=(�t2hnh�

2) , due to

13Of course, the nesting method has to be robust enough to work also in critical situa-
tions. The implemented nesting method succeeded in tests where the advected cyclone of
Section 5.1 crossed the boundary of a static re�nement.

14Equation (A.9) in spherical coordinates, respectively
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the spatial variation of the geopotential hnh . However, the variation in ch
does not cause special di�culties for the multigrid algorithm15.

Since ch> 0 it is known that a unique solution of Equation 3.27 exists.
Moreover, the positive ch improves the smoothing rates of Jacobi and Gauss{
Seidel relaxations, and guarantees that smoothing rates at least as good as
for the Laplace or Poisson equation can be achieved.

The right hand side fh is computed with values of the prognostic val-
ues hh , uh , and vh in each time step. This is a serious complication in
comparison with the Laplace{ or Poisson{Equation with a given right hand
side. Oscillations of the prognostic variables will immediately lead to oscil-
lations in the right hand side. The feedback to the prognosis variables of
the next time step by solving the Helmholtz equation will very likely lead
to instabilities in time.

Especially at the boundaries of the re�nements special care has to be
taken when computing the right hand side. Section 3.3.3.2 presents how the
solutions of the prognostic variables on �ne and corresponding coarse grids
are blended in order to avoid instabilities. Nevertheless, for the computation
of these variables with the semi{implicit discretization care has also been
taken to prevent the introduction of oscillations and to achieve optimal
results.

In general the MLAT algorithm of Table 2.3 is applied. Red{black
Gauss{Seidel relaxations16 are used for smoothing, and half injection is
performed as restriction. V{cycles are applied, and bi{linear interpolation
prolong the coarse grid corrections.

The number of smoothing steps �1 and �2 to be performed before and af-
ter coarse grid correction as well as the number of coarse levels is adapted to
the speed of the gravity waves. The idea to adapt multigrid as stabilizer of
Section 3.2 is consequently applied also in combination with adaptive re�ne-
ments. If the explicit values are used as initial solution, they are copied to
the coarse grid together with the right hand side of the coarse grid equation,
see Section 3.4.4 .

A re�ned grid is displayed in Figure 3.20 . The �ne grid Gh is extended
by overlap regions of two grid points in width (shaded in the �gure). When
using the points of this overlap as interior points of the re�nement, the
re�nement boundary can be discretized as ordinary interior points. In this
way it is avoided, that interpolated coarse grid values at the re�nement
boundaries are evaluated for the computation of second order derivatives

15When solving the Helmholtz equation with a Fourier algorithm, usually a linearization
of the geopotential is performed to get a constant ch . The possibility of treating variable
ch is an advantage of multigrid.

16The spherical coordinates a�ect smoothing rates of point relaxations because of
anisotropies in the proximity of the poles. However, for local weather models the co-
ordinates can be rotated in a way that the poles are far away from the domain of the
model.
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Figure 3.20: Helmholtz equation on the re�ned grid

that are necessary for the determination of the right hand side fh . Finite
di�erences of interpolated values are prone to deteriorate accuracy and to
introduce oscillations. The overlap regions are also used for nesting and for
boundary data transfer.

As an optimization the bi{cubic boundary interpolation was skipped. If
the initial values at the outer boundary of the overlap region are equal to the
coarse grid values, is it su�cient to interpolate the coarse grid increments
to keep the values identical. Step (8) of MLAT, Table 2.3, is applied to Gh

rather than on the inner points
�
Gh only, and step (9) was skipped. The

inner boundaries are interpolated bi{linearly only, however oscillations are
kept out of the inner re�nement region because of the overlap region, and
because only one V{cycle is applied, which is su�cient in general.

3.4 Parallelization with Distributed Memory

Whereas the computational demands of the SWE are low, the communi-
cation requirements are comparable to computationally more demanding
models. Moreover, with the application of the semi{implicit time scheme
and with local re�nements the simulation becomes numerically highly e�-
cient. To achieve reasonable acceleration on modern parallel systems, the
parallelization has to be of comparable quality. It is particularly desirable
to port fast numerical algorithms to parallel computers, since it is not rea-
sonable to buy high parallel speed{up with slow numerical performance.

In this paper major concern has been spent for parallelization to achieve
good parallel e�ciencies also for this worst case problem of meteorological
simulations. With a number of design decisions adaptive multigrid and
parallelism are combined in an e�cient way. As already mentioned in the
previous sections:

� Parallelization is performed by explicit message passing and the grid
partitioning approach (Sections 2.4.2 and 2.4.3). With explicit mes-
sage passing very general communications are supported and optimiza-
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tions are possible. Portability for most modern parallel architectures
is provided.

� The transfers of fully two{dimensional data (volume communication)
within the dynamic adaptation of the re�nements and the multigrid
cycle are systematically reduced with the special hypergrid{blocking
method (Section 3.3.2). Moreover, the maximal size of the re�nement
blocks is chosen depending on the available number of processors. For
this optimization the requirement to reproduce exactly the same re-
sults when changing the number of applied processors was abandoned.

� Multigrid is applied as stabilizer and the number of coarse grids is
drastically reduced. In this way the coarse grid problem of parallel
multigrid is solved (Section 3.2).

More details about the parallelization of the adaptive method are given
in the following. The administration of the distributed block structure along
with neighborhood relationship information is discussed in Section 3.4.1 . In
Section 3.4.2 the load balancing algorithm that is applied to distribute the
re�nement blocks to the processors is de�ned. Asynchronous communication
provides the possibility of reducing synchronization among the processors
and executing computation and communication concurrently. The concept
of nonblocking asynchronous communication is presented in Section 3.4.3 .
Finally, as the computational core of this paper, a parallel MLAT algorithm
with asynchronous communication is provided in Section 3.4.4 .

3.4.1 Distributed Information

To reduce administration overhead and to support full 
exibility in paral-
lelization the processes are organized in a 
at hierarchy. Each processor is
provided with just the information necessary for computing that includes
the grid point data of the designated partitions (blocks), dimension and lo-
cation of the other partitions for global load balancing, and neighborhood
relationships for nesting, multigrid, and boundary exchange. There is no
host process that controls the computational tasks; the computing nodes
are enabled to organize themselves17. In this way even some of the over-
head to administrate the local re�nements can be performed in parallel (e. g.
blocking of critical points and the computation of the neighborhood rela-
tionships). Especially for the global decision base load balancing algorithm
each processor is provided with the current block structure that is described
in the following.

The block structure is a graph with the re�nement blocks as nodes and
with edges representing the neighborhood relationships. Each re�nement

17The only exception is that global values as error norms or time measurements are
evaluated by a designated processor, which also prints the control output.
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block is implemented as an entity with all relevant data belonging to it:
e. g. size and location, designated processor, and related edges (see details
in Table 4.1.1).

An example of a block structure with two re�nement levels is given in
Figure 3.21 . The global block (re�nement level 0) has three re�nement

level n+1

level n

level n-1

Figure 3.21: Re�nement block structure II

blocks, the central re�nement block itself has two re�nements. The edges
correspond to the data transfers appearing within the adaptive simulation.

The advantages of this structure are:

� The blocks and the data belonging to them are clearly arranged. All
data representing a block is collected together.

� It is easy to change the block structure dynamically. When introducing
new blocks and deleting obsolete ones, only the neighborhood data of
the other blocks has to be updated.

The messages to be exchanged are determined on demand by evaluating
the process numbers and the locations of the blocks. This is done very fast,
and it is not necessary to compute and store exchange areas beforehand and
adjust them each time the blocks change.

Memory for the grid functions of a block is dynamically allocated on a
certain processor in case the block is distributed to this processor. This dis-
tribution of re�nement blocks is computed with the load balance algorithm
of the next section.
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3.4.2 Load Balancing

For parallelization the re�nement blocks that are created by the partitioning
of the re�nement areas (Section 3.3.2) have to be mapped onto the available
processors of the parallel system. Here a good balance of the load is very
important for parallel algorithms. An unequal distribution of the computa-
tional costs seriously limits parallel e�ciency even without taking communi-
cation overhead into account (see Equation (2.25) ). Moreover, the in
uence
of load balance increases if more expensive models (three{dimensional mod-
els with more 
oating point operations per grid point) are simulated, or if
larger grids and �ner resolutions are used, in comparison to existing over-
head (e. g. communications for boundary exchanges).

For the shallow water model the number of grid points is a good estima-
tion for the computational costs of a re�nement block, and we measure the
work load of a block by its size.18

Ritzdorf and St�uben [63] developed a load balance algorithm for adaptive
multigrid in a steady state context. Small blocks are mapped immediately
to the processors and large blocks are further subdivided and distributed to
equalize the hitherto existing distribution. However, it is important to ful�ll
additional conditions. Inter{level and volume data transfer were found to
saturate the parallel e�ciency of adaptive multigrid for increasing problem
sizes and �xed numbers of processors.

In our time{dependent model two additional conditions are considered
in order to reduce volume data communication.

1. The re�nement structure is adapted very frequently (for the model
problem of Section 5.1 in every time step) to the current weather situ-
ation. Initializations of new blocks introduce additional computational
overhead and volume data communication, and their number should
therefore be reduced. Moreover, unchanged blocks should stay on the
same computational node and should not be re{mapped and moved to
another one.

2. As there is also volume data exchange from a re�nement region to its
underlying coarse grid, it is preferable to map a re�nement region and
the coarse grid to the same node. In this way the data transfer of
the adaptive algorithms can be performed locally by memory copies
without interprocess communication.

To achieve optimal results these requirements are already considered
when partitioning the re�nement areas by hypergrids (Section 3.3.2.2). The
number of initializations of new blocks is reduced, and the blocks can be

18The costs for the physics part of full weather models depend on the physical processes
being simulated, which di�er temporally and spatially. For this physically initiated load
balance problem dynamic strategies are developed (e. g. Elbern [27]).
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re{used in the following time steps. Furthermore, the maximal block size is
limited, which is important to achieve a good balance of the work load. Ac-
cording to these design decisions the blocks that are created by the partition-
ing algorithm are not further subdivided during the load balance algorithm
presented here.

Assume a set of n work loads S = fX1; : : : ;Xng ; a mapping function �
assigns the loads to the p computational nodes,

� : S ! f1; : : : ; pg ;

where the execution time of a parallel algorithm is determined by the max-
imal total load mapped to a node

load(�) :=
p

max
j=1

X
i:�(i)=j

Xi : (3.28)

Minimizing load(�) is an instance of the makespan scheduling problem (e. g.
Co�man and Lueker [23]). Since the cost to solve this minimization prob-
lem exactly increases exponentially with n (the problem is NP{complete!),
heuristic approximations are appropriate.

A simple heuristic mapping for the makespan scheduling problem is the
list scheduling (LS) algorithm that maps the work loads (Xi)i=1;:::;n succes-
sively to the computational node according to the following rule: A load Xi

is mapped to the node with the minimal sum of the previously distributed
i�1 loads.

Denoting �X = 1
p

Pn
i=1X

i the average load per node and assuming that

X1 is the largest work load, rough bounds can be given for the resulting
mapping:

�X � load(LS) � 1

p

nX
i=2

Xi +X1 = �X +
p� 1

p
X1 ; (3.29)

in best case the maximal total load is just the average. The worst case
happens if one node starts processing the largest load, while all the others
have already �nished computation.

Simply put, bounds for the load balance factor �p that limit parallel
e�ciency (Equation (2.24)) are derived:

�X
�X + p�1

p
X1

� �p =
�X

load(LS)
� 1 : (3.30)

Thus, �p increases if the problem size increases while the maximal block
size is limited (for �xed p). Actually, this limitation is achieved by the
hypergrid partitioning, where the maximal block size is de�ned by the mesh
size of the hypergrid. Though �p also increases for a �xed problem size with
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decreasing maximal block sizes, the introduction of additional work and
communication of the block boundaries prevents unlimited reduction of the
block sizes. This can be seen as re�nement agglomeration similar to coarse
grid agglomeration, where coarse grids of parallel multigrid are assembled
on a reduced number of nodes (Section 2.4.3).

Since the re�nement blocks are created �rst, their sizes are known a priori
and the LS algorithm is improved easily by sorting the work loadsXi; i=1;:::;n

with respect to their size, largest �rst, X1 � : : : � Xn . This results in the
largest processing time �rst (LPT) mapping. In this way large di�erences
that are produced by the �rst loads can be equalized by the later mapped
smaller work units. It can be shown (e. g. Co�man and Lueker [23]) that
this results in a much better asymptotic behavior for a large n . However,
if n becomes large it might be more e�cient to construct larger and fewer
blocks.

If there are several levels of re�nement, the LPT algorithms can be ap-
plied to each of the re�nement blocks for each level individually. This leads
to a balance of the work which has to be calculated level by level (e. g. grid
operations of the MLAT for the Helmholtz equation.)

Other computations (e. g. the discretization of the explicit parts of the
time scheme and the computation of the right hand side of the Helmholtz
equation) can be executed independently for all re�nement levels. Obvi-
ously, a balance of work for each individual level leads to a balance of the
work summed over all levels. However, since the most expensive parts of
the communication can be performed independently, the load balance is
preferably performed for the total work of all re�nement levels.

Since the re�nement structure is created level by level, the local re�ne-
ments of the global grid are de�ned �rst, and afterwards the re�nements of
the just de�ned re�nements and so on. The resulting algorithm is o�{line
within one level, since the sizes of the blocks of each level are known before
they are mapped, however on{line when considering all levels, because the
blocks of the next higher re�nement level are created after the mapping (and
the migration) of the actual level has taken place.

For each process j=1; : : : ; p denote with N(j) the sum of all work loads
of the previous re�nement levels that are already dedicated to this process

and de�ne �N = 1
p

�Pp
j=1N(j) +

Pn
i=1X

i
�
, the average load over all levels

including the current one. Table 3.5 shows the load balance algorithms
applied on each re�nement level of the adaptive method.

First, the auxilliary values are calculated and the work loads (i. e. the
blocks) are sorted, largest �rst. The re�nement blocks are distributed in
the �rst loop preferably to the same, where the corresponding coarse block
is mapped (father(Xi) denotes the coarse block of Xi), as long as the limit
�N for the selected process is not exceeded. In that way the balance of the
work is only slightly a�ected.
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Load Balance Algorithm

calculate N(j); j=1;:::;p and �N

sort Xi; i=1;:::;n : X1 � : : : � Xn

:::

for
::::::::::

i=1,. . . ,n8>>>>>>>>>>:
::

if
:::::::::::::::::::::::::

(N( father(Xi) ) < �N)8>>>>: �(Xi) := �(father(Xi) )
N(�(Xi) ) := N(�(Xi) ) +Xi

:::

for
::::::::::

i=1,. . . ,n8>>>>>>>>>>:
::

if
:::::::::::::::::

(�(Xi)=undef
:::::

and
::::::::::::

static(Xi)
:::::

and
:::::::::::::::::

N(�0(X
i) )< �N )8>>>>: �(Xi) := �0(X

i)
N(�(Xi) ) := N(�(Xi) ) +Xi

:::

for
::::::::::

i=1,. . . ,n8>>>>>>>>>>>>:
::

if
:::::::::::::::::

(�(Xi)=undef)8>>>>>>: �(Xi) := j0 for that N(j0) =
p

min
j=1

N(j)

N(�(Xi) ) := N(�(Xi) ) +Xi

Table 3.5: Load balance algorithm

In the second loop unchanged blocks are mapped to the same processor
as before, as long as they have not already been distributed in the �rst
loop, and as long as the work load of the selected nodes is not exceeded.
(static(Xi) is true, if the block Xi has existed before and false otherwise,
and �0 denotes its previous mapping.)

Finally, the remaining blocks are distributed in the third loop according
to LPT one by one to the node with the current load minimum. In this way
the imbalances produced in the �rst and second loops can be equalized with
decreasing work load sizes.

The bene�ts of reducing the volume communication are shown in Ta-
ble 5.8 , the improved load balance algorithm is compared to LPT (attained
by applying the third loop of Table 3.5 only) by run time measurements.

3.4.3 Nonblocking and Asynchronous Communication

Since the terms nonblocking and asynchronous communication have various
meanings in literature, their use in this work is described in the following.

� Nonblocking communication is a mode of exchanging messages of the
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Message Passing Interface MPI. Nonblocking send and receive calls
only solely initiate a communication operation and may return before
its completion. The data transfer can be performed in the background
(potentially concurrently) to the following computational operations
and has to be explicitly completed by wait or test calls. The non-
blocking communication mode makes it easier to avoid deadlocks and
reduce synchronization.

� The communication of a parallel algorithm is called asynchronous if the
message exchanges of one process are initiated at most independently
of the current progress of the other processes. There are no determined
communication steps between separate computational phases in a par-
allel algorithm with asynchronous communication. The objective is to
send data as soon as it has been computed, and to perform those com-
putations �rst whose required data has already arrived. In this way
the synchronization of the processes is reduced, and computation and
communication can be executed concurrently.

Nonblocking communication is considered a prerequisite for asynchronous
data transfer.

Two examples of algorithms with asynchronous communication that
have been developed and implemented for the adaptive simulation are pre-
sented and compared with their synchronous counterparts in the following.
The communication pattern for a boundary exchange of the local re�ne-
ments are discussed in Section 3.4.3.1 . A relaxation loop is presented in
Section 3.4.3.2 .

It has to be admitted here that time measurements for asynchronous
communication have not shown considerable improvement for the given
model problem. Nevertheless, it is assumed that asynchronous communi-
cation can be very bene�cial for problems with much higher computational
costs, larger communication loads (longer messages), and also improved fa-
cilities of the parallel systems.

3.4.3.1 Synchronous and Asynchronous Boundary Exchange

In this section a synchronous communication pattern for a boundary update
is compared to its asynchronous counterpart. Boundary exchanges often
occur in parallel algorithms with grid partitioning. A common synchronous
communication pattern (as is implemented in the communication library
CLIC: Hempel and Ritzdorf [35]) is given in Table 3.6 . A two{dimensional
partitioning is assumed where each processor is responsible for only one
block p . The full boundary exchange consists of two steps, one for each
dimension, in order to optimize the number of exchanged messages. This
optimization is explained in Figure 3.22 (left) where a partition with four
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Synchronous boundary exchange

exchange left and right boundary (p)
wait for completion, then bu�er data (p)

exchange upper and lower boundary (incl. corners) (p)
wait for completion, then bu�er data (p)

Table 3.6: Synchronous boundary exchange

blocks (and four processors) is displayed. The inner regions (the region
belonging to the patch) are shaded; the overlap areas are empty. At �rst

2 2

1

2 2

1

1 1
1 1

1

1

Figure 3.22: Synchronous and asynchronous boundary exchange

all exchanges from left to right and vice versa are performed. After the �rst
communication step has �nished (messages have arrived and are bu�ered)
the exchanges from up to down and vice versa are carried out. The second
step includes the update of the corner areas, which is indicated by dashed
arrows. In this way the data belonging to the corners is passed from the
diagonal patch via the upper or lower neighbor to the overlap region. The
additional corner data is transmitted with the updates of the sides.

This optimization is not always possible. If one of the four patches in
Figure 3.22 (left) is missing, the corner data has to be directly transferred
diagonally, as in Figure 3.22 (right). Such cases often appear in general grid
structures that are likely to be created in adaptive simulations.

An asynchronous boundary exchange is listed in Table 3.7 and displayed
in Figure 3.22 (right). In general more than on block may be distributed to
a process. The union P(lev) denotes the union of all re�nement blocks of a
certain re�nement level lev (including the global grid with lev=0) that are
distributed to the considered computational node.



92 CHAPTER 3. CONCEPTUAL DESIGN

Asynchronous boundary exchange

8p2P(lev):
8>>>: initiate send boundaries (p)
initiate receive boundaries (p)

8p2P(lev): local copy of boundaries (p)
8p2P(lev): wait for completion, then bu�er data (p)

Table 3.7: Asynchronous boundary exchange

The sends and receives (also sends and receives to and from diagonal
blocks) are successively initiated for all local blocks. Since the sends and
especially the receives are solely initiated by nonblocking communication
operations, it becomes possible to perform computational operations during
message transfer. For example, bu�ering of data or the local boundary
exchanges between blocks that reside on the same node can be performed
before the open messages are completed.

The number of messages to be exchanged is twice as much in the two{
dimensional case in general; however, the degree of synchronization is re-
duced. In the next section asynchronous communication is applied in a
relaxation step to show its full potential.

3.4.3.2 Synchronous and Asynchronous Relaxation Loop

As an example of a parallel algorithm with asynchronous communication a
smoothing step that appears in parallel multigrid is considered.

To begin, a commonly used straightforward algorithm is listed in Ta-
ble 3.8 . A number of nsolve grid relaxation steps are performed with sub-
sequent boundary exchanges. These boundary exchanges are usually per-
formed synchronously according to Table 3.6 ; however, it is also possible to
apply the asynchronous boundary exchange of Table 3.7 as indicated.

First all patches distributed to the current processor are smoothed; then
afterwards the boundary exchange of Table 3.7 is carried out. After the
communication steps have been completed, the next grid operation can take
place. In this way communication and calculation are strictly separated.
This is of course an advantage for implementing and debugging, and for
writing and using communication libraries. On the other hand, time spent
waiting for the communication steps to be completed could be better used
for subsequent computations.

The relaxation loop of Table 3.8 is still referenced synchronous, although
already an asynchronous part is included. This is to di�erentiate the algo-
rithm from the fully asynchronous relaxation loop of Table 3.9 with a higher
degree of asynchronism. The function N(Q) denotes the number of elements



3.4. PARALLELIZATION WITH DISTRIBUTED MEMORY 93

Synchronous Relaxation Loop

:::::::::::::::

i=1,. . . ,nsolve8>>>>>>>>>>>>>>>:

8p2P(lev): smooth (p)

8p2P(lev):
8>>>: initiate send boundaries (p)
initiate receive boundaries (p)

8p2P(lev): local copy of boundaries (p)
8p2P(lev): wait for completion, then bu�er data (p)

Table 3.8: Synchronous relaxation loop

Asynchronous Relaxation Loop

:::::::::::::::

i=1,. . . ,nsolve8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Q:=P(lev)

::::::

while
::::::::::

N(Q)>08>>>>>>>>>>>>>>>>>>>>>:

R:=
n
p 2 Q: for that all messages have arrived

o

8p2R:

8>>>>>>>>>>>:
bu�er data (p)
smooth (p)
initiate send boundaries (p)
initiate receive boundaries (p)

Q:=QnR

Table 3.9: Asynchronous relaxation loop

of the union Q .

At �rst those blocks are selected whose messages have already been com-
pleted (especially arrived). For these blocks smoothing is performed, and
the following boundary exchange is initiated. In this way the sends of data
can be executed immediately when the data is available. For the �rst entry
in the asynchronous relaxation loop it can be assumed that there are no
outstanding messages and that bu�ering is not necessary; however, in the
subsequent loop iterations it is possible that bu�ering and smoothing oper-
ations for some blocks are performed while other blocks still have to wait
for their data.

There is no need to wait until all communication is ful�lled; the blocks
whose messages have arrived can be progressed, calculation can be per-
formed and the following messages can already be initiated. Waiting time
for late messages is used and synchronization of the parallel algorithms is
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reduced. In this way more advantage can be taken of a parallel system.

On the other hand it is much more di�cult to implement an asyn-
chronous algorithm like the relaxation loop, since the initiation and the
completion of messages are separated in the source code as well as in the
program execution.

3.4.4 Parallel Multigrid Cycle

The �nal section of this chapter is dedicated to the parallel adaptive multi-
grid cycle as the algorithmic core of this paper. Since multigrid behaves very
naturally with local re�nements, the algorithmic adaptations of MLAT with
respect to adaptivity in Table 3.10 restrict to the distribution of multiple
re�nement blocks to one computational node. The sizes and locations of the
re�nement blocks are stored in the block structure and used only on a grid
operation and message transfer level.

The algorithm is listed with a limited degree of asynchronous commu-
nication19 for the simplicity of the presentation. In this algorithm maxlev

denotes the maximum re�nement level, whereas minlev is the level of the
global grid (lev=0), or even a coarse grid level. The values nreld , nsolve ,
and nrelu denote the number of pre{smoothing steps, number of smoothing
steps on the coarsest grid, and number of post{smoothing steps, respectively.

At �rst glance the algorithm looks like a straightforward parallelization
of the sequential MLAT of Table 2.3 , whose step numbers have been inserted
at the corresponding operations. However, there are two things worth men-
tioning:

1. The right hand side fh of the Helmholtz equation, the Helmholtz con-
stant ch , and the initial values of �hh for the iteration have to be
computed in before the multigrid algorithm on all levels. Also the
initial values �hh are already interpolated at the re�nement bound-
aries from the coarse grids. The update of the overlap areas of these
variables with boundary exchanges is carried out during the �rst part
of the multigrid cycle for optimization. The special boundary inter-
polation (9) was left out, since only one V{cycle is applied, and also
because of the following re�nement nesting procedure.

2. The grid operations (2){(4) and (6){(8) are carried out as operations
of the re�nements. In this way the load balancing of the �ne grids is
used also for these operations. Unnecessary imbalances would occur
if these operations, which are restricted to re�ned areas, were carried
out on the coarse grid structures. Moreover, only the smaller amount

19A fully asynchronous implementation according to the example of the relaxation loop
in Table 3.9 was carried out; however, run time measurements have not shown considerable
improvements for the given model problem.
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of coarse grid data has to be transferred from �ne to coarse grids and
vice versa.

The smoothing rates of the applied red{black Gauss{Seidel relaxations
depend on the size of the Helmholtz constant ch . For small (positive) ch
the smoothing rates are as good as for the Laplace or Poisson{equations.
With increasing ch the rates become even better. When applying multigrid
as stabilizer (Section 3.2) the multigrid cycling can be reduced to a small
number of ordinary relaxations for special scenarios of the model problem of
Section 5.1 . Nevertheless, in the other considered scenario the full cycling
algorithm (with reduced number of coarse grids) is bene�cial.
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Parallel Adaptive Multigrid Cycle

:::

lev
:::

=
::::::::::::::::::::

maxlev,. . . ,minlev8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

::

if
::::

lev
:::

<
:::::::::

maxlev8>>>>>>>>>>>:
8p2P(lev):
8p2P(lev):
8p2P(lev):
8p2P(lev+1):

initiate receive fh (p)
local copies of fh (p)
complete receives of fh (p)
complete sends of fh (p)

8p2P(lev): exchange boundaries of fh and �hh (p)

::

if
::::

lev
:::

>
::::::::

minlev8>>>>>>>>>>>>>>>>>:

::::::::::::::

i=1,. . . ,nreld8>>>: 8p2P(lev): smooth (p) ; (1)
8p2P(lev): exchange boundaries of �hh (p)

8p2P(lev):
8>>>: compute fh (p) ; (2) � (4)
initiate send fh (p)

:::::::::::::::

i=1,. . . ,nsolve8>>>: 8p2P(lev): smooth (p) ; (5)
8p2P(lev): exchange boundaries of �hh (p)

:::

lev
:::

=
::::::::::::::::::::

minlev,. . . ,maxlev8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

::

if
::::

lev
:::

>
::::::::

minlev8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8p2P(lev): initiate receive �hh (p)
8p2P(lev): local copies of �hh (p)

8p2P(lev):
8>>>: complete receive of �h (p)
perform coarse grid correction (p) ; (6)� (8)

8p2P(lev-1): complete sends of �hh (p)

::::::::::::::

i=1,. . . ,nrelu8>>>: 8p2P(lev):8p2P(lev):
smooth (p) ; (10)
exchange boundaries of �hh (p)

8p2P(lev): initiate sends �hh (p)

Table 3.10: Parallel adaptive multigrid cycle



Chapter 4

Software Implementation

It has already been mentioned that the design of the dynamically adaptive
method described in the previous chapter also has been implemented. This
shows the practicability of the design, and is the basis of the results presented
in Chapter 5 .

A full chapter is dedicated to the implementation although only a rough
outline is given rather than a full documentation and reference1. This is
justi�ed with the great e�ort and di�culty implicit in implementing such
an extremely complex high{end method.

The parallel adaptive method is implemented in about 10 000 lines of
the computer language `C' , which is known to be general, e�cient, and very
appropriate to handle dynamic structures. More than one{fourth of the
lines of code is designated to the explicit communication by MPI. This is
very few for an implementation with advanced communication requirements
such as parallel dynamically adaptive simulation.

Section 4.1 introduces the basis data structures to administrate the in-
formation about the dynamic re�nements, their neighborhood relationships,
and the asynchronous communication. Based on these data structures work
units are built, which are the primitive computational and communication
parts of the parallel algorithm. The most important work units are presented
in Section 4.2 .

4.1 Encapsulation of Data

The main idea of encapsulation is to gather all data together that belongs to
a certain object. In this way data structures are created and easy and e�-
cient access to this data is supported. In the following, two basic structures
that are used in the parallel adaptive method are presented. The �rst one

1However, the source code is quite easy to survey and provided with many comments.
Experience shows that the readability of a code is a very important issue besides e�ciency.
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is the central structure for adaptivity. It de�nes the implementation of a
re�nement block as data structure spatch and is given in Section 4.1.1 . The
second data structure smess is the basis for the parallelization of the adap-
tive method. It prescribes the data belonging to a message to be exchanged
(see Section 4.1.2).

4.1.1 Data Structure for Local Re�nements

Each partition of the coarse grids as well as each re�nement block is imple-
mented as an instantiation of type spatch . All data de�ning a rectangular
partition is gathered, e. g. the size of the block, its location, the work space
for the variables, and the neighborhood relationships. Based on this object
type the block structure is implemented (see Section 3.4.1 , an example is
visualized in Figure 3.21).

In detail type spatch is declared as given in table 4.1 .2 The element

Structure spatch

type | element comment

int level re�nement level
int ref number of re�nements
int nx number of intervals in x{direction
int ny number of intervals in y{direction
sloc locr position relative to coarse grid
sloc loca absolute position in intervals
double xmin coordinate of left boundary
double ymin coordinate of lower boundary
double dx mesh size in x{direction
double dy mesh size in y{direction
double *cp pointer to auxiliary data array
double *sp pointer to auxiliary data array
double *data[NARRAY] pointer to work space for variables
spatch *pf[MAXPATCH] pointer to re�nements
spatch *pc pointer to coarse grid
sneigp np[4] pointer to neighbors of each side
int number global number of re�nement
int proc number of processor
smess *pmess structure for asynchronous com-

munication

Table 4.1: Data structure spatch

data is an array of pointers that are the addresses of the data arrays for the

2The declaration style of this and the following structures is according to the program-
ming language `C' . The stars (*) indicate pointers (variables for addresses).
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model variables h , u , and v . These data arrays are dynamically allocated
in case the block is mapped to the local processor. (MAXPATCH is the number
of grid functions).

The elements pc and pf are pointers to the related coarser and �ner
blocks, respectively (there is only one coarse block, and the maximal number
of re�nements of a single block is MAXPATCH). The neighbors of the block of
the same re�nement level are stored in array np , which is a data structure
itself and given in Table 4.2 . In this way the number of adjacent blocks and
the pointers to them are stored for each side of the block separately. With

Structure sneigp

type | element comment

int n number of neighbors
spatch *pn[MAXNEIG] array of pointers to neighbor patches

Table 4.2: Data structure sneigp

pc, pf, and the pointers pn of sneigp the relationships are de�ned. The
block structure can easily be dynamically adapted during the simulation
with these pointers.

The elements locr and loca are structures of type sloc for storing the
coordinates of the block relative to its coarser block and absolute coordi-
nates, respectively. Type sloc is declared as in Table 4.3 .

Structure sloc

type | element comment

int imin �rst index of �rst coordinate
int imax last index of �rst coordinate
int jmin �rst index of second coordinate
int jmax last index of second coordinate

Table 4.3: Data structure sloc

Finally, element pmess is a pointer to the data structure, which describes
the messages related with the block. Its de�nition is given in the following
section.

4.1.2 Data Structure for Asynchronous Communication

The initiations of sends and receives are statically (with respect to the source
code) and dynamically (with respect to the execution of the algorithm) sep-
arated from their corresponding completions when asynchronous communi-
cation as in Table 3.7 is applied. Information about the message such as its
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content, its length, and its bu�er space has to be stored when initiating the
messages in order to perform the completion and bu�ering later.

To keep this information the data structure smess was declared as in
Table 4.4 .

Structure smess

type | element comment

int nmess number of open messages
MPI Request areq[MAXMESS] array of requests
sbufinfo bufinfo[MAXMESS] information for bu�ering
int (*afuncbuf[MAXMESS]) function for bu�ering

(sbufinfo *bufinfo)

long length[MAXMESS] length of message
(for consistency check)

Table 4.4: Data structure smess

Besides the number nmess of initiated and not yet completed messages
information for each of these message is stored. Element areq is an array
of MPI{request handles (see Section 2.4.2), and bufinfo is an array of data
type sbufinfo, which is used to store information about the contents of the
message. The declaration of type sbufinfo is given in Table 4.5 .

Finally, element afuncbuf is an array of functions that are called after
the message has arrived and that perform the bu�ering and clean up to
complete the message.

The data structure bufinfo contains the information which is required
for function afuncbuf to perform the bu�ering of the received data to the
grid function the data belongs to.

Structure sbufinfo

type | element comment

sloc loc location of data in data array
int ny extension of �rst dimension
int istride every or every second point
int nvar number of variables to communi-

cate
double *apbuf[NARRAY] pointers to data arrays
double *buffer communication bu�er

Table 4.5: Data structure sbufinfo

Structure sbufinfo contains in loc (see Table 4.3) the location of data
to be received in the data arrays. The second dimension of these arrays is
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stored in ny, which is essential to put the received data in the array. The
variable stride can be used to de�ne whether the message contains data
for every point or for every second point. This is very important when data
is sent from a �ne grid to its nesting coarse grid and back again.

Sometimes several grid functions have to be exchanged at the same time.
This data is combined into one single message. The number of grid functions
is nvar, and the pointers to the data arrays of the speci�ed grid functions
are stored in array apbuf[NARRAY] . Of course, a pointer to the bu�er the
actual message is received in is also given in buffer .

This data structure information is su�cient to de�ne the contents of
two{dimensional data arrays to be sent or received. It is possible to con-
struct more general versions of sbufinfo to store information about general
domains or three{dimensional blocks.

4.2 Work Units

Based on the declaration of the data structure spatch the atomar parts of
computation and communication are de�ned as work units . There are two
kinds: computational work units are sequences of grid operations applied on
the re�nement block, and communication units are initiations or completions
(or local copies) of a number of messages to be transferred at a certain step
of the algorithm.

The most important computational work units are:

� solve pre(p)

Calculation of the right hand side fh and the Helmholtz constant ch
of the Helmholtz equation (Steps (1){(3) of Table 3.1).

� solve post(p)

Complete time step (Steps (5) and (6) of Table 3.1).

� smooth gs(p)

Perform two half{steps of the Gauss{Seidel smoother (Steps (2){(4)
of Table 2.3)

� res ref hw(p)

Computation of residuum and half{weighting and update of the right
hand side of the Helmholtz equation (Steps (2){(4) of Table 2.3)

� int fine cor(p)

Calculation of coarse grid increments and prolongation and addition
of the correction (Steps (6){(8) of Table 2.3)

Since all data de�ning a re�nement block is gathered, one parameter | a
pointer to the related data structure | is su�cient to perform these compu-
tations. Moreover, it is possible to write interfaces to existing meteorological
modules in this way.
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Parallelization on this computational work unit level is coarse{grain and
easy to survey.

Similar work units are implemented for communication. For example,
the asynchronous boundary exchange of Table 3.7 is formulated with the
following communication work units:

� exch boundaries send(p)

initiate sends

� exch boundaries recv(p)

initiate receives

� exch boundaries local(p)

local copies of data

� exch wait(p)

wait and complete all open messages

The information about the message to be sent or received is stored by
the related communication work units in the data structure bufinfo (Ta-
ble 4.5), and used later for completion and bu�ering of the data. Of course,
with asynchronous communication the computation and communication can
be no longer separated by use of communication libraries. However, when
applying this concept of communication work units, the details of data trans-
fer are hidden on the computational level.



Chapter 5

Performance Results

The design and implementation described in the previous two sections must
now be veri�ed and evaluated by the results of simulations and run{time
measurements. The improvements achieved by the application of multigrid
as stabilizer are compared to calculations where the Helmholtz equation is
solved. Dynamically adaptive simulations are compared to a highly resolved
non{adaptive reference. An analytical solution exists for a reasonable model
problem.

Especially with local re�nements the question of a fair model problem
arises. The reduction of the problem size with adaptive re�nements clearly
depends on the weather simulated. If the weather conditions force local
re�nements almost everywhere in the computational domain, clearly no ad-
vantage results from the adaptive algorithm (moreover, additional overhead
is introduced). The other extreme is very calm weather conditions where no
local re�nements are actually necessary. In this case the acceleration due to
adaptivity can be extreme.

For this background a model problem arti�cial cyclone has been devel-
oped that represents a reasonable meteorological application. The size of
the re�nement area can be adjusted, and an analytical solution is known.
The model problem is presented in Section 5.1 . Explicit and semi{implicit
time stepping with multigrid applied as solver and stabilizer are compared
in Sections 5.2 . In Section 5.3 the accuracy and acceleration in computing
time of the adaptive simulation is veri�ed and evaluated and, �nally, in Sec-
tion 5.4 the resulting parallel speed{ups of the parallel adaptive methods
are presented.

5.1 Model Problem | Arti�cial Cyclone

The model problem is closely related to the results presented in the following
because of its strong dependence on the size of the re�nement area. Its
description is therefore included in this chapter.
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The model problem arti�cial cyclone is a swirl that is idealized by an
arti�cial low pressure region with a rotating 
ow around it. Pressure and
centrifugal force are in equilibrium, so that the shape of the swirl is pre-
served. Dependent on a constant background 
ow the cyclone can be used
both as stationary and as in{stationary model problem. An analytical so-
lution exists, which is used to provide initial conditions for the simulation,
and to calculate global errors in order to evaluate the adaptive model.

For a given pressure pro�le the equilibrating rotational 
ow will be de-
rived in the following. We start from the shallow water equations in Carte-
sian coordinates (2.7) without orography (hs � 0). To derive an analytical
stationary and rotational invariant solution the partial derivatives with re-
spect to t are eliminated, the others are transformed into polar coordinates
r and ' originating from the center of the swirl by

x = r cos'
y = r sin'

; with r > 0 and ' 2 [0; 2�[

and
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Introducing a rotational invariant geopotential h(r) and tangential velocity
V (r)

u = �V (r) sin'
v = V (r) cos'

h = h(r)

gives
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A real solution exists only for @h
@r

> � rf2

4 , and we restrict ourselves to low

pressure areas (@h
@r
>0) .

In case of vanishing Coriolis force (f = 0) there are two symmetrical
solutions: a cyclonal and an anti{cyclonal 
ow. Otherwise (f 6= 0) there
are also two solutions, however, only for the �rst one the tangential velocity
vanishes far from the swirl (V1(r) ! 0 if r !1 and @h

@r
! 0)1 and we will

concentrate on it.
1On the northern hemisphere f >0 and a cyclonal stream is counterclockwise.
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The resulting stationary swirl is given by
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1
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h = h(r) > 0

with r=0 being its center.

For the geopotential pro�le of the arti�cial cyclone

h(r) = h0

�
1�D e�(

r
R)

2
�

(5.4)

is chosen, where h0 is the main geopotential height andD and R are constant
parameters. D de�nes the maximal depression in the center and R the
horizontal extension of the cyclone. The maximum tangential velocity is
reached at distance r=R from the center of the cyclone, Vmax = V (R) =q

2Dh0
e .

An example for the geopotential pro�le (with already adapted mesh) is
shown in Figure 5.1 (top). To yield an in{stationary model problem the cy-
clone is moved by adding a constant background 
ow (u0; v0) . In case f=0
the cyclone is advected in a shape{preserving way. This gives the advan-
tageous possibility of providing an analytical solution for the instationary
model problem. For f 6= 0 the cyclone is deformed during the simulation
and no analytical solution could be found. Therefore the Coriolis force was
neglected in the following. Numerical tests showed little in
uence of the
Coriolis force for the described model problem.

Two scenarios of the cyclone with di�erent basic geopotential heights
were selected to show the in
uence of the speed of the gravity waves on the
numerical algorithm. The geopotential h0=15 000m

2/s2 is related to a lower
level of the atmosphere of about 1.5 km height and average speed of gravity
waves, whereas for h0=120 000m

2/s2 a high level of about 12 km and a high
speed of the gravity waves is selected (compare Table 2.1).

The parameters of the cyclone are de�ned D= 1 000
h0

and R=31.25 km for

both scenarios: thus the maximal depression in both cases is 1 000m2/s2

and the maximal tangential velocity is 27.12 m/s . The components of the
background 
ow are u0=12m/s and v0=9m/s, so that the total speed is 15
m/s. In combination with the tangential velocity the maximal speed of
advection is 42.12m/s .

The computational domain is a square of 1 000 km by 1 000 km, which
is discretized by 1024�1024 intervals, providing a resolution of just below
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Figure 5.1: Geopotential of instationary arti�cial cyclone
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1 km in non{adaptive simulations. The considered model time frame is 6
hours.

During this model time the cyclone moves 324 km. This is more than
10 times its characteristic radius of R=31.25 km, which shows the demand-
ing requirements for the adaptive re�nements. In Figure 5.1 a sequence
of re�ned grids of a time{dependent simulation (with slightly altered pa-
rameters for visualization) is displayed. From top to bottom the arti�cial
cyclone moves to the right upper corner, and the grid automatically adapts
as shown.

The arti�cial cyclone is a very good model problem, because an analyt-
ical solution is available. The following simulations and run time measure-
ment concentrate on it. Nevertheless, another scenario was simulated and
visualized to experience the full capabilities of the automatic adaptation.
Figure 5.2 displays the cyclone of the model problem in combination with
an arti�cial anti{cyclone. As shown in Equation (5.1) strong anti{cyclones
can not be stable. This result corresponds to the simulation where the anti{
cyclone dissolves very quickly. A large circular gravity wave evolves, which
is very e�ectively damped (as is intended with the application of the implicit
Euler time scheme for the gravity terms).

5.2 Explicit and Implicit Time Stepping

In this section the explicit time stepping is compared with the semi{implicit
scheme presented in Section 3.1.1 . To compare the numerical performance
of the schemes, both scenarios of the cyclone with high and average geopo-
tential and thus fast and slow gravity waves are calculated on the global
non{adaptive grid with 1024�1024 intervals.

For the high basic geopotential of 120 000m2/s2 the speed of the gravity
waves is 346.41m/s relative to the advection with 42.12 m/s and therefore
388.53 m/s in maximum. With spatial resolution of just below 1 km and a
restriction by the CFL number 1, the maximal stable time step size is 2.5 s .
With the implicit scheme and a CFL number 0.7 the maximal time step size
is 15 s, which is 6 times higher.

In Table 5.1 run{time measurements for the dynamics part, the multi-
grid solver, and the total time (including, e. g. boundary nesting of the
global grid, but excluding initializations and I/O) are listed. The �rst row
presents the times for the explicit time scheme and the second row for the
semi{implicit scheme, where the Helmholtz equation is solved by 3 multigrid
V(2,1,1) cycles (with 2 pre{relaxations and 1 post{relaxation, 1 relaxation
on the coarsest grid) on 10 grid levels that assure a convergence rate of below
0.1 . This provides su�cient accuracy when starting with 0 as initial values,
which is a good initial condition, since the Helmholtz equation is posed for
the time increment of the geopotential.
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Figure 5.2: Geopotential of arti�cial scenario
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Although 6 times more time steps take place with the explicit scheme, the
time of the dynamics of the semi{implicit scheme is only 4.6 times smaller,
because the calculation of the right hand side of the Helmholtz equation
is included in the dynamics part. The multigrid cycling is very expensive
in comparison to the computation of the dynamics part, nevertheless the
semi{implicit scheme is faster than the purely explicit time discretization.

The given run times are measured for a parallel simulation on an IBM
SP2 with 16 computational nodes. Because of memory requirements it was
not possible to run this problem on a single processor. The measurements
also include communication overhead, whose portion is larger for the multi-
grid solver in comparison to the dynamics (although agglomeration was ap-
plied for very coarse grids).

Table 5.1 also includes the maximal relative global error of the simula-
tion in comparison to the analytical solution. Although the time steps of
the explicit simulation are much smaller and the implicit time scheme is of
�rst order only for the gravity wave and strongly damping, the error of the
implicit scheme is only slightly larger.

time scheme �t dynamic multigrid total glob. err.

explicit 2.5 2302 | 2567 4.39e-5

semi{implicit (solve) 15 497 874 1413 5.43e-5

semi{implicit (stabilize) 15 502 319 864 5.26e-5

Table 5.1: Explicit and semi{implicit scheme, 16 nodes | fast waves

The third row shows the results of the application of multigrid as sta-
bilizer (Section 3.2). In this way very cheap iterations of the Helmholtz
equation are su�cient. Numerical tests show that only one V(2,2,1) cycle
with 2 coarse levels is su�cient for this test case. The time for the semi{
implicit scheme is essentially reduced. The global relative error is little
smaller than before, showing the increased in
uence of the explicit initial
values, and a reduced damping of the gravity waves.

The gravity waves of the low basic geopotential of 15 000m2/s2 are slower
and the explicit time step size is increased to 5 s , which reduces the com-
putational work by a factor of two. On the other hand, the computational
costs of the semi{implicit scheme can also be reduced when stabilizing. The
ratio between gravity wave speed and advection is smaller. As a consequence
already 2 smoothing steps are su�cient to ful�ll the stability requirement
in this case. To be concrete: the multigrid algorithm for the solution of
the Helmholtz equation degenerates into two simple smoothing steps. Run
times and errors are listed in Table 5.2 . Also in this case there is an es-
sential acceleration of the simulation because of the stabilizing approach
within the semi{implicit time scheme in comparison to the explicit time dis-
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time scheme �t dynamic multigrid total glob. err.

explicit 5 1149 | 1276 3.51e-4

semi{implicit (solve) 15 500 875 1419 5.18e-4

semi{implicit (stabilize) 15 499 103 643 5.03e-4

Table 5.2: Explicit and semi{implicit scheme, 16 nodes | slow waves

cretization. Moreover, this algorithmic improvement is valuable especially
for parallel computers, as the coarse grids, which require a large degree of
communication, are avoided.

5.3 Variation of Resolution and Adaptivity

Figure 5.1 displays the geopotential of the model problem on an adapted
grid. The top frame shows the initially re�ned grid and lower frames the
situations in intervals of 1 hour. The grid is automatically adapted dur-
ing the simulation, obviously the applied re�nement criterion shows very
reasonable results.

In order to validate the adaptive model, the loss of accuracy and the gain
in computational work due to the local re�nements is compared to a sim-
ulation on a global �ne grid. Figure 5.3 shows the maximal relative global
error of the semi{implicit calculation of the lower geopotential case for a
number of consecutive global resolutions (with adjusted time step sizes) in
comparison to the analytical reference. The global resolutions have 128,
256, 512, and 1024 intervals in each dimension. In a short adjustment phase
the analytical initial values are adjusted to the discretization and the error
increases rapidly. Afterward the global error increases very slowly due to
numerical di�usion. Almost second order accuracy is achieved by the im-
plicit time scheme, although the gravity wave terms are discretized at �rst
order only. According to the previous section, only two relaxations were
applied to solve the implicit time scheme for the \slow waves"{case. This
also appears to be su�cient with local re�nements.

In Figure 5.4 the accuracy of the adaptive method is compared to the
global highly resolved simulations. The maximal relative errors of the high
resolutions with 512 and 1024 intervals in each dimension of Figure 5.3 are
displayed again. Additionally results of the dynamically adaptive simula-
tions with a global grid with 128�128 intervals and two or three levels of
re�nement are shown. With the re�nement ratio of 1:2, the maximum res-
olution of the adaptive runs and the corresponding global resolutions are
equivalent.

The re�nement criterion limits the local discretization error in the adap-
tive simulation to the maximum local error of the corresponding global �ne



5.3. VARIATION OF RESOLUTION AND ADAPTIVITY 111

0

0.005

0.01

0.015

0.02

0.025

0.03

0 1 2 3 4 5 6

m
ax

. r
el

. g
lo

b.
 e

rr
.

model time [h]

128x128
256x256
512x512

1024x1024

Figure 5.3: Maximal global relative errors on global grids

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 1 2 3 4 5 6

m
ax

. r
el

. g
lo

b.
 e

rr
.

model time [h]

128x128 + 2
512x512

128x128 + 3
1024x1024

Figure 5.4: Maximal global relative errors on adaptive grids



112 CHAPTER 5. PERFORMANCE RESULTS

grid. It is achieved that the global error of the adaptive simulation is of the
same order of magnitude as the global error of the globally highly resolved
computation. The errors of the re�ned simulation are only slightly larger,
which shows the self{consistency of the adaptive method2.

Not only the correct choice of re�nement points, also an appropriate
nesting procedure is important to achieve this result.

In the example with three re�nement levels the total number of inner
grid points of the dynamically adaptive method (including the global �ne
grid and all re�nement levels) varies between 75 240 and 91 292 , which is
between 13.9 and 11.5 times fewer than the grid points of the corresponding
global �ne grid with 1 0232=1046 529 inner points. However, the additional
overhead when introducing local re�nements (e. g. calculation of the re�ne-
ment criterion and nesting of the re�nement boundaries) decreases the total
adaptive speed{up.

Table 5.3 shows the bene�ts of the adaptive method in measured run
times. The adaptive method is 8.1 times faster with almost the same ac-

method dynamic multigrid re�ne total glob. err.

non{adaptive 7444 1344 | 9184 5.03-4

adaptive 646 124 358 1128 5.51-4

Table 5.3: Adaptive acceleration, 1 node | slow waves

curacy. The overhead for the local re�nements of three re�nement levels,
including the criterion and the mapping and initialization of new blocks, is
still much smaller than the costs for discretizing the rather simple SWE.

The factor 8.1 shows the great potential of adaptive re�nements. How-
ever, as mentioned earlier, this speed{up depends very much on the applica-
tion.3 In our case the model problem is chosen to show more or less realistic
properties.

The given times in Table 5.3 denote the run time on one node (sequential
run); however, the time for the non{adaptive simulation is estimated at one{
forth of the time of a parallel run on 4 processors. This is reasonable when
considering Table 5.4 .

2The wiggles in the errors of the calculation with local re�nements come from their
calculation for points of the global �ne grid only.

3In this example a two{dimensional region (the low pressure area) was re�ned, where a
higher number of re�nement levels increases the degree of adaptivity only slightly further
on. This is very di�erent to lower dimensional regions as weather fronts or single points
(from a coarse grid point of view, since weather fronts also become two{dimensional if
calculated at very high resolution).
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5.4 Parallelism

It is well known that very good parallel e�ciencies can be achieved with the
grid partitioning parallelization approach. This is also true for this shallow
water model as shown for a non{adaptive version in the following section. It
is much more di�cult to obtain high parallel speed{up for adaptive simula-
tions. Not only the problem size is drastically reduced; additional overhead
(e. g. communication, sequential parts) is also introduced. The result of the
design of the parallel adaptive model is shown with regard to parallel e�-
ciencies thereafter. In the last section the results of the mapping algorithm
(Section 3.4.2) are studied.

5.4.1 Parallel Non{Adaptive Simulation

In this section parallel e�ciencies for a non{adaptive simulation are pre-
sented. In this case perfect load balance is achieved.

Table 5.4 lists run times and parallel speed{ups for the dynamic part,
the multigrid solver and the total simulation for partitions with 2�2 and
4�4 nodes with the di�erent time stepping methods for the \slow waves"
case. The given parallel speed{ups are relative accelerations from 4 to 16
nodes.

The dynamics part shows a constant acceleration of 3.7 when increasing
the number of nodes from 4 to 16. This is an excellent value for a discretiza-
tion of the SWE on a grid with 10232 inner grid points computed on 16
nodes of an IBM SP2. The resulting parallel e�ciency is 92.5% .

Also the multigrid algorithm scales very well in the solving as well as
stabilizing mode (in the stabilizing mode only 2 smoothing steps are per-
formed).

Consequently, the speed{ups for the total times show that an even higher
number of processing nodes could be applicable.

method part. dynamic multigrid total

2�2 4208 | 4509
explicit

4�4 1149 (3.7) | 1276 (3.5)

2�2 1862 2833 4794
solve

4�4 500 (3.7) 875 (3.2) 1419 (3.4)

2�2 1861 336 2296
stabilize

4�4 499 (3.7) 103 (3.3) 643 (3.6)

Table 5.4: Parallel speed{up, non{adaptive method | slow waves

Similar results are obtained when calculating the model case with fast
gravity waves, as seen in Table 5.5 .
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method part. dynamic multigrid total

2�2 8312 | 8898
explicit

4�4 2301 (3.6) | 2567 (3.5)

2�2 1842 1076 3072
stabilize

4�4 502 (3.7) 319 (3.4) 864 (3.6)

Table 5.5: Parallel speed{up, non{adaptive method | fast waves

5.4.2 Parallel Adaptive Simulation

As before, the global grid of the adaptive simulation has 128�128 intervals;
3 re�nement levels are initiated to provide locally the resolution of the non{
adaptive method.

The parallel e�ciencies cannot be expected to be as good as for the
non{adaptive runs. Not only is the computational work essentially reduced
and additional communication introduced, but load imbalances also occur.
Moreover, the maximal block size is very small when the global coarse grid
and the local re�nements are distributed to a higher number of processors,
and the additional work at the block boundaries becomes visible. With 16
nodes a partitioning with a maximum block size of 332 points has to be
used. This leads to an additional computational overhead of almost 10% in
comparison to the maximal block size of 652 points, which is appropriate for
4 nodes. In Figure 5.6 the total number of points involved in the adaptive
run is displayed during the simulation period of 6 hours for both block sizes.

Nevertheless, the speed{ups of the dynamics listed in Table 5.6 are still
good. The multigrid algorithm, however, shows di�culties for this small

method part. dynamic multigrid re�ne total

1�1 1455 | 1055 2510
explicit 2�2 408 (3.6) | 435 (2.4) 892 (2.8)

4�4 138 (3.0) | 323 (1.3) 466 (1.9)

1�1 644 731 352 1727
solve 2�2 180 (3.6) 326 (2.2) 161 (2.2) 667 (2.6)

4�4 58 (3.1) 225 (1.4) 104 (1.5) 388 (1.7)

1�1 649 117 358 1124
stabilize 2�2 182 (3.6) 47 (2.5) 160 (2.2) 390 (2.9)

4�4 61 (3.0) 29 (1.6) 107 (1.5) 198 (2.0)

Table 5.6: Parallel speed{up, adaptive method | slow waves

problem size, when used as solver performing 3 V(2,1,1) cycles (although
agglomeration is used for coarse grids). Here the advantage of the stabilizing
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method becomes fully apparent. It is not the parallel e�ciency which is
better for the two relaxation steps in comparison to the full cycles, it is
rather the smaller portion of the total work, which increases the speed{up
of the total time with the stabilizing method.

It is worth mentioning that the re�nement overhead is also parallelized
and scales similar to the stabilizer, although much communication is per-
formed in this part of the adaptive model. This is discussed later in Sec-
tion 5.4.3 .

To summarize at this point: the simulation with dynamically local re-
�nement has a speed{up of 5.7 on 16 nodes of the IBM SP2 with respect
to a sequential run. This is considered a very good value when taking into
account that the original problem size is reduced by a factor of 16 with the
presented algorithmic improvements, as displayed in Figure 1.1 on Page 18 .
Moreover, the speed{up 2 from 4 to 16 nodes shows that the adaptive method
is scalable.4 For larger problem sizes and computationally more demanding
equations even more processors could be used in a reasonable way.

Similar results are obtained for the fast waves, where the stabilizer is a
V(2,2,1) cycle and not fully degenerated as before for the slow waves. In
this case inter{level communication occurs within the multigrid cycling and
the grid levels are computed one after the other. The stabilization is more

method part. dynamic multigrid re�ne total

1�1 650 257 357 1264
stabilize 2�2 181 (3.6) 119 (2.2) 161 (2.2) 460 (2.7)

4�4 59 (3.1) 76 (1.6) 108 (1.5) 245 (1.9)

Table 5.7: Parallel speed{up, adaptive method | fast waves

expensive than for the slow waves; however the bene�ts of the semi{implicit
scheme are also higher, as displayed in Figure 5.5 . The fast waves restrict
the time steps with fully explicit scheme to only 2.5 s . More than two
magnitudes are won with the combination of the semi{implicit and adaptive
method with parallelization in this case.

5.4.3 Load Balancing

The load balance is considered a very critical part of parallel and adaptive
methods in general. In our adaptive shallow water model the re�nement
areas are partitioned into blocks with maximal size, which are then mapped
onto the processors in a way that balances work and reduces communication

4Some parallel algorithms show su�cient parallel e�ciency with up to 4 nodes, but
break down very soon with higher processor numbers and then even show an increase in
execution time.
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Figure 5.5: Algorithmic and parallel acceleration | fast waves

(see Sections 3.3.2 and 3.4.2). The maximal block size is the atomar unit for
parallelization and must be adapted to the problem size and the available
number of processors.

If the maximal block size is large, it is more likely that severe imbal-
ances occur; however, if the blocks become too small, too much additional
computational overhead is introduced at the block boundaries. Figure 5.6
displays the total number of points which are calculated during the dynam-
ically adaptive simulation of a model time of 6 hours with 1440 time steps.
The lower line shows the total work load for a run with a maximal block size
of 652 points, the upper line a four times smaller size with 332 points. Both
lines increase in the beginning, showing a growth of the re�nement areas.
This is because points which have already been re�ned are more likely to be
re�ned again in the next adaptation step to prevent oscillations of the re-
�nement boundaries (see Section 3.3.1.2). After this initialization phase the
number of points shows 
uctuations due to the dynamic adaptations; how-
ever the magnitude stays constant. On average the small blocks introduce
about 10% more work.

The opposite is true for the load balance factor (Equation 2.24), which is
displayed in Figure 5.7 . The upper and medium lines show the load balance
factor for the smaller and larger block size, respectively, when distributed
onto 4 nodes in a 2�2 process grid. The excellent load balance factor of
0.98 is achieved for the small blocks, whereas the medium line for the large
blocks is at about 0.9 on average.

Thus the 10% increase in total costs for the small block size is distributed
optimally to the processes. In both cases the loss of parallel e�ciency is
about 10% , which is just the speed{up 3.6 on 4 nodes given in Tables 5.6
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and 5.7 for the dynamics.
The lowest line in Figure 5.7 displays the load balance factor for the

small blocks distributed to 16 processes. The average value is about 0.84,
which shows that the balance of the work allows parallel e�ciencies of the
adaptive model on 16 nodes with up to this value.

This is an important result, since when computing more expensive equa-
tions the proportion of the communication overhead is reduced and thus the
parallel e�ciencies automatically increases.

Moreover, it is shown that the mapping algorithm produces good bal-
ances although it also considers neighborhood relationships. The advantages
of a reduced volume communication due to mapping can be seen from Ta-
ble 5.8 . In the �rst three lines the re�nement overhead given in Table 5.8 is

load bal. part. re�ne total
adaptation nesting feedback

1�1 188 136 33 1124
red. com. 2�2 69 (2.7) 69 (2.0) 23 (1.4) 390 (2.9)

4�4 49 (1.4) 44 (1.6) 16 (1.4) 198 (2.0)

2�2 86 (2.2) 87 (1.6) 35 (0.9) 433 (2.6)
LPT

4�4 56 (1.5) 47 (1.8) 20 (1.8) 205 (2.1)

Table 5.8: Parallel speed{up of re�nement overhead | slow waves

split into the adaptation phase, where new blocks are initialized and work
load is migrated; the nesting phase, where the boundaries of the re�nement
blocks are supported with coarse grid values; and the feedback step, where
the �ne grid values improve the solution on their coarser grids. All three
phases have a large portion of volume data exchange.

The two lower lines are the result of the LPT mapping without consider-
ation of the �ne{coarse neighborhoods. Especially on 4 nodes the execution
times are much longer. On 16 nodes the volumes to be exchanged are smaller
(because of the smaller maximal block size) and less volume communication
can be saved.

When comparing the total run times it is seen that the reduction in
communication pays even against a probably slightly worse balance of work.

Figure 5.8 presents the portions of the arti�cial cyclone which are dis-
tributed to processor number one in a parallel simulation with four compu-
tational nodes. Since the cyclone moves out of the lower left corner, which
is initially dedicated to processor one, more and more blocks from the up-
per right region are distributed to this processor during simulation in order
to achieve a balance of work. Some blocks remain for a long time on the
same processor (there are 30 time steps in between the pictures) and often
corresponding coarse and �ne grids are distributed to the same node.
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Figure 5.8: Geopotential of instationary cyclone | 4 nodes
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Chapter 6

Conclusion and Outlook

Joppich [42] wrote in 1990:

In comparison with �nite element methods, where local re�ned
grids are considered as standard in numerous applications for a
long time, local re�nement for �nite di�erence methods in com-
bination with multigrid algorithms have not yet been established.
Such algorithms for practical applications rarely exist hitherto,
although from the theoretical point of view it is often referred to
the simple facility of realizing and controlling.

Since that time the situation has not basically changed.

In this paper dynamically adaptive multigrid is applied to a meteorolog-
ical simulation. It is shown that adaptive re�nements can be used even in
combination with a semi{implicit time scheme on a parallel computer with
distributed memory. Adaptivity is not a limitation for parallelism.

Moreover, in our application parallelism complements the adaptive simu-
lation. Adaptivity is applied in order to provide a de�ned degree of accuracy
at minimal costs. Consequently, the computing time depends on the sim-
ulated scenario. In a best case scenario, no re�nement is necessary at all
and the computing time is reduced by magnitudes. However, in a worst
case scenario, high resolution is necessary everywhere in the computational
domain and nothing is saved in comparison to a non{adaptive model (both
extreme cases are expected to appear very rarely).

On the other hand, parallelism provides huge computing power, which is
best exploited with large problem sizes. Small problems do not require large
parallel systems and parallelization overhead a�ects parallel e�ciencies, as
often experienced.

Acceleration by adaptivity as well as acceleration by parallelism (as vi-
sualized in Figures 1.1 and 5.5) depend very much on the model problem.
However, when combining them, the e�ects tend to equalize each other and
the resulting acceleration becomes more stable.
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Local adaptive simulations can reduce the computational costs of simu-
lations and less computer power is required for �xed problem sizes. On the
other hand larger and more accurate calculations become possible, which is
an even more important advantage from the scienti�c point of view.

The di�culty of this paper was to selection and combine several compo-
nents belonging to the �elds of mathematics, computer science and meteo-
rology. Design components were chosen that are already known to provide
good results (e. g. MLAT, semi{implicit time scheme, blending nesting, MPI,
LPT{load balance). In most cases these components were adapted and even
sometimes improved (MLAT is applied in a time dependent frame as stabi-
lizer, the semi{implicit scheme is based on two time levels instead of three
as are commonly used, MPI is applied with nonblocking and asynchronous
communication, and the LPT{load balance considers neighborhood relation-
ships as side conditions.)

The outstanding acceleration in simulation times by approx. two magni-
tudes proves the quality of this design. The only disappointing component is
the asynchronous communication, which has not shown the expected perfor-
mance. No considerable e�ect of concurrent execution of computation and
communication was achieved for the model problem. However, for much
longer messages and more computational work (as in three{dimensional
models) the situation may change.

Moreover, the dynamically adaptive method is not only designed; it has
been implemented in a running model. This implementation can serve as an
environment for testing and verifying new and improved components (e. g.
semi{Lagrange discretization or an optimal partitioning and load balancing
strategy). It is considered possible starting point for future developments in
time{dependent adaptive simulations.

The developed and implemented adaptive shallow water model is cur-
rently running with very general re�nement domains. Nevertheless it is
designed for more general meteorological simulations.

Since for three{dimensional models the grid is only horizontally par-
titioned and purely horizontal re�nements are appropriate in numerical
weather simulations, a straightforward generalization seems possible.

However, further research is necessary to address additional problems,
such as interaction with physical processes.



Appendix A

Spherical Coordinates

A.1 Transformation

The transformation of the spherical coordinates � , ' and the radius a of
the earth in Cartesian coordinates x and y on the sphere is given by

x = a cos � cos'

y = a sin� cos' (A.1)

z = a sin' :

Horizontal velocities transform due to

u = a cos' _�

v = a _' : (A.2)

The Laplacian r2 is expressed in spherical coordinates

r2 : =
1

a2 cos2 '
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A.2 Discretization

In the dynamically adaptive shallow water model, spherical coordinates ap-
plied. Since in the previous section often Cartesian coordinates are used to
facilitate the presentation, here the actually applied equations are provided.
Equations (A.4){(A.9) correspond to Equations (3.1) { (3.6).
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un+1 = un + �u

vn+1 = vn + �v (A.5)
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Appendix B

Stability Analysis

The abbreviations ars and brs , r; s=1; 2 used in Equation (3.11) are

a11 = 1
a12 = ��
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1
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4 r2
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(B.1)

where the nabla operator is used to indicate �nite di�erences. These can be
transformed into Fourier components according to

r1
1h

n = hni+1 � hni�1 = 2 I Hn sin'
r2

1h
n = hni+1 � 2hni + hni�1 = 2Hn cos'� 2

r2
2h

n = hni+2 � 2hni + hni�2 = �4Hn sin2 '
r3

2h
n = hni+2 � 2hni+1 + 2hni�1 � hni�2 = 4 I Hn sin' (cos'� 1) :

(B.2)
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